• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南天山早二叠世Ⅰ型花岗岩Sr-Nd-Hf同位素特征:岩石成因和大陆地壳增长的意义

    陶再礼 尹继元 陈文 李大鹏 徐志华 杜秋怡

    陶再礼, 尹继元, 陈文, 李大鹏, 徐志华, 杜秋怡, 2019. 南天山早二叠世Ⅰ型花岗岩Sr-Nd-Hf同位素特征:岩石成因和大陆地壳增长的意义. 地球科学, 44(10): 3565-3582. doi: 10.3799/dqkx.2019.079
    引用本文: 陶再礼, 尹继元, 陈文, 李大鹏, 徐志华, 杜秋怡, 2019. 南天山早二叠世Ⅰ型花岗岩Sr-Nd-Hf同位素特征:岩石成因和大陆地壳增长的意义. 地球科学, 44(10): 3565-3582. doi: 10.3799/dqkx.2019.079
    Tao Zaili, Yin Jiyuan, Chen Wen, Li Dapeng, Xu Zhihua, Du Qiuyi, 2019. Sr-Nd-Hf Isotopic Characteristics of Early Permian Ⅰ-Type Granites in Southern Tianshan: Petrogenesis and Implications for Continental Crustal Growth. Earth Science, 44(10): 3565-3582. doi: 10.3799/dqkx.2019.079
    Citation: Tao Zaili, Yin Jiyuan, Chen Wen, Li Dapeng, Xu Zhihua, Du Qiuyi, 2019. Sr-Nd-Hf Isotopic Characteristics of Early Permian Ⅰ-Type Granites in Southern Tianshan: Petrogenesis and Implications for Continental Crustal Growth. Earth Science, 44(10): 3565-3582. doi: 10.3799/dqkx.2019.079

    南天山早二叠世Ⅰ型花岗岩Sr-Nd-Hf同位素特征:岩石成因和大陆地壳增长的意义

    doi: 10.3799/dqkx.2019.079
    基金项目: 

    国家重点研发计划项目 2017YFC0601301

    自然资源部深地动力学重点实验室开放课题基金 J1901-5

    国家自然科学基金项目 41573045

    中国地质调查项目 DD20190004

    中国地质调查项目 DD20190001

    国家自然科学基金项目 41830216

    国家自然科学基金项目 41873060

    详细信息
      作者简介:

      陶再礼(1996—), 男, 硕士研究生, 地球化学专业

      通讯作者:

      尹继元(1983—), 男, 博士生导师

    • 中图分类号: P581

    Sr-Nd-Hf Isotopic Characteristics of Early Permian Ⅰ-Type Granites in Southern Tianshan: Petrogenesis and Implications for Continental Crustal Growth

    • 摘要: 新疆南天山地区发育大量晚石炭世-早二叠世的花岗质侵入岩,然而这些花岗岩的岩石成因和形成构造背景仍然存在着较大的争议.对南天山黑云母二长花岗岩进行了锆石U-Pb年代学、岩石地球化学以及Sr-Nd-Hf同位素研究.LA-ICP-MS锆石U-Pb定年结果显示,其形成年龄为295.8±1.7 Ma.地球化学特征表明,该花岗岩具有弱过铝质(A/CNK=1.02~1.04)、富碱(K2O+Na2O=7.49%~8.78%)、富钾(K2O/Na2O=1.05~1.53)特征,属于高钾钙碱性Ⅰ型花岗岩;微量元素富集大离子亲石元素和轻稀土元素,亏损高场强元素(Nb、Ta、Ti),具有中等的负铕异常(δEu=0.38~0.57),且Sr、Ba也显示明显的亏损特征.该花岗岩具有较高的(87Sr/86Sr)i值(0.709 2~0.714 2),其εNdt)与εHft)以负值为主,个别样品εNdt)和εHft)值显示较低的正值.这些特征表明其源自古-中元古代地壳的长英质岩浆与地幔的镁铁质岩浆混合而成,且少量新元古代地壳物质也参与了成岩过程,其母岩浆就位前发生了斜长石分离结晶作用.综合前人研究,认为南天山地区晚石炭世-早二叠世花岗质岩石可能是南天山洋板片回撤、软流圈上涌诱发前寒武基底组分发生部分熔融并与幔源岩浆混合作用形成.显生宙以来南天山造山带花岗岩源区主要为古老地壳重熔,与中亚造山带其他地区相比,南天山新生地壳增长并不明显.

       

    • 图  1  中国天山造山带古生代花岗岩分布

      Gao et al.(2009)Long et al.(2011)修改.花岗岩年龄来源于Huang et al.(2015)及相关参考文献

      Fig.  1.  The distribution of Paleozoic granitic rocks in the Chinese Tianshan

      图  2  南天山和静地区地质简图

      Ma et al.(2015)修改

      Fig.  2.  Simplified geological map of the Hejing region in the southern Tianshan

      图  3  南天山和静地区黑云母二长花岗岩野外和显微镜照片

      Fig.  3.  Field and microscopic photos of the biotite monzonitic granites in the Hejing region of the southern Tianshan

      图  4  南天山和静地区黑云母二长花岗岩的锆石U-Pb年龄谐和图(a)和206Pb/238U年龄直方图(b)

      Fig.  4.  Zircon U-Pb concordia diagram (a) and 206Pb/238U age histogram (b) of the biotite monzonitic granites from the Hejing region of the southern Tianshan

      图  5  南天山和静地区黑云母二长花岗岩主量元素判别图

      a.SiO2-K2O图解(Gill, 1981);b.A/NK-A/CNK图解(Maniar and Piccolo, 1989);库米什花岗岩数据引自Ma et al. (2015),阿腊散花岗岩数据引自Gou et al. (2012),和静黑云母花岗岩来自本文

      Fig.  5.  Major element discrimination diagrams for biotite monzonitic granites of the Hejing area, southern Tianshan

      图  6  南天山和静地区黑云母二长花岗岩的球粒陨石标准化稀土元素分布模式图(a)和微量元素原始地幔标准化蛛网图(b)

      Fig.  6.  Chondrite-normalized REE patterns(a) and primitive mantle-normalized spidergram(b) of biotite monzonitic granites from the Hejing region in the southern Tianshan

      图  7  南天山和静地区黑云母二长花岗岩锆石εHf(t)值直方图(a);两阶段Hf模型年龄(TDM2)的相对密度图(b)

      Fig.  7.  Zircon εHf(t) histogram(a) and TDM2 histogram (b) of the biotite monzonitic granites from the Hejing region in the southern Tianshan

      图  8  (K2O + Na2O)/CaO-(Zr+Nb+Ce+Y)判别图(a);FeOtot/(FeOtot+MgO)-SiO2判别图(b);Ce-SiO2判别图(c);P2O5-SiO2判别图(d)

      图a据Whalen et al.(1987);图b据Frost et al.(2001);图c据Collins et al.(1982);图d据Chappell(1999),花岗岩数据来源与图 5一致

      Fig.  8.  (K2O+Na2O)/CaO vs. (Zr+Nb+Ce+Y) discrimination diagram(a); FeOtot/(FeOtot+MgO)-SiO2 discrimination diagram(b); Ce-SiO2 discrimination diagram(c); P2O5 vs. SiO2 discrimination diagram(d)

      图  9  南天山和静地区黑云母二长花岗岩主量元素(Al2O3+FeO*+MgO+TiO2)-Al2O3/(FeO*+MgO+TiO2)图解(a)和微量元素Zr -Zr/Nb图解(b)

      图a据Patiño Douce(1999);花岗岩数据来源与图 5一致

      Fig.  9.  Major elements (Al2O3+FeO*+MgO+TiO2)-Al2O3/(FeO*+MgO+TiO2) diagram(a) and Zr-Zr/Nb diagram(b) of biotite monzonitic granites from the Hejing region of the South Tianshan

      图  10  南天山地区花岗岩类年龄分布直方图(a);和静地区花岗岩和南天山其他地区花岗岩εNd(t)-年龄图(b)

      图a花岗岩数据来源与图 1一致.图b数据来源于本次研究和Huang et al., (2015)及其Nd同位素参考文献.准噶尔、天山εNd(t)区域引自Tang et al. (2017);阿尔泰εNd(t)区域引自Wang et al. (2009)

      Fig.  10.  Age histogram of the granitoids (a) and plot of εNd(t) versus age for the Hejing region granites and other granitoids (b) from the southern Tianshan

      表  1  南天山和静地区黑云母二长花岗岩的LA-ICP-MS锆石U-Pb年龄

      Table  1.   LA-ICP-MS zircon U-Pb isotopic data of the biotite monzonitic granites from the Hejing region of the southern Tianshan

      分析点 Th/U 同位素比值 年龄(Ma)
      207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
      CT1602.1 0.3 0.052 48 0.001 72 0.302 30 0.009 79 0.041 78 0.000 45 268 8 264 3
      CT1602.2 0.47 0.076 32 0.004 96 0.820 80 0.051 74 0.078 00 0.001 24 608 29 484 7
      CT1602.3 0.31 0.055 10 0.002 52 0.362 02 0.016 29 0.047 65 0.000 60 314 12 300 4
      CT1602.4 0.33 0.055 89 0.003 25 0.362 47 0.020 80 0.047 04 0.000 65 314 16 296 4
      CT1602/5 0.32 0.064 61 0.002 26 1.008 55 0.034 85 0.113 23 0.001 36 708 18 691 8
      CT1602.6 0.64 0.059 37 0.005 92 0.379 30 0.037 27 0.046 34 0.000 93 327 27 292 6
      CT1602.7 0.43 0.058 01 0.002 77 0.371 85 0.017 51 0.046 49 0.000 61 321 13 293 4
      CT1602.8 0.42 0.052 25 0.002 29 0.345 93 0.015 00 0.048 02 0.000 58 302 11 302 4
      CT1602.9 0.47 0.055 64 0.002 71 0.359 38 0.017 31 0.046 85 0.000 60 312 13 295 4
      CT1602.10 0.98 0.062 60 0.007 49 0.403 40 0.047 72 0.046 74 0.001 03 344 35 294 6
      CT1602.11 0.52 0.055 83 0.003 27 0.361 34 0.020 65 0.046 94 0.000 60 313 15 296 4
      CT1602.12 0.71 0.061 68 0.002 73 0.405 73 0.017 81 0.047 71 0.000 63 346 13 300 4
      CT1602.13 0.33 0.056 67 0.003 14 0.360 73 0.019 78 0.046 17 0.000 66 313 15 291 4
      CT1602.14 0.36 0.052 05 0.003 79 0.338 67 0.024 46 0.047 19 0.000 75 296 19 297 5
      CT1602.15 0.43 0.058 04 0.002 57 0.347 12 0.015 17 0.043 38 0.000 62 303 11 274 4
      CT1602.16 0.43 0.052 05 0.004 03 0.313 42 0.023 82 0.043 67 0.000 63 277 18 276 4
      CT1602.17 0.39 0.059 20 0.003 16 0.382 75 0.020 37 0.046 89 0.000 62 329 15 295 4
      CT1602.18 0.43 0.061 57 0.003 39 0.388 56 0.021 28 0.045 77 0.000 70 333 16 288 4
      CT1602.19 0.43 0.059 85 0.002 31 0.388 25 0.015 26 0.047 05 0.000 58 333 11 296 4
      CT1602.20 0.71 0.056 58 0.002 39 0.360 91 0.015 54 0.046 25 0.000 56 313 12 291 3
      CT1602.21 0.44 0.050 61 0.002 19 0.331 90 0.014 73 0.047 56 0.000 55 291 11 300 3
      CT1602.22 0.57 0.060 00 0.002 37 0.389 18 0.015 87 0.047 03 0.000 54 334 12 296 3
      CT1602.23 0.95 0.056 62 0.002 24 0.366 95 0.015 00 0.046 99 0.000 55 317 11 296 3
      CT1602.24 0.23 0.056 87 0.002 53 0.364 87 0.016 64 0.046 51 0.000 56 316 12 293 3
      CT1602.25 0.69 0.056 15 0.002 09 0.369 89 0.014 43 0.047 76 0.000 55 320 11 301 3
      下载: 导出CSV

      表  2  南天山和静地区黑云母二长花岗岩的主-微量元素和Sr-Nd同位素数据

      Table  2.   Major (%), trace (μg/g) elements and Sr-Nd isotopic compositions of the biotite monzonitic granites from the Hejing region of the southern Tianshan

      样品 CT1602-1 CT1602-2 CT1602-3 CT1602-4 CT1602-5
      SiO2 69.3 68.4 70.1 70.3
      TiO2 0.55 0.45 0.55 0.47
      Al2O3 14.8 15.8 14.5 14.4
      Fe2O3 3.17 2.50 3.00 2.67
      MnO 0.04 0.05 0.04 0.03
      MgO 1.07 0.89 1.01 0.92
      CaO 2.18 2.00 2.23 1.90
      Na2O 3.50 3.46 3.65 3.25
      K2O 4.40 5.31 3.85 4.70
      P2O5 0.23 0.26 0.22 0.20
      L.O.I 0.56 0.57 0.57 0.52
      Total 99.83 99.67 99.68 99.37
      Mg# 40.1 41.3 40.0 40.5
      Na2O+K2O 7.91 8.78 7.49 7.95
      K2O/Na2O 1.26 1.53 1.05 1.44
      A/CNK 1.02 1.04 1.02 1.04
      Li 75.70 66.40 55.60 63.10 57.60
      Be 6.89 7.86 7.49 7.93 6.85
      Sc 11.00 9.51 8.70 9.30 8.43
      V 59.80 48.70 40.90 45.80 41.10
      Cr 16.18 14.74 12.08 13.19 12.30
      Co 7.32 6.21 5.54 5.95 5.32
      Ni 8.26 8.64 6.53 6.92 5.99
      Cu 8.34 9.44 7.31 7.35 4.97
      Zn 71.2 58.9 49.6 57.3 51.0
      Ga 19.6 20.3 19.8 20.0 18.8
      Ge 1.69 1.43 1.56 1.57 1.59
      As 0.79 0.67 4.61 0.57 0.35
      Rb 195 212 219 195 212
      Sr 178 226 241 220 214
      Y 22.8 22.2 23.7 20.1 19.6
      Zr 236 235 220 228 200
      Nb 19.07 16.37 14.87 16.44 14.42
      Cd 0.25 0.20 0.17 0.17 0.17
      In 0.09 0.07 0.06 0.07 0.06
      Sn 8.76 7.61 6.63 6.98 6.40
      Sb 0.09 0.10 0.08 0.07 0.08
      Cs 18.43 12.88 12.10 15.54 12.99
      Ba 270 564 755 466 624
      La 53.7 46.9 46.4 45.2 38.2
      Ce 109.0 94.7 94.1 91.4 77.6
      Pr 11.80 10.20 10.30 9.89 8.45
      Nd 43.5 37.5 38.7 36.5 31.2
      Sm 7.53 6.60 6.92 6.26 5.79
      Eu 0.83 1.04 1.03 0.94 0.96
      Gd 5.57 5.08 5.30 4.84 4.16
      Tb 0.84 0.78 0.84 0.74 0.68
      Dy 3.91 3.95 4.29 3.66 3.44
      Ho 0.83 0.82 0.94 0.75 0.74
      Er 2.17 2.33 2.40 2.08 2.04
      Tm 0.30 0.31 0.34 0.25 0.29
      Yb 2.07 2.13 2.19 1.93 1.84
      Lu 0.32 0.31 0.33 0.26 0.27
      Hf 6.85 6.65 6.51 7.00 6.16
      Ta 2.22 1.95 1.77 2.17 1.72
      W 1.37 1.17 1.28 1.07 0.85
      Tl 1.10 1.17 1.25 1.09 1.14
      Pb 20.1 30.4 37.5 27.7 32.6
      Th 32.3 27.4 27.2 26.7 23.0
      U 3.21 4.25 6.57 3.03 2.87
      TZr(℃) 814 809 811 805 803
      Eu* 0.38 0.53 0.50 0.50 0.57
      (La/Yb)N 18.6 15.8 15.2 16.8 14.9
      ∑REE 242.4 212.7 214.1 204.7 175.7
      87Sr/86Sr 0.722 49 0.725 62
      0.000 012 0.000 013
      143Nd/144Nd 0.512 187 0.512 567
      0.000 006 0.000 007
      εNd(t) -5.3 2.0
      (87Sr/86Sr)i 0.709 159 0.714 212
      TDM (Ga) 1.35 0.83
      TDM2 (Ga) 1.50 0.90
      注:TZr(℃)为锆石饱和封闭温度.空白处是未测数据.
      下载: 导出CSV

      表  3  南天山和静地区黑云母二长花岗岩的锆石Hf同位素数据

      Table  3.   Zircon Hf isotope compositions of the biotite monzonitic granites from the Hejing region of the southern Tianshan

      分析点 年龄
      (Ma)
      176Yb/177Hf 176Lu/177Hf 176Hf/177Hf (176Hf/177Hf)i εHf(t) fLu/Hf TDM1
      (Ga)
      TDM2
      (Ga)
      CT1602.1 296 0.023 760 0.000 970 0.000 102 0.282 488 0.000 022 0.282 483 -3.74 -0.971 1.08 1.55
      CT1602.2 296 0.035 599 0.001 453 0.000 154 0.282 535 0.000 025 0.282 527 -2.18 -0.956 1.03 1.45
      CT1602.3 296 0.031 813 0.001 283 0.000 255 0.282 479 0.000 021 0.282 472 -4.11 -0.961 1.10 1.57
      CT1602.4 296 0.030 158 0.001 219 0.000 477 0.282 521 0.000 022 0.282 514 -2.61 -0.963 1.04 1.48
      CT1602.5 296 0.031 865 0.001 256 0.000 209 0.282 535 0.000 024 0.282 528 -2.13 -0.962 1.02 1.45
      CT1602.6 296 0.038 127 0.001 525 0.000 410 0.282 522 0.000 024 0.282 514 -2.64 -0.954 1.05 1.48
      CT1602.7 296 0.037 034 0.001 484 0.000 267 0.282 483 0.000 025 0.282 475 -4.01 -0.955 1.10 1.57
      CT1602.8 296 0.027 509 0.001 115 0.000 261 0.282 479 0.000 022 0.282 473 -4.09 -0.966 1.10 1.57
      CT1602.9 296 0.030 870 0.001 248 0.000 098 0.282 515 0.000 021 0.282 509 -2.82 -0.962 1.05 1.49
      CT1602.10 296 0.035 349 0.001 396 0.000 295 0.282 545 0.000 026 0.282 538 -1.79 -0.958 1.01 1.43
      CT1602.11 296 0.034 425 0.001 346 0.000 149 0.282 779 0.000 025 0.282 771 6.48 -0.959 0.68 0.90
      CT1602.12 296 0.042 437 0.001 695 0.000 666 0.282 423 0.000 030 0.282 414 -6.18 -0.949 1.19 1.70
      CT1602.13 296 0.039 648 0.001 582 0.000 330 0.282 561 0.000 027 0.282 553 -1.26 -0.952 0.99 1.39
      CT1602.14 296 0.041 417 0.001 626 0.000 653 0.282 513 0.000 024 0.282 504 -2.97 -0.951 1.06 1.50
      CT1602.15 296 0.046 428 0.001 836 0.000 220 0.282 577 0.000 030 0.282 567 -0.77 -0.945 0.98 1.36
      CT1602.16 296 0.038 911 0.001 559 0.000 110 0.282 528 0.000 020 0.282 519 -2.45 -0.953 1.04 1.47
      下载: 导出CSV

      表  4  南天山晚石炭-早二叠世花岗岩Nd同位素数据(表格引用数据均为重新计算)

      Table  4.   Nd isotope compositions of Late Carborniferous-Early Permian granitoids of southern Tianshan

      样品 岩体位置 年龄(Ma) 147Sm/144Nd 143Nd/144Nd εNd(t) TDM(Ga) 数据来源
      CT1602-1 和静以北 295.7 0.104 6 0.512 187 -5.3 1.35 本文
      CT1602-2 和静以北 295.7 0.106 3 0.512 567 2.0 0.83
      CWL-04 阿合奇县 287 0.101 9 0.512 385 -1.5 1.05 黄河等, 2011
      CWL-10 阿合奇县 287 0.098 3 0.512 379 -1.4 1.02
      CWL-46 阿合奇县 287 0.101 5 0.512 349 -2.2 1.09
      CWL-48 阿合奇县 287 0.102 9 0.512 381 -1.6 1.06
      CWL-49 阿合奇县 287 0.105 2 0.512 378 -1.7 1.09
      CWL-23 阿合奇县 286 0.095 6 0.512 354 -1.8 1.03
      CWL-38 阿合奇县 286 0.097 4 0.512 362 -1.8 1.04
      CWL-40 阿合奇县 286 0.098 1 0.512 357 -1.9 1.05
      CWL-72 阿合奇县 286 0.101 7 0.512 342 -2.3 1.10
      CWL-71 阿合奇县 286 0.098 4 0.512 336 -2.3 1.08
      Q01 拜城县 286 0.120 9 0.512 001 -5.7 1.55
      Q03 拜城县 286 0.120 1 0.511 981 -6.1 1.58
      Q04 拜城县 286 0.110 8 0.512 030 -5.1 1.38
      Q05 拜城县 286 0.111 2 0.512 020 -5.3 1.40
      Q06 拜城县 286 0.101 3 0.512 015 -5.3 1.30
      Q07 拜城县 286 0.120 4 0.511 976 -6.2 1.59
      Q08 拜城县 286 0.120 8 0.211 991 -5.9 1.57
      Q09 拜城县 286 0.119 5 0.511 985 -6.0 1.56
      Qab01 拜城县 291 0.130 5 0.512 221 -1.4 1.30
      Qab03 拜城县 291 0.132 8 0.512 205 -1.7 1.36
      Qab05 拜城县 291 0.125 9 0.512 185 -2.1 1.31
      Qabb 拜城县 291 0.123 1 0.512 115 -3.4 1.39
      BZGE-1-4 阿图什市 290 0.158 872 0.512 376 -3.7 2.15 Huang et al., 2014
      BZGE-2-2 阿图什市 290 0.117 836 0.512 328 -3.1 1.31
      BZGE-2-3 阿图什市 290 0.119 563 0.512 266 -4.4 1.43
      HT25B2 南天山 298.2 0.091 770 0.512 107 -6.4 1.30 姜常义等, 1999
      X2R1 南天山 284.4 0.101 700 0.512 156 -6.0 1.36
      X3R3 南天山 284.4 0.097 200 0.512 134 -6.2 1.33
      A8R1 南天山 284.4 0.112 300 0.512 275 -4.0 1.32
      A6R1 南天山 284.4 0.114 700 0.512 239 -4.8 1.40
      Ⅷ10B3 南天山 264.6 0.127 600 0.512 205 -6.1 1.68
      XI5B3 南天山 259.9 0.110 700 0.512 231 -5.1 1.36
      221801 Kok-Kiya 280 0.118 860 0.512 312 -3.6 1.35 Konopelko et al., 2007
      220702 Mudryum 280 0.108 940 0.512 177 -5.9 1.42
      206101 Uch-Koshkon 280 0.171 850 0.512 389 -4.0 2.77
      206801 Uch-Koshkon 280 0.127 730 0.512 326 -3.6 1.46
      212301 Ak-Tash 280 0.122 110 0.512 417 -1.6 1.22
      215701 Ak-Shiyrak 295 0.120 980 0.512 247 -4.8 1.49
      209202 Djangart 295 0.110 870 0.512 201 -5.3 1.41
      100192 Djangart 295 0.116 120 0.512 127 -6.9 1.60
      下载: 导出CSV
    • [1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      [2] Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1
      [3] Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      [4] Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      [5] Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. https://doi.org/10.1016/j.gca.2004.09.019
      [6] Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/bf00374895
      [7] Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Syn- and Post-Collisional Granitoids in the Central Tianshan Orogen: Geochemistry, Geochronology and Implications for Tectonic Evolution. Gondwana Research, 20(2-3): 568-581. https://doi.org/10.1016/j.gr.2011.01.013
      [8] Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)0200641:csotat > 2.3.co; 2 doi: 10.1130/0091-7613(1992)0200641:csotat>2.3.co;2
      [9] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      [10] Gao, J., Klemd, R., Qian, Q., et al., 2011. The Collision between the Yili and Tarim Blocks of the Southwestern Altaids: Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HP-LT Metamorphic Belt in the Chinese Tianshan Orogen. Tectonophysics, 499(1-4): 118-131. https://doi.org/10.1016/j.tecto.2011.01.001
      [11] Gao, J., Long, L. L., Klemd, R., et al., 2009. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 98(6): 1221-1238. https://doi.org/10.1007/s00531-008-0370-8
      [12] Gill, T.B., 1981. Orogenic Andesite and Plate Tectonics. Springer-Verlag, Berlin, 390.
      [13] Gou, L. L., Zhang, L. F., Tao, R. B., et al., 2012. A Geochemical Study of Syn-Subduction and Post-Collisional Granitoids at Muzhaerte River in the Southwest Tianshan UHP Belt, NW China. Lithos, 136-139: 201-224. https://doi.org/10.1016/j.lithos.2011.10.005
      [14] Guo, C.T., Gao, J., Li, Z., 2018. Depositional and Provenance Records of Lower Permian Sandstones from Sishichang Area, Northwestern Tarim Basin: Implications for Tectonic Evolution. Earth Science, 43(11): 4149-4168(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811030
      [15] Han, B. F., He, G. Q., Wang, X. C., et al., 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3-4): 74-93. https://doi.org/10.1016/j.earscirev.2011.09.001
      [16] Huang, H., Zhang, Z. C., Santosh, M., et al., 2014. Geochronology, Geochemistry and Metallogenic Implications of the Boziguo'er Rare Metal-Bearing Peralkaline Granitic Intrusion in South Tianshan, NW China.Ore Geology Reviews, 61: 157-174. https://doi.org/10.1016/j.oregeorev.2014.01.011
      [17] Huang, H., Zhang, Z. C., Santosh, M., et al., 2015. Petrogenesis of the Early Permian Volcanic Rocks in the Chinese South Tianshan: Implications for Crustal Growth in the Central Asian Orogenic Belt. Lithos, 228/229: 23-42. https://doi.org/10.1016/j.lithos.2015.04.017
      [18] Huang, H., Zhang, Z.C., Zhang, D.Y., et al., 2011. Petrogenesis of Late Carboniferous to Early Permian Granitoid Plutons in the Chinese South Tianshan: Implications for Crustal Accretion. Acta Geologica Sinica, 85(8): 1305-1333(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzxe201108007.htm
      [19] Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91(1-2): 181-193. doi: 10.1017/S0263593300007367
      [20] Jiang, C.Y., Mu, Y.M., Bai, K.Y., et al., 1999. Chronology, Petrology, Geochemistry and Tectonic Environment of Granitoids in the Southern Tianshan Mountain, Western China.Acta Petrologica Sinica, 15(2): 298-308(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98199902017
      [21] King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
      [22] Konopelko, D., Biske, G., Seltmann, R., et al., 2007. Hercynian Post-Collisional A-Type Granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan. Lithos, 97(1-2): 140-160. https://doi.org/10.1016/j.lithos.2006.12.005
      [23] Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103-125. https://doi.org/10.1016/j.gr.2012.12.023
      [24] Li, J.Y., He, G.Q., Xu, X., et al., 2006. Crustal Tectonic Framework of Northern Xinjiang and Adjacent Regions and Its Formation. Acta Geologica Sinica, 80(1): 148-168(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200601017
      [25] Li, Q., Zhang, L.F., 2004. The P-T Path and Geological Significance of Low-Pressure Granulite-Facies Metamorphism in Muzhaerte, Southwest Tianshan. Acta Petrologica Sinica, 20(3): 583-594(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403022
      [26] Li, Y.J., Sun, L.D., Wu, H.R., et al., 2005. Permo-Carboniferous Radiolaria from the Wupatarkan Group, West Terminal of Chinese South Tianshan. Chinese Journal of Geology, 40(2): 220-226, 236(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200502006
      [27] Liang, X.R., Wei, G.J., Li, X. H., et al., 2002. Rapid and Precise Measurement for 143Nd/144Nd Isotopic Ratios Using a Multi-Collector Inductively Coupled Plasma Mass Spectrometer. Rock and Mineral Analysis, 21(4): 247-251(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs200204002
      [28] Long, L. L., Gao, J., Klemd, R., et al., 2011. Geochemical and Geochronological Studies of Granitoid Rocks from the Western Tianshan Orogen: Implications for Continental Growth in the Southwestern Central Asian Orogenic Belt. Lithos, 126(3/4): 321-340. https://doi.org/10.1016/j.lithos.2011.07.015
      [29] Long, L. L., Gao, J., Wang, J. B., et al., 2008. Geochemistry and SHRIMP Zircon U-Pb Age of Post-Collisional Granites in the Southwest Tianshan Orogenic Belt of China: Examples from the Heiyingshan and Laohutai Plutons. Acta Geologica Sinica(English Edition), 82(2): 415-424. https://doi.org/10.1111/j.1755-6724.2008.tb00592.x
      [30] Ludwig, K. R., 2003. Mathematical-Statistical Treatment of Data and Errors for 230Th Geochronology. Reviews in Mineralogy and Geochemistry, 52(1): 631-656. https://doi.org/10.2113/0520631
      [31] Ma, X. X., Shu, L. S., Meert, J. G., 2015. Early Permian Slab Breakoff in the Chinese Tianshan Belt Inferred from the Post-Collisional Granitoids. Gondwana Research, 27(1): 228-243. https://doi.org/10.1016/j.gr.2013.09.018
      [32] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      [33] Niu, X.L., Liu, F., Feng, G.Y., et al., 2018. Discovery and Significance of Early Silurian Andesites in Wuwamen Area, Southern Margin of Central Tianshan Block. Earth Science, 43(4): 1350-1366(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201804027
      [34] Patiño Douce, A. E., 1999. What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1): 55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05
      [35] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      [36] Qi, L., Hu, J., Grégoire, D.C., 2000. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 51(3): 507-513. https://doi.org/10.1016/s0039-9140(99)00318-5
      [37] Sang, M., Xiao, W. J., Orozbaev, R., et al., 2018. Structural Styles and Zircon Ages of the South Tianshan Accretionary Complex, Atbashi Ridge, Kyrgyzstan: Insights for the Anatomy of Ocean Plate Stratigraphy and Accretionary Processes. Journal of Asian Earth Sciences, 153: 9-41. https://doi.org/10.1016/j.jseaes.2017.07.052
      [38] Smith, M. E., Carroll, A. R., Jicha, B. R., et al., 2014. Paleogeographic Record of Eocene Farallon Slab Rollback beneath Western North America. Geology, 42(12): 1039-1042. https://doi.org/10.1130/g36025.1
      [39] Tang, G. J., Chung, S. L., Hawkesworth, C. J., et al., 2017. Short Episodes of Crust Generation during Protracted Accretionary Processes: Evidence from Central Asian Orogenic Belt, NW China. Earth and Planetary Science Letters, 464: 142-154. https://doi.org/10.1016/j.epsl.2017.02.022
      [40] Valley, J. W., Lackey, J. S., Cavosie, A. J., et al., 2005.4.4 Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatic Zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580. https://doi.org/10.1007/s00410-005-0025-8
      [41] Wang, T., Jahn, B. M., Kovach, V. P., et al., 2009. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt. Lithos, 110(1/2/3/4): 359-372. https://doi.org/10.1016/j.lithos.2009.02.001
      [42] Wei, G.J., Liang, X.R., Li, X.H., et al., 2002. Precise Measurement of Sr Isotopic Composition of Liquid and Solid Base Using (LP)MC-ICPMS. Geochimica, 31(3): 295-299(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200203011
      [43] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      [44] Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China Earth Sciences, 47(7): 745-765(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010
      [45] Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      [46] Xia, L.Q., Xia, Z.C., Xu, X.Y., et al., 2004. Carboniferous Tianshan Igneous Megaprovince and Mantle Plume. Geological Bulletin of China, 23(9-10): 903-910(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgqydz200409012
      [47] Xiao, W. J., Han, C. M., Yuan, C., et al., 2008. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117. https://doi.org/10.1016/j.jseaes.2007.10.008
      [48] Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012
      [49] Xie, L.W., Zhang, Y.B., Zhang, H.H., et al., 2008. In Situ, Simultaneous Determination of Trace Elements, U-Pb and Lu-Hf Isotopes in Zircon and Baddeleyite. Chinese Science Bulletin, 53(2):220-228(in Chinese). doi: 10.1360/csb2008-53-2-220
      [50] Xu, Y. G., Wei, X., Luo, Z. Y., et al., 2014. The Early Permian Tarim Large Igneous Province: Main Characteristics and a Plume Incubation Model. Lithos, 204: 20-35. https://doi.org/10.1016/j.lithos.2014.02.015
      [51] Xu, Y.G., Chung, S.L., 2001. The Emeishan Large Igneous Province: Evidence for Mantle Plume Activity and Melting Conditions. Geochimica, 30(1): 1-9(in Chinese with English abstract).
      [52] Yin, J.Y., Chen, W., Xiao, W.J., et al., 2015. LA-ICP-MS Zircon U-Pb Age and Geochemistry of the Dark Dykes in Central Tianshan Block. Geological Bulletin of China, 34(8): 1470-1481(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201508007
      [53] Yin, J. Y., Chen, W., Xiao, W. J., et al., 2016. Late Carboniferous Adakitic Granodiorites in the Qiongkusitai Area, Western Tianshan, NW China: Implications for Partial Melting of Lower Crust in the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 124: 42-54. https://doi.org/10.1016/j.jseaes.2016.04.010
      [54] Yuan, C., Sun, M., Wilde, S., et al., 2010. Post-Collisional Plutons in the Balikun Area, East Chinese Tianshan: Evolving Magmatism in Response to Extension and Slab Break-off. Lithos, 119(3-4): 269-288. https://doi.org/10.1016/j.lithos.2010.07.004
      [55] Zhu, Y. F., Zhang, L., Gu, L., et al., 2005. The Zircon SHRIMP Chronology and Trace Element Geochemistry of the Carboniferous Volcanic Rocks in Western Tianshan Mountains. Chinese Science Bulletin, 50(19): 2201-2212. https://doi.org/10.1360/03wd0154
      [56] Zhu, Z.X., Li, J.Y., Dong, L.H., et al., 2009. Tectonic Framework and Tectonic Evolution of the Southern Tianshan, Xinjiang, China. Geological Bulletin of China, 28(12): 1863-1870(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200912018
      [57] 郭春涛, 高剑, 李忠, 2018.塔里木盆地西北缘四石厂地区下二叠统沉积与物源记录及其反映的构造演化.地球科学, 43(11): 4149-4168. http://d.old.wanfangdata.com.cn/Periodical/dqkx201811030
      [58] 黄河, 张招崇, 张东阳, 等, 2011.中国南天山晚石炭世一早二叠世花岗质侵入岩的岩石成因与地壳增生.地质学报, 85(8): 1305-1333. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201108006
      [59] 姜常义, 穆艳梅, 白开寅, 等, 1999.南天山花岗岩类的年代学、岩石学、地球化学及其构造环境.岩石学报, 15(2): 298-308. http://d.old.wanfangdata.com.cn/Periodical/ysxb98199902017
      [60] 李锦轶, 何国琦, 徐新, 等, 2006.新疆北部及邻区地壳构造格架及其形成过程的初步探讨.地质学报, 80(1): 148-168. doi: 10.3321/j.issn:0001-5717.2006.01.017
      [61] 李强, 张立飞, 2004.新疆西南天山木扎尔特一带低压麻粒岩相变质作用P-T轨迹及其地质意义.岩石学报, 20(3): 583-594. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200403022
      [62] 李曰俊, 孙龙德, 吴浩若, 等, 2005.南天山西端乌帕塔尔坎群发现石炭-二叠纪放射虫化石.地质科学, 40(2): 220-226, 236. doi: 10.3321/j.issn:0563-5020.2005.02.006
      [63] 梁细荣, 韦刚健, 李献华, 等, 2002.多收集器等离子体质谱快速精确测定钕同位素比值.岩矿测试, 21(4): 247-251. doi: 10.3969/j.issn.0254-5357.2002.04.002
      [64] 牛晓露, 刘飞, 冯光英, 等, 2018.中天山南缘乌瓦门早志留世安第斯型安山岩的发现及意义.地球科学, 43(4): 1350-1366. doi: 10.3799/dqkx.2018.725
      [65] 韦刚健, 梁细荣, 李献华, 等, 2002. (LP)MCICPMS方法精确测定液体和固体样品的Sr同位素组成.地球化学, 31(3): 295-299. doi: 10.3321/j.issn:0379-1726.2002.03.011
      [66] 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学:地球科学, 47(7): 745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001
      [67] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [68] 夏林圻, 夏祖春, 徐学义, 等, 2004.天山石炭纪大火成岩省与地幔柱.地质通报, 23(9-10): 903-910. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200409012
      [69] 谢烈文, 张艳斌, 张辉煌, 等, 2008.锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定.科学通报, 53(2): 220-228. doi: 10.3321/j.issn:0023-074X.2008.02.013
      [70] 徐义刚, 钟孙霖, 2001.峨眉山大火成岩省:地幔柱活动的证据及其熔融条件.地球化学, 30(1): 1-9. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201602010
      [71] 尹继元, 陈文, 肖文交, 等, 2015.中天山地块暗色岩墙LA-ICP-MS锆石U-Pb年龄和岩石地球化学特征.地质通报, 34(8): 1470-1481. doi: 10.3969/j.issn.1671-2552.2015.08.007
      [72] 朱志新, 李锦轶, 董莲慧, 等, 2009.新疆南天山构造格架及构造演化.地质通报, 28(12): 1863-1870. doi: 10.3969/j.issn.1671-2552.2009.12.018
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  4177
    • HTML全文浏览量:  1153
    • PDF下载量:  73
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-04-12
    • 刊出日期:  2019-11-11

    目录

      /

      返回文章
      返回