• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湘中涟源凹陷上二叠统龙潭组和大隆组海陆过渡相泥页岩孔隙结构特征及对比

    吴忠锐 何生 何希鹏 翟刚毅 夏响华 杨锐 董田 彭女佳

    吴忠锐, 何生, 何希鹏, 翟刚毅, 夏响华, 杨锐, 董田, 彭女佳, 2019. 湘中涟源凹陷上二叠统龙潭组和大隆组海陆过渡相泥页岩孔隙结构特征及对比. 地球科学, 44(11): 3757-3772. doi: 10.3799/dqkx.2019.084
    引用本文: 吴忠锐, 何生, 何希鹏, 翟刚毅, 夏响华, 杨锐, 董田, 彭女佳, 2019. 湘中涟源凹陷上二叠统龙潭组和大隆组海陆过渡相泥页岩孔隙结构特征及对比. 地球科学, 44(11): 3757-3772. doi: 10.3799/dqkx.2019.084
    Wu Zhongrui, He Sheng, He Xipeng, Zhai Gangyi, Xia Xianghua, Yang Rui, Dong Tian, Peng Nüjia, 2019. Pore Structure Characteristics and Comparisons of Upper Permian Longtan and Dalong Formation Transitional Facies Shale in Xiangzhong-Lianyuan Depression. Earth Science, 44(11): 3757-3772. doi: 10.3799/dqkx.2019.084
    Citation: Wu Zhongrui, He Sheng, He Xipeng, Zhai Gangyi, Xia Xianghua, Yang Rui, Dong Tian, Peng Nüjia, 2019. Pore Structure Characteristics and Comparisons of Upper Permian Longtan and Dalong Formation Transitional Facies Shale in Xiangzhong-Lianyuan Depression. Earth Science, 44(11): 3757-3772. doi: 10.3799/dqkx.2019.084

    湘中涟源凹陷上二叠统龙潭组和大隆组海陆过渡相泥页岩孔隙结构特征及对比

    doi: 10.3799/dqkx.2019.084
    基金项目: 

    国家重点研发计划 2017YFE0106300

    国家自然科学基金项目 41690134

    国家自然科学基金项目 41672139

    国家"十三五"科技重大专项子课题 2016ZX05034002-003

    国家"十三五"科技重大专项子课题 2017ZX05005001-008

    高等学校学科创新引智计划资助项目 B14031

    中国博士后科学基金项目 2018M640740

    详细信息
      作者简介:

      吴忠锐(1995-), 男, 研究生, 从事非常规页岩气地质研究

      通讯作者:

      何生

    • 中图分类号: P618

    Pore Structure Characteristics and Comparisons of Upper Permian Longtan and Dalong Formation Transitional Facies Shale in Xiangzhong-Lianyuan Depression

    • 摘要: 以湘中坳陷涟源凹陷上二叠统龙潭组和大隆组海陆过渡相泥页岩为研究对象,重点选取12块典型泥页岩钻井岩心样品开展有机碳含量、岩石热解、X射线衍射、密度法孔隙度、高压压汞、二氧化碳和氮气吸附等测试分析,利用氩离子抛光-场发射扫描电镜(FE-SEM)观察了泥页岩孔隙特征,通过定性描述和定量测定相结合的方法研究了海陆过渡相泥页岩纳-微米级孔隙结构特征及孔隙发育影响因素.研究结果表明:龙潭组和大隆组泥页岩有机碳含量均较高,热演化程度处在凝析油和湿气生成阶段早期,对应Ro为1.22%~1.43%;泥页岩孔隙类型主要为粒间孔、粒内孔、有机孔和微纳米缝.龙潭组与大隆组样品在孔隙形态、孔隙大小和影响因素上均有差异:龙潭组样品氮气吸附滞回环开口宽,有机孔形态多为圆形和椭圆形,孔径较大;大隆组样品氮气吸附滞回环开口窄,有机孔形态多为不规则状,孔径较小;龙潭组泥岩和大隆组泥页岩样品有机碳含量与黏土矿物含量呈正相关关系,2套样品的微孔孔隙积体与有机碳和黏土矿物含量均呈正相关性;龙潭组样品介孔+宏孔的孔隙体积与有机碳和黏土矿物含量呈正相关性,与石英+长石含量呈负相关性;大隆组样品中的碳酸盐矿物对其孔隙性有明显影响,大隆组样品介孔+宏孔孔隙体积与有机碳、黏土矿物和石英+长石含量相关性不明显.

       

    • 图  1  湘中坳陷区域构造位置(a)、涟源凹陷构造分区(b)和涟源凹陷CD构造剖面

      Fig.  1.  Sketch of the regional structure location of Xiangzhong depression (a), structural zoning map of Lianyuan depression (b) and CD tectonic profile of Lianyuan depression

      图  2  涟源凹陷XY1井上二叠统综合柱状图及岩心样品相关信息

      Fig.  2.  Integrated column of Upper Permian in Well XY1 in Lianyuan depression and core sample information

      图  3  涟源凹陷XY1井龙潭组和大隆组样品矿物组成特征

      Fig.  3.  Mineral composition characteristics of Longtan and Dalong Formation shales of Well XY1 in Lianyuan depression

      图  4  龙潭组和大隆组样品无机孔和微纳米裂缝形态及发育特征的FE-SEM图像照片

      a.方解石和白云石颗粒中和颗粒边缘发育的溶蚀孔、粒间孔,XY1井600.22 m,大隆组; b.黄铁矿中的有机孔和黏土矿物层间孔隙,XY1井600.22 m,大隆组; c.方解石颗粒内溶蚀孔,XY1井600.22 m,大隆组; d.金红石颗粒中发育的粒内孔,XY1井600.22 m,大隆组; e.草莓状黄铁矿颗粒之间的粒间孔,左侧可见粒间孔,XY1井624.87 m,大隆组; f.矿物颗粒边缘发育大量三角形粒间孔,也可见黏土矿物与矿物颗粒间孔隙,XY1井600.22 m,大隆组; g.絮状伊利石层间孔隙,XY1井692.66 m,龙潭组; h.高岭石层间孔隙,XY1井692.66 m,龙潭组; i.黏土矿物与有机质复合体,XY1井692.66 m,龙潭组; j.方解石颗粒内部构造微纳米缝,XY1井600.22 m,大隆组; k.构造微纳米缝,XY1井692.66 m,龙潭组; l.成岩收缩微纳米缝,XY1井692.66 m,龙潭组

      Fig.  4.  Morphology and development characteristics of FE-SEM pictures of non-organic pores and micro-nano cracks of the shale samples in Longtan and Dalong Formations

      图  5  龙潭组和大隆组样品有机孔形态及发育特征的FE-SEM图像照片

      a.有机质颗粒内发育不规则状有机孔,红色充填,XY1井624.87 m,TOC=5.07%,大隆组; b.有机质颗粒内发育的不规则状有机孔,红色充填,XY1井624.87 m,TOC=5.07%,大隆组; c.充填在黄铁矿晶体间的有机质,发育有大量的椭圆状、不规则状有机孔,大孔内可见小孔,红色充填,XY1井600.22 m,TOC=3.69%,大隆组; d.长条状有机质颗粒内发育不规则状有机孔,红色充填,XY1井624.87 m,TOC=5.07%,大隆组; e.有机质颗粒内发育不规则状有机孔,红色充填,XY1井624.87 m,TOC=5.07%,大隆组; f.有机质颗粒内发育的椭圆形-近圆形有机孔,红色充填,XY1井692.66 m,TOC=10.29%,龙潭组; g.长条状有机质颗粒内发育的椭圆形-近圆形有机孔,红色充填,可见不发育有机孔的长条状致密有机质颗粒,XY1井692.66 m,TOC=10.29%,龙潭组; h.有机质颗粒内发育的椭圆形-近圆形有机孔,红色充填,XY1井692.66 m,TOC=10.29%,龙潭组; i.有机质颗粒内发育椭圆形有机孔,红色充填,XY1井692.66 m,TOC=10.29%,龙潭组

      Fig.  5.  Morphology and development characteristics FE-SEM pictures of organic pores of the shale samples in Longtan and Dalong Formations

      图  6  龙潭组和大隆组样品CO2吸附曲线和N2吸附-脱附曲线

      Fig.  6.  CO2 adsorption isotherms and N2 adsorption-desorption isotherms of the shale samples in Longtan and Dalong Formations

      图  7  龙潭组和大隆组样品CO2和N2气体吸附测试获得的孔径分布

      Fig.  7.  Pore size distribution by CO2 and N2 adsorption of the shale samples in Longtan and Dalong Formations

      图  8  龙潭组和大隆组泥页岩样品高压压汞进-退汞曲线

      Fig.  8.  Injection-withdrawal curves of the shale in Longtan and Dalong Formations based on the high pressure mercury intrusion method

      图  9  龙潭组和大隆组泥页岩样品不同孔喉直径范围的孔隙体积占比直方图

      Fig.  9.  Pore volume proportion histograms within different pore diameter ranges of the shale samples in Longtan and Dalong Formations

      图  10  龙潭组和大隆组样品TOC与黏土矿物和孔隙体积与TOC以及矿物组成关系

      Fig.  10.  Correlation between TOC and clay mineral, pore volume and TOC, pore volume and mineral compositions of Longtan and Dalong Formation shale samples

      表  1  涟源凹陷XY1井龙潭组和大隆组样品的有机碳测定数据

      Table  1.   Total organic carbon (TOC) contents of Longtan and Dalong Formation samples of Well XY1 in Lianyuan depression

      层位 小层 岩性 深度范围(m) 厚度(m) TOC范围(%) TOC均值(%)
      大隆组 灰色灰质泥页岩夹页岩 561~592 31 0.69~4.69 2.19(12)
      深灰色灰质泥页岩夹页岩 592~642 50 1.52~6.79 3.87(21)
      灰色泥灰岩夹页岩 642~677 35 1.02~4.10 2.00(12)
      灰色粉砂质泥岩和泥质粉砂岩 677~687 10 1.72~2.10 1.91(2)
      龙潭组 黑色碳质泥岩和深灰色泥岩 687~701 14 4.88~10.29 7.45(3)
      其中夹薄煤层(劣煤) 694.5~696.5 2 38.41(1) /
      注:()内为有机碳测定的样品数.
      下载: 导出CSV

      表  2  龙潭组和大隆组12块样品的有机地化测试数据

      Table  2.   Organic geochemistry data of 12 samples in Longtan and Dalong Formations

      样品编号 层位 岩性 井深(m) 有机碳(TOC,%) 热解峰温(Tmax, ℃) 生烃潜力(S1+S2, mg/g) 镜质体反射率(%)
      XGY-1 大隆组 灰质泥页岩 600.22 3.69 460 2.66 1.34
      XGY-2 大隆组 602.67 2.72 / / /
      XGY-3 大隆组 608.08 4.96 / / 1.22
      XGY-4 大隆组 612.76 5.09 458 4.02 1.37
      XGY-5 大隆组 624.87 5.07 448 3.90 /
      XGY-6 大隆组 629.59 3.13 / / /
      XGY-7 大隆组 631.18 6.79 451 4.91 /
      XGY-8 大隆组 641.78 3.00 461 2.66 1.27
      XGY-9 龙潭组 粉砂质泥岩 685.07 1.72 / / /
      XGY-10 龙潭组 泥岩 689.10 7.17 / / /
      XGY-11 龙潭组 碳质泥岩 692.66 10.29 469 6.00 1.41
      XGY-12 龙潭组 劣煤 697.81 38.41 472 36.90 1.43
      下载: 导出CSV

      表  3  龙潭组和大隆组12块样品矿物组成数据

      Table  3.   Mineral composition data of 12 samples in Longtan and Dalong Formations

      样品编号 层位 全岩定量分析(%) 黏土矿物相对含量(%)
      石英 长石 铁白云石 方解石 黏土矿物 黄铁矿 菱铁矿 伊利石 伊蒙混层 高岭石
      XGY-1 大隆组 60 6 2 10 20 2 / 4 96 /
      XGY-2 大隆组 63 3 2 23 8 1 / 7 93 /
      XGY-3 大隆组 45 7 4 19 23 2 / 5 95 /
      XGY-4 大隆组 49 7 1 22 18 3 / 30 70 /
      XGY-5 大隆组 33 7 2 19 36 3 / 17 83 /
      XGY-6 大隆组 55 4 6 20 13 2 / 16 84 /
      XGY-7 大隆组 49 5 / 10 33 3 / 2 98 /
      XGY-8 大隆组 29 8 / 38 21 4 / 19 81 /
      XGY-9 龙潭组 53 16 / / 31 / / 7 88 5
      XGY-10 龙潭组 14 5 / 2 57 / 22 6 68 26
      XGY-11 龙潭组 32 3 5 / 60 / / 5 80 15
      XGY-12 龙潭组劣煤 40 / / / 48 12 / 7 46 47
      下载: 导出CSV

      表  4  龙潭组和大隆组样品有机孔形状参数及有机质面孔率统计表

      Table  4.   Statistics of organic pore shape parameters and surface porosity of the samples in Longtan and Dalong Formations

      层位 等效圆孔径平均值(nm) 最小孔径平均值(nm) 最大孔径平均值(nm) 有机孔发育平均数/μm2(个) 单颗粒有机质面孔率范围(%) 有机质面孔率平均值(%)
      大隆组 33.73 28.80 50.41 50 4.27~8.05 5.84
      龙潭组 254.85 206.58 271.78 2 3.29~14.49 7.26
      下载: 导出CSV

      表  5  龙潭组和大隆组样品真密度、密度法孔隙度、CO2和N2气体吸附测试的比表面积和孔隙体积数据

      Table  5.   True density, density porosity, specific surface area and pore volume by N2 and CO2 adsorption analysis of the shale sam- ples in Longtan and Dalong Formations

      样品编号 层位 TOC
      (%)
      真密度
      (cm3·g-1
      密度法孔隙度
      (%)
      总比表面积
      (m2·g-1
      总孔隙体积
      (cm3·g-1
      微孔比表面积
      (m2·g-1
      微孔体积
      (cm3·g-1
      介孔比表面积
      (m2·g-1
      介孔体积
      (cm3·g-1
      宏孔比表面积
      (m2·g-1
      宏孔体积
      (cm3·g-1
      XGY-1 大隆组 3.69 2.618 2.0 12.344 0.011 11.151 0.004 1.062 0.003 0.131 0.004
      XGY-2 大隆组 2.72 2.618 5.3 11.046 0.010 7.990 0.003 1.462 0.003 1.593 0.004
      XGY-3 大隆组 4.96 2.625 7.4 15.880 0.014 13.107 0.005 2.621 0.004 0.153 0.005
      XGY-4 大隆组 5.09 2.650 1.4 12.357 0.014 10.857 0.004 1.277 0.003 0.222 0.007
      XGY-5 大隆组 5.07 2.684 5.1 11.233 0.007 10.757 0.003 0.382 0.002 0.094 0.003
      XGY-6 大隆组 3.13 2.720 6.0 7.798 0.009 6.568 0.002 1.080 0.003 0.150 0.005
      XGY-7 大隆组 6.79 2.580 4.5 13.727 0.011 12.565 0.004 1.028 0.003 0.134 0.004
      XGY-8 大隆组 3.00 2.660 2.3 11.698 0.012 9.152 0.003 2.411 0.004 0.135 0.004
      XGY-9 龙潭组 1.72 2.726 5.6 13.536 0.017 10.592 0.004 2.720 0.007 0.224 0.007
      XGY-10 龙潭组 7.17 2.648 4.9 40.017 0.026 32.868 0.010 6.988 0.012 0.161 0.004
      XGY-11 龙潭组 10.29 2.677 12.6 38.254 0.028 30.99 0.009 7.039 0.013 0.225 0.006
      XGY-12 龙潭组 38.41 2.304 2.9 34.512 0.016 33.651 0.010 0.721 0.002 0.140 0.004
      下载: 导出CSV
    • [1] Bao, S.J., Lin, T., Nie, H.K., et al., 2016. Preliminary Study of the Transitional Facies Shale Gas Reservoir Characteristics: Taking Permian in the Xiangzhong Depression as an Example. Earth Science Frontiers, 23(1): 44-53 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201601004
      [2] Cao, T.T., Song, Z.G., Luo, H.Y., et al., 2016a. Pore System Characteristics of the Permian Transitional Shale Reservoir in the Lower Yangtze Region, China. Journal of Natural Gas Geoscience, 1(5):383-395. https://doi.org/ 10.1016/j.jnggs.2016.11.004
      [3] Cao, T. T., Song, Z. G., Wang, S. B., et al., 2016b. Characterization of Pore Structure and Fractal Dimension of Paleozoic Shales from the Northeastern Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 35: 882-895. https://doi.org/10.1016/j.jngse.2016.09.022
      [4] Chalmers, G. R., Bustin, R. M., Power, I. M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099-1119. https://doi.org/10.1306/10171111052
      [5] Gu, Z.X., Peng, Y.M., He, Y.B., et al., 2015. Geological Conditions of Permian Sea-Land Transitional Facies Shale Gas in the Xiangzhong Depression. Geology in China, 42(1): 288-299 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi2015010023
      [6] Guo, T.L., 2016. Key Geological Issues and Main Controls on Accumulation and Enrichment of Chinese Shale Gas. Petroleum Exploration and Development, 43(3): 317-326 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201603001
      [7] Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068
      [8] Jing, L., Pan, J.P., Xu, G.S., et al., 2012. Lithofacies- Paleogeography Characteristics of the Marine Shale Series of Strata in the Xiangzhong Depression, Hunan, China. Journal of Chengdu University of Technology(Science & Technology Edition), 39(2):215-222(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201202015
      [9] Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
      [10] Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
      [11] Ma, Y.S., Cai, X.Y., Zhao, P.R., 2018. China's Shale Gas Exploration and Development: Understanding and Practice. Petroleum Exploration and Development, 45(4): 561-574 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/syktykf201804003
      [12] Peng, N.J., He, S., Hao, F., et al., 2017. The Pore Structure and Difference between Wufeng and Longmaxi Shales in Pengshui Area, Southeastern Sichuan. Earth Science, 42(7): 1134-1146 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707010
      [13] Ross, D. J. K., Bustin, R. M., 2008. Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin: Application of an Integrated Formation Evaluation. AAPG Bulletin, 92(1): 87-125. https://doi.org/10.1306/09040707048
      [14] Slatt, R.M., O'Brien, N.R., 2011. Pore Types in the Barnett and Woodford Gas Shales: Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks. AAPG Bulletin, 95(12): 2017-2030. https://doi.org/10.1306/03301110145
      [15] Thommes, M., Kaneko, K., Neimark, A.V., et al., 2015.Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10): 1051-1069. https://doi.org/10.1515/pac-2014-1117
      [16] Tian, H., Zhang, S.C., Liu, S.B., et al., 2012. Determination of Organic-Rich Shale Pore Features by Mercury Injection and Gas Adsorption Methods. Acta Petrolei Sinica, 33(3): 419-427 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201203011
      [17] Tian, W., Peng, Z.Q., Bai, Y.S., et al., 2019. Study on Reservoir Characteristics and Exploration Potential of Lower Carboniferous Transitional Facies Shale Gas in Lianyuan Sag, Central Hunan. Earth Science, 44(11):3794-3811 (in Chinese with English abstract). https://doi.org/ 10.3799/dqkx.2018.291
      [18] Xiao, Z. H., Tan, J. Q., Ju, Y. W., et al., 2018. Natural Gas Potential of Carboniferous and Permian Transitional Shales in Central Hunan, South China. Journal of Natural Gas Science and Engineering, 55: 520-533. https://doi.org/10.1016/j.jngse.2018.05.024
      [19] Yang, R., He, S., Hu, Q. H., et al., 2016a. Pore Characterization and Methane Sorption Capacity of Over-Mature Organic-Rich Wufeng and Longmaxi Shales in the Southeast Sichuan Basin, China. Marine and Petroleum Geology, 77: 247-261. https://doi.org/10.1016/j.marpetgeo.2016.06.001
      [20] Yang, R., He, S., Yi, J.Z., et al., 2016b. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Longmaxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019
      [21] Yang, W., He, S., Zhai, G., et al., 2019. Shale-Gas Accumulation and Pore Structure Characteristics in the Lower Cambrian Niutitang Shales, Cen-Gong Block, South China. Australian Journal of Earth Sciences, 66(2): 289-303. https://doi.org/10.1080/08120099.2018.1544172
      [22] Zhang, C.L., Tang, S.H., Fan, E.P., et al., 2014. Shale Gas Reservoir Characteristics of Longtan Formation in Lianyuan Depression. Journal of Oil and Gas Technology, 36(5): 32-36 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JHSX201405007.htm
      [23] Zhang, H., 2003. Study on Coal in China by Scan Electron Microscope. Geological Publishing House, Beijing (in Chinese).
      [24] Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2016. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅱ). Petroleum Exploration and Development, 43(2): 166-178 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK201602003.htm
      [25] 包书景, 林拓, 聂海宽, 等, 2016.海陆过渡相页岩气成藏特征初探:以湘中坳陷二叠系为例.地学前缘, 23(1): 44-53. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601004
      [26] 顾志翔, 彭勇民, 何幼斌, 等, 2015.湘中坳陷二叠系海陆过渡相页岩气地质条件.中国地质, 42(1): 288-299. doi: 10.3969/j.issn.1000-3657.2015.01.023
      [27] 郭彤楼, 2016.中国式页岩气关键地质问题与成藏富集主控因素.石油勘探与开发, 43(3): 317-326. http://d.old.wanfangdata.com.cn/Periodical/syktykf201603001
      [28] 敬乐, 潘继平, 徐国盛, 等, 2012.湘中拗陷海相页岩层系岩相古地理特征.成都理工大学学报(自然科学版), 39(2):215-222. doi: 10.3969/j.issn.1671-9727.2012.02.015
      [29] 马永生, 蔡勋育, 赵培荣, 2018.中国页岩气勘探开发理论认识与实践.石油勘探与开发, 45(4): 561-574. http://d.old.wanfangdata.com.cn/Periodical/syktykf201804003
      [30] 彭女佳, 何生, 郝芳, 等, 2017.川东南彭水地区五峰组-龙马溪组页岩孔隙结构及差异性.地球科学, 42(7): 1134-1146. doi: 10.3799/dqkx.2017.092
      [31] 田华, 张水昌, 柳少波, 等, 2012.压汞法和气体吸附法研究富有机质页岩孔隙特征.石油学报, 33(3): 419-427. http://d.old.wanfangdata.com.cn/Periodical/syxb201203011
      [32] 田巍, 彭中勤, 白云山, 等, 2019.湘中涟源凹陷石炭系海陆过渡相测水组页岩气成藏特征及勘探潜力.地球科学, 44(11):3794-3811. doi: 10.3799/dqkx.2018.291
      [33] 张成龙, 唐书恒, 范二平, 等, 2014.涟源凹陷龙潭组页岩气储层特征分析.石油天然气学报, 36(5): 32-36. doi: 10.3969/j.issn.1000-9752.2014.05.007
      [34] 张慧, 2003.中国煤的扫描电子显微镜研究.北京:地质出版社.
      [35] 邹才能, 董大忠, 王玉满, 等, 2016.中国页岩气特征、挑战及前景(二).石油勘探与开发, 43(2): 166-178. doi: 10.11698/PED.2016.02.02
    • 加载中
    图(10) / 表(5)
    计量
    • 文章访问数:  2485
    • HTML全文浏览量:  945
    • PDF下载量:  47
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-04-17
    • 刊出日期:  2019-11-15

    目录

      /

      返回文章
      返回