Magmatism and Tectonic Background of Early Permian Intra-Oceanic Arc in Diyanmiao Subduction Accretion Complex Belt in Eastern Margin of Central Asian Orogenic Belt
-
摘要: 洋陆转换岩石学证据(洋内弧)的发现使识别、重建、研究洋盆转化为大陆成为可能.对中亚造山带东缘迪彦庙俯冲增生杂岩带内蛇绿岩开展岩石地球化学、Sr-Nd同位素以及锆石U-Pb年代学研究,识别出一套洋内弧火成岩组合.MORB-Like玄武岩锆石U-Pb谐和年龄为286.1±6.1 Ma,代表洋内初始俯冲时代;HMA锆石U-Pb谐和年龄为283.7±4.7 Ma,代表首次岩浆作用后、俯冲程度加深的岩浆作用时代;岛弧拉斑玄武岩(IAT)锆石U-Pb谐和年龄为241±5 Ma,指示古亚洲洋早三叠世逐渐向着正常岛弧岩浆作用转换的大陆化方向发展.从MORB-Like玄武岩到HMA再到IAT的岩石组合序列代表了洋内俯冲作用由浅到深的递进演变以及洋盆向大陆边缘岛弧逐步演化的洋陆转换过程.Abstract: The discovery of petrological evidence for the ocean-continent conversion (intra-oceanic arc) makes it possible to identify, reconstruct and study the ocean-continent conversion. In this paper, the ophiolite in the Diyanmiao subduction accretion complex belt in the eastern margin of the Central Asian orogenic belt was studied in terms of petrogeochemistry, Sr-Nd isotope and zircon U-Pb geochronology, and a set of igneous assemblages in the intra-oceanic arc were identified. The zircon U-Pb concordant age of MORB-like basalt is 286.1±6.1 Ma, representing the period of initial subduction in the ocean. The zircon U-Pb concordant age of HMA is 283.7±4.7 Ma, which represents the age of magmatism when subduction deepened after the first magmatic action. The zircon U-Pb concordant age of IAT is 241±5 Ma, indicating that the paleo-Asian Ocean developed towards continental transition of normal island arc magmatism in the Early Triassic. The sequence of rock assemblages from MORB-like to HMA to IAT represents the progressive evolution of intra-oceanic subduction from shallow to deep and the gradual evolution of ocean basin to the island arc of the continental marginal.
-
图 1 研究区大地构造位置示意图(a)和迪彦庙俯冲增生杂岩带地质图(b)
图a据Jahn(2004)修改
Fig. 1. Geological map showing the tectonic units of study area (a) and geological map of subduction-accretionary complex in Diyanmiao area (b)
图 4 迪彦庙蛇绿岩Zr/TiO2-Nb/Y图(a)和K2O-SiO2图(b)
图a据Winchester and Floyd(1977); 图b据Peccerillo et al.(1976)
Fig. 4. Zr/TiO2-Nb/Y diagram (a) and K2O-SiO2 diagram (b) of the ophiolite in Diyanmiao area
图 5 迪彦庙蛇绿岩球粒陨石标准化稀土配分图(a, c)和原始地幔标准化微量元素蛛网图(b, d)
Chondrite数值据Taylor and Gorton(1977); primitive mantle和N-MORB数值据Sun and McDonough(1989); Mariana MORB-Like和Boninite数值据Reagan et al.(2010); Mirdita MORB-Like和Boninite数值据Dilek and Furnes(2009)
Fig. 5. Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized trace element spider diagrams(b, d) of the ophiolite in Diyanmiao area
图 6 迪彦庙高镁安山岩SiO2-MgO(a)和SiO2-FeO*/MgO(b)图解
据Deng et al.(2009); 图a, PQ线为HMA在SiO2给定时MgO最低值(即下边界); 竖虚线表示SiO2=52%;MgO=11%的虚线表示从实验熔体统计得到的LT-HMA(低温高镁安山岩)与MT-HMA(中温高镁安山岩)的分界线; MgO=15%的虚线表示MT-HMA与HT-HMA(高温高镁安山岩)的分界; 图b, 直线为CA与TH分界线, 据Miyashiro(1974); 强CA系列据Yogodzinski(1994, 1995); 双点划线为CA与(LF-CA)系列的边界, 据Arculus(2003)
Fig. 6. SiO2-MgO diagram(a) and SiO2-FeO*/MgO diagram(b)of the HMA in Diyanmiao area
图 7 迪彦庙蛇绿岩87Sr/86Sr(i)-(143Nd/144Nd)t同位素组成
地幔演化线据Papanastassiou et al.(1977), 图中各端元范围划分参照Rollinson(1993). DDM.亏损地幔; HIMU.高μ值(238U/204Pb值)地幔; EMI.富集地幔I; EMII.富集地幔II; PREMA.普通地幔; BSE.硅质地球
Fig. 7. Sr-Nd isotope compositions of the ophiolite in Diyanmiao area
图 9 迪彦庙蛇绿岩Th/Yb-Nb/Yb图(a)和V-Ti图(b)
图a和b据Pearce(2014)和肖庆辉等(2016)修改; 图b中Izu-Bonin-Mariana洋内弧数据引自Ishizuka et al.(2014)
Fig. 9. Th/Yb-Nb/Yb diagram (a) and V-Ti diagram (b) of the ophiolite in Diyanmiao area
-
[1] Arculus, R. J., 2003. Use and Abuse of the Terms Calcalkaline and Calcalkalic. Journal of Petrology, 44(5): 929-935. https://doi.org/10.1093/petrology/44.5.929 [2] Casey, J. F., Dewey, J. F., 1984. Initiation of Subduction Zones along Transform and Accreting Plate Boundaries, Evolution Triple-Junction, and Forearc Spreading Centres—Implications for Ophiolitic Geology and Obduction. Geological Society, London, Special Publications, 13(1): 269-290. https://doi.org/10.1144/gsl.sp.1984.013.01.22 [3] Cawood, P. A., Kr ner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1 [4] Chapple, W. M., 1978. Mechanics of Thin-Skinned Fold- and-Thrust Belts. Geological Society of America Bulletin, 89(8): 1189. https://doi.org/10.1130/0016-7606(1978)89 < 1189:motfb > 2.0.co; 2 doi: 10.1130/0016-7606(1978)89<1189:motfb>2.0.co;2 [5] Crawford, A.J., 1989.Boninites. Unwin Hyman, London. [6] Davis, D., Suppe, J., Dahlen, F. A., 1983. Mechanics of Fold- and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research, 88(B2): 1153-1172. https://doi.org/10.1029/jb088ib02p01153 [7] Deng, J., Flower, M.F.J., Liu, C., et al., 2009.Nomenclature Diagnosis and Origin of High-Magnesian Andesits(HMA) and Magnesian Andesits(MA): A Review from Petrographic and Experimental Data. Geochimica et Cosmochimica Acta, 73(13):A279. http://cn.bing.com/academic/profile?id=5e7c96bb55bbfbd3190c42c6a3e65926&encoded=0&v=paper_preview&mkt=zh-cn [8] Deng, J.F., Liu, C., Feng, Y.F., et al., 2010.High Magnesian Andesitic/Dioritic Rocks(HMA) and Magnesian Andesitic/Dioritic Rocks(MA):Two Igneous Rock Types Related to Oceanic Subduction.Geology in China, 37(4):1112-1118(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004027.htm [9] Deng, J.F., Xiao, Q.H., Su, S.G., et al., 2007.Igneous Petrotectonic Assemblages and Tectonic Settings:A Discussion.Geological Journal of China Universities, 13(3):392-402(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200703009 [10] Dilek, Y., 2003.Ophiolite Concept and Its Evolution.In: Dilek, Y., Newcomb, S., eds., Ophiolite Concept and the Evolution of Geological Thought. Special Paper of the Geological Society of America, 373(373):1-16. https://doi.org/10.1130/0-8137-2373-6.1 [11] Dilek, Y., Furnes, H., 2009. Structure and Geochemistry of Tethyan Ophiolites and Their Petrogenesis in Subduction Rollback Systems. Lithos, 113(1-2): 1-20. https://doi.org/10.1016/j.lithos.2009.04.022 [12] Du, Q. X., Han, Z. Z., Shen, X. L., et al., 2019. Geochronology and Geochemistry of Permo-Triassic Sandstones in Eastern Jilin Province (NE China): Implications for Final Closure of the Paleo-Asian Ocean. Geoscience Frontiers, 10(2): 683-704. https://doi.org/10.1016/j.gsf.2018.03.014 [13] Fan, Y.X., Li, T.D., Xiao, Q.H., et al., 2019.Zircon U-Pb Ages, Geochemical Characteristics of Late Permian Granite in West Ujimqin Banner, Inner Mongolia, and Tectonic Significance.Geological Review, 66(1):248-266(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201901022 [14] Feng, Y.F., Deng, J.F., Wang, S.J., et al., 2010.The Recognition of the Magnesian Andesitic Series(MA) in the Precambrian Granitic Rocks in Western Shandong Province and the Continental Crustal Growth.Geology in China, 37(4):1119-1129(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004028.htm [15] Feng, Y.F., Deng, J.F., Xiao, Q.H., et al., 2011.Recognizing the TTG Rock Types:Discussion and Suggestion.Geological Journal of China Universities, 17(3):406-414(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX201103007.htm [16] Fu, C.L., 2016.The Composition, Age and Tectoinc Setting of Lajishan Ophiolite Melange(Dissertation).Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract). [17] George, R., Turner, S., Hawkesworth, C., et al., 2003. Melting Processes and Fluid and Sediment Transport Rates along the Alaska-Aleutian Arc from an Integrated U-Th-Ra-Be Isotope Study. Journal of Geophysical Research: Solid Earth, 108(B5): 2252. https://doi.org/10.1029/2002jb001916 [18] Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Rev. Mineral. Geochem., 53(1):27-62. https://doi.org/10.2113/0530027 [19] Ishikawa, T., Nagaishi, K., Umino, S., 2002.Boninitic Volcanism in the Oman Ophiolite: Implications for Thermal Condition during Transition from Spreading Ridge to Arc. Geology, 30(10):899.https://doi.org/10.1130/0091-7613(2002)030 < 0899:bvitoo > 2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0899:bvitoo>2.0.co;2 [20] Ishizuka, O., Kimura, J. I., Li, Y. B., et al., 2006. Early Stages in the Evolution of Izu-Bonin Arc Volcanism: New Age, Chemical, and Isotopic Constraints. Earth and Planetary Science Letters, 250(1-2): 385-401. https://doi.org/10.1016/j.epsl.2006.08.007 [21] Ishizuka, O., Tani, K., Reagan, M. K., et al., 2014. Izu-Bonin-Mariana Forearc Crust as a Modern Ophiolite Analogue. Elements, 10(2): 115-120. https://doi.org/10.2113/gselements.10.2.115 [22] Ishizuka, O., Taylor, R. N., Yuasa, M., et al., 2011. Making and Breaking an Island Arc: A New Perspective from the Oligocene Kyushu-Palau Arc, Philippine Sea. Geochemistry, Geophysics, Geosystems, 12(5): 1-40. https://doi.org/10.1029/2010gc003440 [23] Ishizuka, O., Yuasa, M., Taylor, R. N., et al., 2009. Two Contrasting Magmatic Types Coexist after the Cessation of Back-Arc Spreading. Chemical Geology, 266(3-4): 274-296. https://doi.org/10.1016/j.chemgeo.2009.06.014 [24] Isozaki, Y., Aoki, K., Nakama, T., et al., 2010. New Insight into a Subduction-Related Orogen: A Reappraisal of the Geotectonic Framework and Evolution of the Japanese Islands. Gondwana Research, 18(1): 82-105. https://doi.org/10.1016/j.gr.2010.02.015 [25] Jahn, B.M., 2004.The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic.Geological Society, London, Special Publications, 226(1):73-100. https://doi.org/10.1144/GSL.SP.2004.226.01.05 [26] Janney, P. E., Castillo, P. R., 1996. Basalts from the Central Pacific Basin: Evidence for the Origin of Cretaceous Igneous Complexes in the Jurassic Western Pacific. Journal of Geophysical Research: Solid Earth, 101(B2): 2875-2893. https://doi.org/10.1029/95jb03119 [27] Jian, P., Liu, D. Y., Kr ner, A., et al., 2010. Evolution of a Permian Intraoceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1-2): 169-190. https://doi.org/10.1016/j.lithos.2010.04.014 [28] Karig, D. E., Sharman, G. F., 1975. Subduction and Accretion in Trenches. Geological Society of America Bulletin, 86(3): 377-389. https://doi.org/10.1130/0016-7606(1975)86 < 377:saait > 2.0.co; 2 doi: 10.1130/0016⁃7606(1975)86<377:saait>2.0. co ;2[29] Kelley, K. A., Plank, T., Grove, T. L., et al., 2006. Mantle Melting as a Function of Water Content beneath Back-Arc Basins. Journal of Geophysical Research, 111(B9): B9208. https://doi.org/10.1029/2005jb003732 [30] Kikuchi, Y., 1890.On Pyroxene Components in Certain Volcanic Rocks from Bonin Island.J.Coll.Sci.Imp.Univ.Jpn., 3:67-89. doi: 10.1007%2FBF00373580 [31] Li, G.Z., Wang, Y.J., Li, C.Y., et al., 2017.Discovery of Early Permian Radiolarian Fauna in the Solon Obo Ophiolite Belt, Inner Mongolia and Its Geological Significance.Chinese Science Bulletin, 62(5):400-406(in Chinese). doi: 10.1360/N972016-00703 [32] Li, J.Y., Gao, L.M., Sun, G.H., et al., 2007.Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates.Acta Petrologica Sinica, 23(3):565-582(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200703004 [33] Li, T.D., Xiao, Q.H., Pan, G.T., et al., 2019.A Consideration about the Development of Ocean Plate Geology.Earth Science, 44(5):1141-1151(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201905003 [34] Li, Y.J., Wang, J.F., Li, H.Y., et al., 2012.Recognition of Diyanmiao Ophiolite in Xi Ujimqin Banner, Inner Mongolia.Acta Petrologica Sinica, 28(4):1282-1290(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201505020.htm [35] Meng, E., Xu, W.L., Yang, D.B., et al., 2011.Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications.Acta Petrologica Sinica, 27(4):1209-1226(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201104025 [36] Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. https://doi.org/10.2475/ajs.274.4.321 [37] Moore, J.C., Biju-Duval, B., Bergen, J.A., et al., 1982.Offscarping and Underthrusting of Sediment at the Deformation Front of the Barbados Ridge:Deep Sea Drilling Project Leg 78A. Geological Society of America Bulletin, 93(11):1065-1077. https://doi.org/10.1130/0016-7606(1982)93 < 1065:OAUOSA > 2.0.CO; 2 doi: 10.1130/0016-7606(1982)93<1065:OAUOSA>2.0.CO;2 [38] Pan, G.T., Xiao, Q.H., Zhang, K.X., et al., 2019.Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance.Earth Science, 44(5):1544-1561(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201905012 [39] Papanastassiou, D.A., Depaolo, D.J., Wasserburg, G.J., 1977.Rb-Sr and Sm-Nd Chronology and Genealogy of Mare Basalts from the Sea of Tranquility. In: Proceedings of Lunar Science Conference(8th), Tex. Pergamon Press, Inc., New York, 2:1639-1672. http://cn.bing.com/academic/profile?id=cd632c4b4bac394d7fb2670dad213cec&encoded=0&v=paper_preview&mkt=zh-cn [40] Pearce, J. A., Robinson, P. T., 2010. The Troodos Ophiolitic Complex Probably Formed in a Subduction Initiation, Slab Edge Setting. Gondwana Research, 18(1): 60-81. https://doi.org/10.1016/j.gr.2009.12.003 [41] Pearce, J.A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi.org/10.2113/gselements.10.2.101 [42] Peate, D. W., Pearce, J. A., Hawkesworth, C. J., et al., 1997. Geochemical Variations in Vanuatu Arc Lavas: The Role of Subducted Material and a Variable Mantle Wedge Composition. Journal of Petrology, 38(10): 1331-1358. https://doi.org/10.1093/petroj/38.10.1331 [43] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 [44] Peterson, J., 1891.Der Boninit Von Peel Island, Jahrb.Wiss.Anst., Hamburg, 8:341-349. [45] Pu, J., Gao, J.F., Zhao, K.D., et al., 2005. Separation Method of Rb-Sr, Sm-Nd Using DCTA and HIBA. Journal of Nanjing University (Natural Sciences), 41(4):445-450(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njdxxb200504017 [46] Reagan, M. K., Ishizuka, O., Stern, R. J., et al., 2010. Fore-Arc Basalts and Subduction Initiation in the Izu-Bonin-Mariana System. Geochemistry, Geophysics, Geosystems, 11(3): 427-428. https://doi.org/10.1029/2009gc002871 [47] Rollinson, H., 1993. Second Hutton Symposium on the Origin of Granites and Related Rocks. Transactions of the Royal Society of Edinburgh, Earth Sciences 83. Parts 1 and 2. Journal of Structural Geology, 15(6): 812-813. https://doi.org/10.1016/0191-8141(93)90070-q [48] Rubatto, D., Gebauer, D., 2000.Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel, M., Barbin, V., Blanc, P., et al., eds., Cathodoluminescence in Geosciences. Springer, Heidelberg. https: //doi.org/10.1007/978-3-662-04086-7_15 [49] Sang, M., Xiao, W. J., Orozbaev, R., et al., 2018. Structural Styles and Zircon Ages of the South Tianshan Accretionary Complex, Atbashi Ridge, Kyrgyzstan: Insights for the Anatomy of Ocean Plate Stratigraphy and Accretionary Processes. Journal of Asian Earth Sciences, 153: 9-41. doi: 10.1016/j.jseaes.2017.07.052 [50] Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1): 101-118. https://doi.org/10.1016/0012-821x(82)90120-0 [51] Shirey, S. B., Hanson, G. N., 1984. Mantle-Derived Archaean Monozodiorites and Trachyandesites. Nature, 310(5974): 222-224. https://doi.org/10.1038/310222a0 [52] Stockmal, G. S., 1983. Modeling of Large-Scale Accretionary Wedge Deformation. Journal of Geophysical Research, 88(B10): 8271. https://doi.org/10.1029/jb088ib10p08271 [53] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [54] Tatsumi, Y., Ishizaka, K., 1982. Origin of High-Magnesian Andesites in the Setouchi Volcanic Belt, Southwest Japan, I. Petrographical and Chemical Characteristics. Earth and Planetary Science Letters, 60(2): 293-304. https://doi.org/10.1016/0012-821x(82)90008-5 [55] Taylor, S. R., Gorton, M. P., 1977. Geochemical Application of Spark Source Mass Spectrography—III. Element Sensitivity, Precision and Accuracy. Geochimica et Cosmochimica Acta, 41(9): 1375-1380. https://doi.org/10.1016/0016-7037(77)90080-1 [56] Tian, C.L., Cao, C.Z., Yang, F.L., 1989.Geochemical Features of Ophiolite in the Fold Belt on the North Side of the Sino-Korean Platform.Bulletin of the Chinese Academy of Geological Sciences, 11(1):107-129(in Chinese with English abstract). [57] Wang, G.C., Zhang, P., 2019.A New Understanding on the Emplacement of Ophiolitic Mélanges and Its Tectonic Significance:Insights from the Structural Analysis of the Remnant Oceanic Basin-Type Ophiolitic Melanges.Earth Science, 44(5):1688-1704(in Chinese with English abstract). [58] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [59] Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircon and Its Limitations on U-Pb Age Interpretation.Chinese Science Bulletin, 49(16):1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 [60] Xiao, Q.H., Li, T.D., Pan, G.T., et al., 2016.Petrologic Ideas for Identification of Ocean-Continent Transition:Recognition of Intra-Oceanic Arc and Initial Subduction.Geology in China, 43(3):721-737(in Chinese with English abstract). [61] Xiao, W. J., Han, F. L., Windley, B. F., et al., 2003. Multiple Accretionary Orogenesis and Episodic Growth of Continents: Insights from the Western Kunlun Range, Central Asia. International Geology Review, 45(4): 303-328. https://doi.org/10.2747/0020-6814.45.4.303 [62] Xu, B., Zhao, P., Bao, Q.Z., et al., 2014.Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt(XMOB).Acta Petrologica Sinica, 30(7):1841-1857(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001 [63] Xu, W.T., 2017.Contrastive Research of Ophiolite Mélange Belts in the Central-East of Xing'an-Mongolian Orogenic Belt (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [64] Yogodzinski, G. M., Kay, R. W., Volynets, O. N., et al., 1995. Magnesian Andesite in the Western Aleutian Komandorsky Region: Implications for Slab Melting and Processes in the Mantle Wedge. Geological Society of America Bulletin, 107(5): 505-519. https://doi.org/10.1130/0016-7606(1995)107 < 0505:maitwa > 2.3.co; 2 doi: 10.1130/0016⁃7606(1995)107<0505:maitwa>2.3. co ;2[65] Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., et al., 1994. Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, far Western Aleutians. Journal of Petrology, 35(1): 163-204. https://doi.org/10.1093/petrology/35.1.163 [66] Zhang, B.R., 2001.Geochemical Study of Continental Orogenic Belts:On Improvement of Geochemical Discrimination of Tectonic Settings of Rocks. Northwestern Geology, 34(3):1-17(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e12165a311bdbe2f93bf14f0c703dcca&encoded=0&v=paper_preview&mkt=zh-cn [67] Zhang, K.X., Yin, H.F., Zhu, Y.H., et al., 2001.Geological Survey Theory, Method and Practice of Melange Zone in Orogenic Belt.China University of Geosciences Press, Wuhan(in Chinese). [68] Zhang, Z. C., Li, K., Li, J. F., et al., 2015. Geochronology and Geochemistry of the Eastern Erenhot Ophiolitic Complex: Implications for the Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt. Journal of Asian Earth Sciences, 97: 279-293. https://doi.org/10.13039/501100001809 [69] Zhao, Y.L., Li, W.M., Wen, Q.B., et al., 2016.Late Paleozoic Tectonic Framework of Eastern Inner Mongolia:Evidence from the Detrital Zircon U-Pb Ages of the Mid-Late Permian to Early Triassic Sandstones.Acta Petrologica Sinica, 32(9):2807-2822(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201609015 [70] 邓晋福, 刘翠, 冯艳芳, 等, 2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类.中国地质, 37(4):1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025 [71] 邓晋福, 肖庆辉, 苏尚国, 等, 2007.火成岩组合与构造环境:讨论.高校地质学报, 13(3):392-402. doi: 10.3969/j.issn.1006-7493.2007.03.009 [72] 范玉须, 李廷栋, 肖庆辉, 等, 2019.内蒙古西乌珠穆沁旗晚二叠世花岗岩的锆石U-Pb年龄、地球化学特征及其构造意义.地质论评, 66(1):248-266. http://d.old.wanfangdata.com.cn/Periodical/dzlp201901022 [73] 冯艳芳, 邓晋福, 王世进, 等, 2010.鲁西地区早前寒武纪花岗岩类中镁安山质岩石系列(MA)的识别及大陆地壳生长.中国地质, 37(4):1119-1129. doi: 10.3969/j.issn.1000-3657.2010.04.026 [74] 冯艳芳, 邓晋福, 肖庆辉, 等, 2011.TTG岩类的识别:讨论与建议.高校地质学报, 17(3):406-414. doi: 10.3969/j.issn.1006-7493.2011.03.005 [75] 付长垒, 2016.拉脊山蛇绿混杂带结构组成、形成时代与形成过程(博士学位论文).北京: 中国地质科学院. [76] 李钢柱, 王玉净, 李成元, 等, 2017.内蒙古索伦山蛇绿岩带早二叠世放射虫动物群的发现及其地质意义.科学通报, 62(5):400-406. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201705007 [77] 李锦轶, 高立明, 孙桂华, 等, 2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报, 23(3):565-582. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200703004 [78] 李廷栋, 肖庆辉, 潘桂堂, 等, 2019.关于发展洋板块地质学的思考.地球科学, 44(5):1441-1451. http://d.old.wanfangdata.com.cn/Periodical/dqkx201905003 [79] 李英杰, 王金芳, 李红阳, 等, 2012.内蒙古西乌珠穆沁旗迪彦庙蛇绿岩的识别.岩石学报, 28(4):1282-1290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201204024 [80] 孟恩, 许文良, 杨德彬, 等, 2011.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义.岩石学报, 27(4):1209-1226. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201104029.htm [81] 潘桂棠, 肖庆辉, 张克信, 等, 2019.大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义.地球科学, 44(5):1544-1561. http://d.old.wanfangdata.com.cn/Periodical/dqkx201905012 [82] 濮巍, 高剑峰, 赵葵东, 等, 2005.利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法.南京大学学报(自然科学), 41(4):445-450. http://d.old.wanfangdata.com.cn/Periodical/njdxxb200504017 [83] 田昌烈, 曹从周, 杨芳林.1989.中朝陆台北侧褶皱带(中段)蛇绿岩的地球化学特征.地球学报, 11(1):107-129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002240754 [84] 王国灿, 张攀.2019.蛇绿混杂岩就位机制及其大地构造意义新解:基于残余洋盆型蛇绿混杂岩构造解析的启示.地球科学, 44(5):1688-1704. http://d.old.wanfangdata.com.cn/Periodical/dqkx201905020 [85] 吴元保, 郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [86] 肖庆辉, 李廷栋, 潘桂棠, 等, 2016.识别洋陆转换的岩石学思路——洋内弧与初始俯冲的识别.中国地质, 43(3):721-737. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201603003 [87] 徐备, 赵盼, 鲍庆中, 等, 2014.兴蒙造山带前中生代构造单元划分初探.岩石学报, 30(7):1841-1857. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407001 [88] 徐文涛, 2017.兴蒙造山带中东部蛇绿混杂岩带对比研究(硕士学位论文).北京: 中国地质大学. [89] 张本仁, 2001.大陆造山带地球化学研究:Ⅰ岩石构造环境地球化学判别的改进.西北地质, 34(3):1-17. doi: 10.3969/j.issn.1009-6248.2001.03.001 [90] 张克信, 殷鸿福, 朱云海, 等, 2001.造山带混杂岩区地质填图理论、方法与实践——以东昆仑造山带为例.武汉:中国地质大学出版社. [91] 赵英利, 李伟民, 温泉波, 等, 2016.内蒙东部晚古生代构造格局:来自中、晚二叠-早三叠世砂岩碎屑锆石U-Pb年代学的证据.岩石学报, 32(9):2807-2822. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201609015 -
dqkx-44-10-3454-TableS1-2.pdf