Spatial-Temporal Distribution Characteristics of Early Cretaceous Volcanic Rocks in Great Xing'an Range Area
-
摘要: 为进一步了解大兴安岭早白垩世火山岩与古太平洋构造关系,通过大兴安岭地区1:100万地质编图工作,对大兴安岭中生代火山地层进行了重新厘定.依据岩石组合、古生物、接触关系及区域对比,结合年代学(锆石U-Pb、40Ar/39Ar测年数据、古生物)资料在原晚侏罗世火山岩中解体出大量的早白垩世早期火山岩(145~130 Ma).通过岩石组合、时空展布分析,探讨了大兴安岭地区145~100 Ma形成的早白垩世火山岩与古太平洋构造的成因关系.研究表明,早白垩世早期火山岩(145~130Ma)和早白垩世晚期火山岩(130~100 Ma)均呈NNE向展布,空间上具有密切的共生关系.火山岩时代总体具有由北西向南东变新趋势,与古太平洋板块早白垩世向东亚大陆下的后退式俯冲作用吻合,记录了早白垩世伊泽奈岐板块向东亚大陆俯冲事件,表明大兴安岭早白垩世火山岩(145~100 Ma)主要形成于伊泽奈岐板块向东亚大陆俯冲背景下.Abstract: In order to further understand the relationship between the Mesozoic volcanic rocks and the Paleo-Pacific tectonics in the Great Xing'an Range area, in this study, it redetermines the Mesozoic volcanic strata in the Great Xing'an Range area through the regional 1:1 000 000 scale geological mapping work. A large number of Early Cretaceous volcanic rocks were identified from previous Late Jurassic volcanic units according to the rock association, paleontology, contact relationships and regional comparison, combining with geochronology files (including zircon U-Pb, 40Ar/39Ar and paleontology information). The relationship between the Early Cretaceous volcanic rocks formed within 145-100 Ma in the Great Xing'an Range area and Paleo-Pacific Tectonics is discussed by rock association and spatial-temporal distribution characteristics. It is found that both Early Cretaceous volcanic rocks of the early stage(145-130 Ma) and the later stage(130-100 Ma) are distributed in NNE direction, and with close special spatial co-existence relationship. The geochronology trend of the volcanic rocks becomes increasingly younger from northwest to southeast, which is in accordance with the backward subduction process of the Paleo-Pacific plate beneath the East Asian continent since the Early Cretaceous, recording the subduction event of Izanagi plate to the East Asian continent as well, indicating that the Early Cretaceous volcanic rocks (145-100 Ma) in the Great Xing'an Range area formed under the subduction setting dominated by the Izanagi plate beneath the East Asian continent.
-
Key words:
- Great Xing'an Range /
- Early Cretaceous /
- volcanic rock /
- Paleo-Pacific tectonics /
- petrology
-
图 1 研究区大地构造位置图
1.蒙古-鄂霍茨克缝合带;2.侏罗纪增生杂岩;3.早白垩世增生杂岩;4.晚侏罗世-早白垩世增生杂岩;5.早白垩世晚期沉积岩;6.早白垩世早期沉积岩;7.早白垩世晚期火山岩;8.早白垩世早期火山岩;9.早白垩世侵入岩;10.研究区位置.①蒙古-鄂霍茨克断裂带;②黑河-八里罕断裂;③华北缘断裂;④依兰-伊通断裂;⑤敦化-密山断裂;⑥牡丹江断裂;⑦锡霍特-阿林断裂.据李三忠等(2017)修改
Fig. 1. Tectonic position map of the study area
图 6 古太平洋板块运动示意图(a、b)与大兴安岭早白垩世火山岩U-Pb年龄分布直方图(c)
图a据Maruyma and Send(1986); 图b据Müller et al.(2016)
Fig. 6. Schematic diagrams of Paleo-Pacific plate motion(a, b)and distribution histogram for Early Cretaceous igneous rock ages in the Great Xing'an Range area(c)
-
[1] Deng, J.F., Liu, H.X., Zhao, H.L., et al., 1996. Yanshanian Igneous Rocks and Orogeny Model in Yanshan-Liaoning Area. Geoscience, 10(2): 137-148(in Chinese with English abstract). [2] Engebretson, D.C., Cox, A., Gordon, R.G., 1985. Relative Motions between Oceanic and Continental Plates in the Pacific Basin. In: Engebretson, D.C., Cox, A., Gordon, R. G., eds., Geological Society of America Special Papers. Geological Society of America, 206(Suppl.): 1-60 [3] Fan, W.M., Guo, F., Wang, Y.J., et al., 2003. Late Mesozoic Calc-Alkaline Volcanism of Post-Orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China. Journal of Volcanology and Geothermal Research, 121(1-2): 115-135. https://doi.org/10.1016/s0377-0273(02)00415-8 [4] Ge, W.C., Lin, Q., Sun, D.Y., et al., 1999. Geochemical Characteristics of the Mesozoic Basalts in Da Hinggan Ling: Evidence of the Mantle-Crust Interaction. Acta Petrologica Sinica, 15(3): 396-407(in Chinese with English abstract). [5] Jiang, G.Y., Quan, H., 1988.Mesozoic Volcanic Rocks of Genhe and Hailaer Basin in Da Hinggan Ling. Bulletin of Shenyang Institute of Geology and Mineral Resources of Chinese Academy of Geology Sciences, 3:23-100(in Chinese with English abstract). [6] Li, J.Y., Mo, S.G., He, Z.J., et al., 2004. The Timing of Crustal Sinistral Strike-Slip Movement in the Northern Great Khing'an Ranges and Its Constraint on Reconstruction of the Crustal Tectonic Evolution of NE China and Adjacent Areas since the Mesozoic. Earth Science Frontiers, 11(3): 157-168(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200403017 [7] Li, S.Z., Santosh, M., Zhao, G.C., et al., 2012a. Intracontinental Deformation in a Frontier of Super-Convergence: A Perspective on the Tectonic Milieu of the South China Block. Journal of Asian Earth Sciences, 49: 313-329. https://doi.org/10.1016/j.jseaes.2011.07.026 [8] Li, S.Z., Zhao, G.C., Dai, L.M., et al., 2012b. Cenozoic Faulting of the Bohai Bay Basin and Its Bearing on the Destruction of the Eastern North China Craton. Journal of Asian Earth Sciences, 47: 80-93. https://doi.org/10.1016/j.jseaes.2011.06.011 [9] Li, S.Z., Zhao, G.C., Dai, L.M., et al., 2012c. Mesozoic Basins in Eastern China and Their Bearing on the Deconstruction of the North China Craton. Journal of Asian Earth Sciences, 47: 64-79. https://doi.org/10.1016/j.jseaes.2011.06.008 [10] Li, S.Z., Suo, Y.H., Li, X.Y., et al., 2018. Mesozoic Plate Subduction in West Pacific and Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone. Chinese Science Bulletin, 63(16): 1550-1593(in Chinese with English abstract). doi: 10.1360/N972017-01113 [11] Li, S.Z., Zhang, Y., Guo, L.L., et al., 2017. Mesozoic Deformation and Accretionary Orogenic Processes around the Nadanhada Terrane. Earth Science Frontiers, 24(4): 200-212(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201704019 [12] Li, Z.X., Li, X.H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1 [13] Lin, Q., Ge, W.C., Cao, L., et al., 2003. Geochemistry of Mesozoic Volcanic Rocks in Da Hinggan Ling: The Bimodal Volcanic Rocks. Geochimica, 32(3): 208-222(in Chinese with English abstract). [14] Maruyama, S., Isozaki, Y., Kimura, G., et al., 2012.Paleogeo-Graphic Maps of the Japanese Islands: Plate Tectonic Synthesis from 750 Ma to the Present. Island Arc, 6(1):121-142. http://cn.bing.com/academic/profile?id=1250b6c19e2df2a857cfb96816387654&encoded=0&v=paper_preview&mkt=zh-cn [15] Maruyama, S., Send, T., 1986. Orogeny and Relative Plate Motions: Example of the Japanese Islands. Tectonophysics, 127(3-4): 305-329. https://doi.org/10.1016/0040-1951(86)90067-3 [16] Meng, E., Xu, W.L., Yang, D.B., et al., 2011. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications. Acta Petrologica Sinica, 27(4): 1209-1226(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201104025 [17] Meng, F.C., Liu, J.Q., Cui, Y., et al., 2014. Mesozoic Tectonic Regimes Transition in the Northeast China: Constriants from Temporal-Spatial Distribution and Associations of Volcanic Rocks. Acta Petrologica Sinica, 30(12): 3569-3586(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201412008 [18] Müller, R.D., Seton, M., Zahirovic, S., et al., 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 44(1): 107-138. https://doi.org/10.1146/annurev-earth-060115-012211 [19] Shao, J.A., Zhang, L.Q., Mou, B.L., et al., 2007.The Uplift of Daxinganling and Its Geodynamic Setting. Geological Publishing House, Beijing, 222-234 (in Chinese). [20] Shu, L.S., Zhou, X.M., 2002. Late Mesozoic Tectonism of Southeast China. Geological Review, 48(3): 249-260(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005801 [21] Sun, D.Y., Gou, J., Ren, Y.S., et al., 2011. Zircon U-Pb Dating and Study on Geochemistry of Volcanic Rocks in Manitu Formation from Southern Manchuria, Inner Mongolia. Acta Petrologica Sinica, 27(10): 3083-3094(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201110023 [22] Suo, Y.H., Li, S.Z., Cao, X.Z., et al., 2017. Mesozoic-Cenozoic Inversion Tectonics of East China and Its Implications for the Subduction Process of the Oceanic Plate. Earth Science Frontiers, 24(4): 249-267(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201704023 [23] Tang, J., Xu, W.L., Wang, F., et al., 2018. Subduction History of the Paleo-Pacific Slab beneath Eurasian Continent: Mesozoic-Paleogene Magmatic Records in Northeast Asia. Science China Earth Sciences, 48(5): 549-583 (in Chinese). [24] Wang, F., Zhou, X.H., Zhang, L.C., et al., 2006. Late Mesozoic Volcanism in the Great Xing'an Range (NE China): Timing and Implications for the Dynamic Setting of NE Asia. Earth and Planetary Science Letters, 251(1-2): 179-198. https://doi.org/10.1016/j.epsl.2006.09.007 [25] Wang, F., Xu, W.L., Xu, Y.G., et al., 2015. Late Triassic Bimodal Igneous Rocks in Eastern Heilongjiang Province, NE China: Implications for the Initiation of Subduction of the Paleo-Pacific Plate beneath Eurasia. Journal of Asian Earth Sciences, 97: 406-423. doi: 10.1016/j.jseaes.2014.05.025 [26] Wu, F.Y., Jahn, B.M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth: U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1-2): 89-113. https://doi.org/10.1016/s0040-1951(00)00179-7 [27] Xia, J., Wang, C.S., Li, X.H., et al., 1993. Characteristics of Mesozoic Volcanic Rocks in Hailaer and Its Adjacent Areas and Discussion on Volcanic Rocks of Marginal Block Type. Journal of Chengdu University of Technology, 20(4): 67-80(in Chinese with English abstract). [28] Xu, G.Y., 1983. Continental Volcanic Rocks in the Greater Khingan Mountains and Their Mineralization. Regional Geology of China, 2(3): 39-50, 151(in Chinese with English abstract). [29] Xu, M.J., Xu, W.L., Meng, E., et al., 2011. LA-ICP-MS Zircon U-Pb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basin in Ergun Area, Northeastern Inner Mongolia. Geological Bulletin of China, 30(9): 1321-1338(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201109001 [30] Xu, W.L., Wang, F., Pei, F.P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001 [31] Yang, H.B., Tian, X.B., Bai, Z.M., et al., 2016. Discussion on the Relationship between Pan Pacific Plate Movement and Mesozoic Geological Evolution of Eastern Chinese Continent. Journal of Jilin University(Earth Science Edition), 46(3): 781-797(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201603014 [32] Zhang, J.H., Gao, S., Ge, W.C., et al., 2010. Geochronology of the Mesozoic Volcanic Rocks in the Great Xing'an Range, Northeastern China: Implications for Subduction-Induced Delamination. Chemical Geology, 276(3-4): 144-165. https://doi.org/10.1016/j.chemgeo.2010.05.013 [33] Zhang, J.H., Ge, W.C., Wu, F.Y., et al., 2008. Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range, Northeastern China. Lithos, 102(1-2): 138-157. https://doi.org/10.1016/j.lithos.2007.08.011 [34] Zhang, K.J., 2014. Genesis of the Late Mesozoic Great Xing'an Range Large Igneous Province in Eastern Central Asia: A Mongol-Okhotsk Slab Window Model. International Geology Review, 56(13): 1557-1583. https://doi.org/10.1080/00206814.2014.946541 [35] Zhang, L., Liu, Y.J., Feng, Z.Q., et al., 2017. Basement Structural Features of Mesozoic Volcanic Basins in Erguna Massif: Implications from Lingquan Basin. Earth Science, 42(12): 2229-2242(in Chinese with English abstract). [36] Zhang, Q., Jin, W.J., Li, C.D., et al., 2009. Yanshanian Large-Scale Magmatism and Lithosphere Thinning in Eastern China: Relation to Large Igneous Province. Earth Science Frontiers, 16(2): 21-51(in Chinese with English abstract). [37] Zhang, X.Z., Yang, B.J., Wu, F.Y., et al., 2006. The Lithosphere Structure in the Hingmong-Jihei (Hinggan-Mongolia-Jilin-Heilongjiang) Region, Northeastern China. Geology in China, 33(4): 816-823(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200604011 [38] Zhao, G.L., Yang, G.L., Fu, J.Y., 1989.Mesozoic Volcanic Rocks in Central and Southern Da Xing'an Range. Beijing Science and Technology Publishing House, Beijing(in Chinese). [39] Zhao, Z.H., Sun, D.Y., Gou, J., et al., 2011. Chronology and Geochemistry of Volcanic Rocks in Tamulangou Formation from Southern Manchuria, Inner-Mongolia. Journal of Jilin University(Earth Science Edition), 41(6):1865-1880(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201106018 [40] Zhou, J.B., Cao, J.L., Wilde, S.A., et al., 2014. Paleo-Pacific Subduction-Accretion: Evidence from Geochemical and U-Pb Zir con Dating of the Nadanhada Accretionary Complex, NE China.Tectonics, 33 (12): 2444-2466. doi: 10.1002/2014TC003637 [41] Zhou, J.B., Wang, B., Wilde, S.A., et al., 2015. Geochemistry and U-Pb Zircon Dating of the Toudaoqiao Blueschists in the Great Xing'an Range, Northeast China, and Tectonic Implications. Journal of Asian Earth Sciences, 97: 197-210. doi: 10.1016/j.jseaes.2014.07.011 [42] Zhou, J.B., Shi, A.G., Jing, Y., 2016. The Combined NE China Blocks: Tectonic Evolution and Supercontinent Reconstructions. Journal of Jilin University(Earth Science Edition), 46(4): 1042-1055(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d855b67c7ce93796e37b7994d89fb99f&encoded=0&v=paper_preview&mkt=zh-cn [43] Zhou, X.H., Ying, J.F., Zhang, L.C., et al., 2009. The Petrogenesis of Late Mesozoic Volcanic Rock and the Contributions from Ancient Micro-Continents: Constraints from the Zircon U-Pb Dating and Sr-Nd-P-Hf Isotopic Systematics. Earth Science, 34(1): 1-10(in Chinese with English abstract). [44] Zhu, G., Liu, C., Gu, C.C., et al., 2018. Oceanic Plate Subduction History in the Western Pacific Ocean: Constraint from Late Mesozoic Evolution of the Tan-Lu Fault Zone. Science China Earth Sciences, 48(4): 415-435(in Chinese). [45] 邓晋福, 刘厚祥, 赵海玲, 等, 1996.燕辽地区燕山期火成岩与造山模型.现代地质, 10(2): 137-148. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ602.000.htm [46] 葛文春, 林强, 孙德有, 等, 1999.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.岩石学报, 15(3): 396-407. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199903008 [47] 蒋国源, 权恒, 1988.大兴安岭根河海拉尔盆地中生代火山岩.中国地质科学院沈阳地质矿产研究所所刊, 3: 23-100. [48] 李锦轶, 莫申国, 和政军, 等, 2004.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约.地学前缘, 11(3): 157-168. doi: 10.3321/j.issn:1005-2321.2004.03.017 [49] 李三忠, 索艳慧, 李玺瑶, 等, 2018.西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应.科学通报, 63(16): 1550-1593. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201816006 [50] 李三忠, 张勇, 郭玲莉, 等, 2017.那丹哈达地体及周缘中生代变形与增生造山过程.地学前缘, 24(4): 200-212. http://d.old.wanfangdata.com.cn/Periodical/dxqy201704019 [51] 林强, 葛文春, 曹林, 等, 2003.大兴安岭中生代双峰式火山岩的地球化学特征.地球化学, 32(3): 208-222. doi: 10.3321/j.issn:0379-1726.2003.03.002 [52] 孟恩, 许文良, 杨德彬, 等, 2011.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义.岩石学报, 27(4): 1209-1226. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201104029.htm [53] 孟凡超, 刘嘉麒, 崔岩, 等, 2014.中国东北地区中生代构造体制的转变:来自火山岩时空分布与岩石组合的制约.岩石学报, 30(12): 3569-3586. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201412008 [54] 邵济安, 张履桥, 牟保磊, 等, 2007.大兴安岭的隆起与地球动力学背景.北京:地质出版社, 222-234. [55] 舒良树, 周新民, 2002.中国东南部晚中生代构造作用.地质论评, 48(3): 249-260. doi: 10.3321/j.issn:0371-5736.2002.03.004 [56] 孙德有, 苟军, 任云生, 等, 2011.满洲里南部玛尼吐组火山岩锆石U-Pb年龄与地球化学研究.岩石学报, 27(10): 3083-3094. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201110023 [57] 索艳慧, 李三忠, 曹现志, 等, 2017.中国东部中新生代反转构造及其记录的大洋板块俯冲过程.地学前缘, 24(4): 249-267. http://d.old.wanfangdata.com.cn/Periodical/dxqy201704023 [58] 唐杰, 许文良, 王枫, 等, 2018.古太平洋板块在欧亚大陆下的俯冲历史:东北亚陆缘中生代-古近纪岩浆记录.中国科学:地球科学, 48(5): 549-583. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201805004.htm [59] 夏军, 王成善, 李秀华, 等, 1993.海拉尔及其邻区中生代火山岩的特征与边缘陆块型火山岩的提出.成都地质学院学报, 20(4): 67-80. http://www.cnki.com.cn/Article/CJFDTotal-CDLG199304011.htm [60] 徐公愉, 1983.大兴安岭的大陆火山岩及其矿化作用.中国区域地质, 2(3): 39-50, 151. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD198303004.htm [61] 徐美君, 许文良, 孟恩, 等, 2011.内蒙古东北部额尔古纳地区上护林-向阳盆地中生代火山岩LA-ICP-MS锆石U-Pb年龄和地球化学特征.地质通报, 30(9): 1321-1338. doi: 10.3969/j.issn.1671-2552.2011.09.001 [62] 许文良, 王枫, 裴福萍, 等, 2013.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约.岩石学报, 29(2): 339-353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001 [63] 杨海斌, 田小波, 白志明, 等, 2016.浅谈中国大陆东缘中生代地质演化与泛太平洋板块活动的关系.吉林大学学报(地球科学版), 46(3): 781-797. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201603014 [64] 张丽, 刘永江, 冯志强, 等, 2017.额尔古纳地块中生代火山岩盆地基底构造特征:来自灵泉盆地的启示.地球科学, 42(12): 2229-2242. doi: 10.3799/dqkx.2017.141 [65] 张旗, 金惟俊, 李承东, 等, 2009.中国东部燕山期大规模岩浆活动与岩石圈减薄:与大火成岩省的关系.地学前缘, 16(2): 21-51. doi: 10.3321/j.issn:1005-2321.2009.02.002 [66] 张兴洲, 杨宝俊, 吴福元, 等, 2006.中国兴蒙-吉黑地区岩石圈结构基本特征.中国地质, 33(4): 816-823. doi: 10.3969/j.issn.1000-3657.2006.04.011 [67] 赵国龙, 杨桂林, 傅嘉友, 等, 1989.大兴安岭中南部中生代火山岩.北京:科学技术出版社. [68] 赵忠华, 孙德有, 苟军, 等, 2011.满洲里南部塔木兰沟组火山岩年代学与地球化学.吉林大学学报(地球科学版), 41(6):1865-1880. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201106018 [69] 周建波, 石爱国, 景妍, 2016.东北地块群:构造演化与古大陆重建.吉林大学学报(地球科学版), 46(4):1042-1055. http://d.old.wanfangdata.com.cn/Periodical/gjsdz201401002 [70] 周新华, 英基丰, 张连昌, 等, 2009.大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约.地球科学, 34(1): 1-10. http://www.earth-science.net/article/id/1781 [71] 朱光, 刘程, 顾承串, 等, 2018.郯庐断裂带晚中生代演化对西太平洋俯冲历史的指示.中国科学:地球科学, 48(4): 415-435. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201804003.htm