Petrogenesis and Tectonic Setting of High-Mg Volcanic Rock Xenoliths in Jianshui Area, Southeast Yunnan, China
-
摘要: 在滇东南建水地区发现产于峨眉山玄武岩中的高镁火山岩包体, 这对于地幔柱的形成演化具有重要研究意义.对这些包体进行了锆石U-Pb年代学、地球化学和岩矿分析.高镁火山岩包体具斑状结构, 致密块状构造, 斑晶主要为贵橄榄石和透辉石.13颗锆石U-Pb LA-ICP-MS加权平均年龄为259±2 Ma(MSWD=1.9), 显示与寄主岩石同期形成.包体岩石具有高镁(Mg#=68~75)、低硅(SiO2=45.11%~45.93%)特征, 轻稀土元素(LREE)、高场强元素(HFSE)富集而重稀土元素(HREE)亏损, 属于亚碱性、拉斑玄武岩系列, 具有板内玄武岩(IPB)特征.火山岩包体的原始岩浆起源于石榴子石二辉橄榄岩低程度部分熔融的产物, 岩浆演化过程中发生了橄榄石和单斜辉石的分离结晶作用, 在侵位上升过程中未受明显的地壳混染作用.该高镁火山岩的存在, 显示地幔柱除了垂直上升运动外, 在地球深部不同的边界还有多次侧向扩展移动, 表明滇东南晚二叠世存在峨眉山地幔柱的一个分支-地幔枝活动.Abstract: It reports for the first time the presence of a suite of high-Mg volcanic xenoliths in Jianshui area of Southeast Yunnan, western Yangtze platform, China, which provides new insights into mantle plume activity in the platform during the Permian. Zircon U-Pb dating, geochemistry and petrology of the xenoliths were studied to assess the petrogenetic origin and geodynamic setting of these high-Mg volcanic rocks in this paper. The high-Mg volcanic xenoliths are porphyritic texture and contain only large phenocrysts of olivine, which show as dense mass, develop as lenticulars in the Permian Emeishan basalts in Jianshui area, Southeast Yunnan. The igneous zircons from the volcanic xenoliths yield a weighted age of ca. 259±2 Ma that is interpreted to be the formation age of the magmatic protolith, which is the same as the host rocks of the Emeishan basalts. The volcanic xenoliths are characterized by low SiO2, moderate TiO2 and high Mg#. All the volcanic xenoliths are enriched in LREE but depleted in HREE. The geochemical characteristics of the xenoliths show that they belong to sub-alkali basalts and intra-plate tholeiitic basalts, suggesting that the primary magma of the high-Mg volcanic rock is likely produced by low partial melting of garnet lherzolite. The original magma may have undergone the process of fractional crystallization of olivines and clinopyroxenes. The original magma has not been affected obviously by crustal material contamination in the emplacement and uplifting. The high-Mg volcanic xenoliths may origin from riched-mantle and may be the product of the main stage of the mantle plume activity. All above indicates that there was a mantle branch developed in the study area in Late Permian. It is proposed that several mantle branches have not only ascending motion but also lateral movement while the thermal melting mantle plume arrives at the boundary of mantle and crust.
-
图 1 峨眉山玄武岩分布(a)和云南建水县研究区地质略图(b)
改自何斌等(2006).F1.怒江断裂; F2.柯街断裂; F3.澜沧江断裂; F4.金沙江-哀牢山断裂; F5, F6, F7.甘孜-理塘断裂; F8.龙门山-箐河断裂; F9.炉霍-道孚断裂; F10.雅砻江-绿汁江断裂; F11.安宁河-益门断裂; F12.普渡河-小江断裂; F13.罗泽河-紫云断裂; F14.师宗-弥勒断裂; 1.第四系; 2.新近系; 3.三叠系; 4.二叠系; 5.石炭系; 6.泥盆系; 7.南华系; 8.峨眉山玄武岩; 9.晚石炭世玄武岩; 10.断裂; 11.采样位置
Fig. 1. Distribution of Emeishan basalts (a) and geological sketch map of Jianshui area, Yunnan (b)
图 5 高镁火山岩包体TAS分类和AFM图解
a.底图据Le et al.(1986); b.底图据Ivrine and Baargar(1971)
Fig. 5. TAS (a) and AFM diagrams (b) for the high-Mg volcanic xenoliths
图 6 高镁火山岩包体原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分图(b)
标准值据Winchester and Floyd(1977)
Fig. 6. Primitive mantle-normalized trace element spider diagram (a) and chondrite-normalized REE diagram (b) for the high-Mg volcanic xenoliths
图 7 Nb/Th-Zr/Nb(a)和Zr/Y-Nb/Y图解(b)
底图据Condie(2003)
Fig. 7. Nb/Th-Zr/Nb(a) and Zr/Y-Nb/Y (b) diagrams for the high-Mg volcanic xenoliths
图 8 峨眉山玄武岩高镁包体(La/Sm)-(Sm/Yb)图解
底图据Lassiter and Depaolo(1997).PM.原始地幔;DMM.亏损地幔;CLM.大陆岩石圈地幔;LC.下地壳;CC.整个地壳;UC.上地壳
Fig. 8. (La/Sm)-(Sm/Yb) diagram for the high-Mg xenoliths in Emeishan basalt
表 1 高镁火山岩包体锆石U-Pb年龄测试分析结果
Table 1. LA-ICP-MS zircon U-Pb analytical results of the high-Mg volcanic xenoliths
点号 Pb 232Th(10-6) 238U(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 1 8 74 207 0.36 0.050 6 0.002 3 0.225 3 0.011 0 0.032 1 0.000 6 391 176.8 288 24.5 262 4.9 2 30 557 7 097 0.79 0.053 3 0.004 0 0.226 4 0.016 3 0.030 6 0.000 4 326 61.3 258 6.5 252 3.2 3 22 231 538 0.43 0.051 1 0.001 6 0.231 6 0.007 3 0.032 6 0.000 4 364 82.9 266 9.6 255 4.3 4 26 371 683 0.54 0.055 7 0.002 3 0.230 4 0.008 2 0.030 0 0.000 5 393 90.3 273 38.4 258 3.1 5 40 569 1 040 0.55 0.051 6 0.001 3 0.215 3 0.005 4 0.030 0 0.000 3 543 51.3 282 6.4 250 4.9 6 23 281 575 0.49 0.050 0 0.001 5 0.220 9 0.006 3 0.031 9 0.000 4 503 86.2 275 87.7 257 3.6 7 16 131 429 0.30 0.047 0 0.002 5 0.200 0 0.010 8 0.030 6 0.000 7 478 72.3 280 151.3 258 4.3 8 16 204 363 0.56 0.053 2 0.001 8 0.250 7 0.008 4 0.034 0 0.000 5 363 77.4 282 8.8 271 3.8 9 22 299 535 0.56 0.053 9 0.001 6 0.235 7 0.007 6 0.031 4 0.000 4 521 338.6 282 63.4 261 8.7 10 25 242 613 0.39 0.050 7 0.001 2 0.234 7 0.005 8 0.033 4 0.000 4 171 144.3 252 19.1 258 2.6 11 21 251 525 0.48 0.053 5 0.002 1 0.228 8 0.009 2 0.030 8 0.000 5 190 151.1 257 17.5 261 5.0 12 21 235 541 0.43 0.051 4 0.001 8 0.221 8 0.007 5 0.031 2 0.000 4 387 96.1 276 37.4 262 4.1 13 16 175 361 0.49 0.052 2 0.001 5 0.245 1 0.007 2 0.034 1 0.000 4 477 41.1 288 13.7 267 5.0 14 61 145 447 0.32 0.067 4 0.002 3 1.056 2 0.034 0 0.112 7 0.001 3 850 71.1 732 16.8 689 7.8 15 60 174 352 0.49 0.065 2 0.001 7 1.233 1 0.033 1 0.136 8 0.001 3 789 55.6 816 15.1 827 7.3 16 58 84 344 0. 42 0.071 2 0.001 6 1.448 0 0.034 4 0.146 1 0.002 2 965 46.3 909 14.3 879 12.3 17 47 76 113 0.67 0.108 1 0.002 0 4.922 1 0.098 2 0.327 3 0.003 9 1 768 38.1 1 806 16.9 1 825 18.8 18 133 130 238 0.55 0.166 7 0.002 8 9.573 2 0.220 8 0.412 1 0.009 3 2 524 28.9 2 395 21.3 2 225 42.5 19 26 56 34 1.68 0.159 2 0.005 7 9.902 2 0.358 3 0.451 2 0.008 1 2 447 59.4 2 426 33.4 2 401 35.9 表 2 二叠纪高镁火山岩包体主量元素及峨眉山玄武岩岩石化学平均组成(%)
Table 2. Major element data for high-Mg volcanic xenoliths and the mean data from Emeishan basalt (%)
序号 SiO2 MgO FeO Fe2O3 Al2O3 Na2O K2O CaO TiO2 MnO P2O5 H2O+ CO2 Mg# LOI 本文测试数据 D02-1 45.11 10.46 8.05 5.22 13.12 2.16 0.81 9.91 2.29 0.23 0.31 1.96 0.04 69.80 1.13 D02-2 45.86 10.79 8.11 4.62 13.18 2.17 0.77 9.69 2.22 0.22 0.31 1.66 0.11 70.41 0.86 D02-3 45.14 11.12 9.15 3.45 12.93 2.27 0.67 10.01 2.16 0.22 0.28 2.20 0.10 68.40 1.27 D02-4 45.28 10.92 9.05 3.51 13.11 2.31 0.68 9.93 2.18 0.22 0.29 2.15 0.06 68.30 1.22 D02-5 45.93 10.76 8.15 4.52 13.17 2.21 0.77 9.66 2.23 0.22 0.32 1.63 0.12 70.21 0.85 D02-6 45.79 10.75 8.05 4.57 13.06 2.17 0.75 9.73 2.23 0.22 0.31 1.92 0.10 70.40 1.17 D02-7 45.78 10.35 6.21 6.66 13.06 2.16 0.75 9.83 2.22 0.21 0.32 1.89 0.11 74.91 1.33 D02-8 45.77 10.81 8.05 4.71 13.19 2.15 0.76 9.72 2.23 0.22 0.31 1.68 0.08 70.50 0.88 D02-9 45.76 10.28 6.12 7.01 13.05 2.18 0.76 9.79 2.22 0.22 0.32 1.92 0.06 75.11 1.33 D02-10 45.93 10.76 8.15 4.52 13.17 2.21 0.77 9.66 2.23 0.22 0.32 1.63 0.12 70.20 0.85 D02-11 45.79 10.41 6.31 6.62 13.08 2.14 0.75 9.85 2.21 0.22 0.29 1.87 0.12 74.70 1.33 D02-12 45.88 10.29 6.18 6.78 13.06 2.16 0.76 9.86 2.23 0.22 0.31 1.88 0.07 74.81 1.29 D02-13 45.91 10.31 6.25 6.54 13.08 2.14 0.76 10.03 2.21 0.21 0.32 1.85 0.08 74.60 1.25 D02-14 45.76 10.28 6.11 7.01 13.05 2.18 0.76 9.79 2.22 0.22 0.31 1.92 0.06 75.00 1.33 峨眉山玄武岩 1 48.11 6.27 8.68 4.61 13.36 2.74 1.15 8.16 2.93 0.18 0.31 2 49.95 6.07 7.82 5.82 13.86 2.92 1.29 8.69 3.01 0.21 0.41 3 48.45 4.61 8.66 5.16 13.74 2.62 1.28 8.21 3.07 0.17 0.33 4 48.17 6.06 7.61 5.74 13.58 2.65 0.87 9.23 2.78 0.19 0.31 5 47.22 6.59 7.94 4.73 12.83 2.91 1.11 9.47 3.21 0.18 0.35 6 49.07 7.01 12.05 12.92 3.14 0.84 8.75 2.42 0.18 0.28 55.53 3.64 注:序号1~2数据分别来源于文献(潘杏南等,1987)中204、608个样品的平均值;3数据来源于文献(熊舜华和李建林,1984)中62个样品的平均值;4数据来源于文献(陈智梁和陈世瑜,1987)中114个样品的平均值;5数据为本人在收集文献(侯增谦等,1999;宋谢炎等,2001)中选取的53个样品的平均值;6数据来源于文献(肖龙等,2003)中25个样品的平均值.本文测试数据由自然资源部武汉地质矿产测试中心化学实验室测试完成,Mg#=Mg/(Mg+Fe2+). 表 3 高镁火山岩包体的微量和稀土元素地球化学数据(10-6)
Table 3. Trace and rare earth element data for the high-Mg volcanic xenoliths (10-6)
D02-1 D02-2 D02-3 D02-4 D02-5 D02-6 D02-7 D02-8 D02-9 D02-10 D02-11 D02-12 D02-13 D02-14 Sc 31.41 31.09 31.37 30.65 31.23 31.63 31.57 31.15 30.35 31.02 30.92 29.85 31.45 30.39 Co 57.96 58.29 57.41 60.44 57.85 58.93 58.92 57.62 58.59 58.76 57.83 59.99 60.89 58.91 Cu 43.92 43.15 42.27 44.95 42.71 42.87 43.34 42.10 45.03 43.95 41.92 43.31 46.59 42.61 Zn 100.71 92.01 91.97 101.72 91.99 100.11 98.15 93.33 97.55 98.83 94.69 100.92 102.51 97.81 Rb 21.45 20.97 21.36 24.36 21.17 25.38 23.61 22.42 24.98 23.61 23.44 25.05 23.67 24.29 Zr 122 112 114 116 113 123 117 113 121 122 113 116 116 115 Nb 23.180 21.120 18.660 20.735 19.890 21.170 21.440 19.195 21.250 21.210 19.730 20.540 20.930 20.140 Hf 3.630 3.150 3.160 3.215 3.160 3.470 3.140 3.165 3.310 3.390 3.170 3.320 3.110 3.250 Ta 1.870 1.620 1.370 1.465 1.490 1.520 1.540 1.412 1.470 1.510 1.430 1.460 1.470 1.450 Pb 2.740 2.480 3.080 3.855 2.730 3.150 2.610 2.995 2.730 2.980 2.910 3.470 4.240 3.190 Th 2.930 2.530 2.340 2.460 2.440 2.510 2.520 2.381 2.510 2.520 2.420 2.410 2.510 2.410 U 0.51 0.48 0.48 0.52 0.49 0.54 0.48 0.471 0.47 0.51 0.46 0.53 0.51 0.49 Ba 334 349 310 344 329 302 330 317 388 345 3242 381 307 353 Cr 580 700 673 648 686 609 615 633 596 603 593 671 625 632 Ni 192 215 207 211 211 202 202 206 200 201 205 207 215 206 Sr 321 297 298 346 298 330 329 318 331 330 338 345 347 342 V 272 260 254 277 257 275 270 258 267 271 263 277 276 270 Nb/U 45.450 43.990 38.880 40.320 40.590 39.210 45.040 40.745 44.930 41.410 42.610 38.610 42.030 41.110 (Th/Ta)N 0.760 0.750 0.820 0.805 0.780 0.810 0.790 0.815 0.820 0.820 0.810 0.790 0.820 0.810 La 15.430 15.090 14.760 15.650 15.370 15.870 16.040 15.265 15.960 16.010 15.770 15.850 15.450 15.110 Ce 31.950 31.910 30.810 31.640 31.860 32.670 33.060 31.735 32.870 32.890 32.660 31.990 31.290 29.910 Pr 4.760 4.650 4.520 4.685 4.650 4.820 4.870 4.635 4.850 4.840 4.750 4.740 4.630 4.490 Nd 20.27 19.72 19.36 20.065 20.07 20.85 20.91 19.92 20.88 20.83 20.48 20.29 19.84 19.21 Sm 4.85 4.75 4.56 4.81 4.75 5.04 5.02 4.765 5.03 4.96 4.97 4.84 4.78 4.57 Eu 1.76 1.72 1.71 1.815 1.72 1.82 1.84 1.76 1.83 1.85 1.81 1.82 1.81 1.68 Gd 4.620 4.540 4.510 4.555 4.560 4.720 4.720 4.580 4.720 4.570 4.650 4.630 4.480 4.320 Tb 0.710 0.710 0.690 0.715 0.720 0.730 0.730 0.705 0.730 0.720 0.720 0.720 0.710 0.680 Dy 3.85 3.76 3.62 3.83 3.81 3.88 3.98 3.78 3.93 3.88 3.94 3.87 3.79 3.64 Ho 0.720 0.710 0.720 0.715 0.710 0.740 0.750 0.730 0.750 0.730 0.740 0.720 0.710 0.670 Er 1.84 1.76 1.75 1.86 1.78 1.89 1.92 1.82 1.91 1.86 1.89 1.85 1.87 1.76 Tm 0.26 0.26 0.26 0.26 0.26 0.27 0.27 0.26 0.27 0.26 0.26 0.26 0.26 0.24 Yb 1.610 1.550 1.560 1.605 1.540 1.630 1.630 1.595 1.650 1.650 1.630 1.620 1.590 1.520 Lu 0.24 0.23 0.24 0.23 0.23 0.24 0.26 0.24 0.25 0.25 0.24 0.23 0.23 0.21 Y 16.990 16.640 16.330 17.115 16.960 17.240 17.560 16.810 17.410 17.550 17.270 17.210 17.020 16.320 ∑REE 92.870 90.530 89.040 92.340 92.010 95.140 95.980 91.775 95.560 95.280 94.510 93.420 91.260 87.980 (La/Nb)N 0.690 0.790 0.730 0.805 0.860 0.780 0.790 0.755 0.790 0.770 0.780 0.830 0.780 0.760 -
[1] Campbell, I.H., Daviese, G.F., 2006.Do Mantle Plumes Exist?.Episodes, 29(3):162-168. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025023479/ [2] Chen, Z.L., Chen, S.Y., 1987.Tectonic Evolution of Western Yangtze Block.Chongqing Publishing House, Chongqing, 104-120 (in Chinese). [3] Chung, S.L., Jahn, B.M., 1995.Plume-Lithosphere Interaction in Generation of the Emeishan Flood Basalts at the Permian-Triassic Boundary.Geology, 23(10):889-892.https://doi.org/10.1130/0091-7613(1995)023 < 0889:pliigo > 2.3.co; 2 doi: 10.1130/0091-7613(1995)023<0889:pliigo>2.3.co;2 [4] Condie, K.C., 2003.Incompatible Element Ratios in Oceanic Basalts and Komatiites:Tracking Deep Mantle Sources and Continental Growth Rates with Time.Geochemistry, Geophysics, Geosystems, 4(1):1-28. https://doi.org/10.1029/2002gc000333 [5] Dmitriev, Y.I., Bogatikov, O.A., 1996.Emeishan Flood Basalts, Yangtze Platform:Indications of an Aborted Oceanic Environment.Petrology, 4:407-418. [6] Frey, F.A., Green, D.H., Roy, S.D., 1978.Integrated Models of Basalt Petrogenesis:A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data.Journal of Petrology, 19(3):463-513. https://doi.org/10.1093/petrology/19.3.463 [7] Gan, X.C., Zhao, F.Q., Jin, W.S., et al., 1996.The U-Pb Ages of Early Proterozoic-Archean Zircons Captured by Igneous Rocks in Southern China.Geochimica, 25(2):112-120 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600048548 [8] Geoffrey, F.D., 2005.Grounds for the Mantle Existing.Chinese Science Bulletin, 50(17):1801-1813. [9] He, Q., Xiao, L., Balta, B., et al., 2010.Variety and Complexity of the Late-Permian Emeishan Basalts:Reappraisal of Plume-lithosphere Interaction Processes.Lithos, 119(1-2):91-107. https://doi.org/10.1016/j.lithos.2010.07.020 [10] He, B., Xu, Y.G., Xiao, L., et al., 2006.Sedimentary Responses to Uplift of Emeishan Mantle Plume and Its Implications.Geological Review, 52(1):30-37 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000004910 [11] Hofmann, A.W., 1988.Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust.Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/0012-821x(88)90132-x [12] Hou, Z.Q., Lu, J.R., Lin, S.Z., 2005.The Axial Zone Consisting of Pyrolite and Eclogite in the Emei Mantle Plume Major, Trace Element and Sr-Nd-Pb Isotope Evidence.Acta Geologica Sinica, 79(2):200-219 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200502007 [13] Hou, Z.Q., Wang, Y.L., Zhang, C.J., et al., 1999.Chemical Characteristic of Major Elements, Cr and Ni of Mantle Plume in Emei Igneous Province.Geological Review, 45(Suppl.):880-884 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000002294 [14] Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055 [15] Lassiter, J.C., Depaolo, D.J., 1997.Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts:Chemical and Isotope Constraints.Geophysical Monography 100, American Geophysical Union, 100:335-355. [16] Le, M.J., Le, R.W., Streckeisen, A., 1986.A Chemical Classification of Volcanic Rocks Based on the Total Alkalisilica Diagram.Journal of Petrology, 27:745-750. doi: 10.1093/petrology/27.3.745 [17] Li, H.B., Zhang, Z.C., Lü, L.S., 2010.Geometry of the Mafic Dyke Swarms in Emeishan Large Igneous Province:Implications for Mantle Plume.Acta Petrologica Sinica, 26(10):3143-3152 (in Chinese with English abstract). [18] Li, X.R., Wang, J., Wan, Y.L., et al., 2018.Geochemical Characteristics and Tetonic Implications of Nayixiong Formation Basalts in Eastern Qiangtang Basin, Tibet.Earth Science, 43(2):401-416 (in Chinese with English abstract). [19] Liu, Y.P., Ye, L., Li, C.Y., et al., 2006.Discovery of the Neoproterozoic Magmatics in Southeastern Yunnan:Evidence from SHRIMP Zircon U-Pb Dating and Lithogeochemistry.Acta Petrologica Sinica, 22(4):916-926 (in Chinese with English abstract). [20] Luo, Z.L., Jin, Y.Z., Zhao, X.K., 1990.The Emei Taphrogenesis of the Upper Yangtze Platform in South China.Geological Magazine, 127(5):393-405. https://doi.org/10.1017/s0016756800015156 [21] Neal, C.R., 2002.Mantle Sources and the Highly Variable Role of Continental Lithosphere in Basalt Petrogenesis of the Kerguelen Plateau and Broken Ridge LIP:Results from ODP Leg 183.Journal of Petrology, 43(7):1177-1205. https://doi.org/10.1093/petrology/43.7.1177 [22] Nickel, K.G., 1986.Phase Equilibria in the System SiO2-MgO-Al2O3-CaO-Cr2O3(SMACCR) and Their Bearing on Spinel/Garnet Iherzolite Relationships.Neues Jahrbuch Fur Mineralogie-Abhandlungen, 155(3):259-287. [23] Pan, X.N., Zhao, J.T., Zhang, X.Y., et al., 1987.Tectonics and Rifting in Kangdian Region.Chongqing Publishing House, Chongqing, 214-224 (in Chinese). [24] Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses.Earth and Planetary Science Letters, 19(2):290-300. https://doi.org/10.1016/0012-821x(73)90129-5 [25] Song, X.Y., Hou, Z.Q., Cao, Z.M., et al., 2001.Geochemical Characteristics and Period of the Emei Igneous Province.Acta Geologica Sinica, 75(4):498-506 (in Chinese with English abstract). [26] Song, X.Y., Zhou, M.F., Cao, Z.M., et al., 2004.Late Permian Rifting of the South China Craton Caused by the Emeishan Mantle Plume?.Journal of the Geological Society, 161(5):773-781. https://doi.org/10.1144/0016-764903-135 [27] Wang, L.X., Ma, C.Q., Lai, Z.X., et al., 2015.Early Jurassic Mafic Dykes from the Xiazhuang Ore District (South China):Implications for Tectonic Evolution and Uranium Metallogenesis.Lithos, 239:71-85. https://doi.org/10.1016/j.lithos.2015.10.008 [28] Wang, Y., Ma, C.Q., Wang, L.X., et al., 2018.Zircon U-Pb Geochronoloty, Geochemistry and Sr-Nd-Hf Isotopes of the Neoproterozoic Granites on the Southeastern Margin of the Yangtze Block:Constraint on Crustal Growth.Earth Science, 43(3):635-654 (in Chinese with English abstract). [29] Wang, Y.L., Zhang, C.J., Xiu, S.Z., 2001.Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts.Acta Petrologica Sinica, 17(3):413-421 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009 [30] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [31] Wood, D.A., 1980.The Application of a ThHfTa Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province.Earth and Planetary Science Letters, 50(1):11-30. https://doi.org/10.1016/0012-821x(80)90116-8 [32] Wu, Y.B., Zheng, Y.F., 2004.Study on the Mineralogy of Zircon and Its Constraints on the Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). [33] Xiao, L., Xu, Y.G., Mei, H.J., et al., 2003.Geochemistry of Emeishan Flood Basalts at Binchuan Area, SW China:Rock Types and Temporal Evolution.Chinese Journal of Geology, 38(4):478-494 (in Chinese with English abstract). [34] Xiong, S.H., Li, J.L., 1984.The Characteristics of the Late Permian Basalts in the Margin of Continental Rift in Emeishan Area.Journal of Chengdu College of Geology, 11(3):43-59 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89c0a2363521ff34b3b7a2a8378b168a [35] Xu, Y.G., Chung, S.L., 2001.The Emeishan Large Igneous Province:Evidence for Mantle Plume Activity and Melting Conditions.Geochimica, 30(1):1-9 (in Chinese with English abstract). [36] Xu, Y.G., Chung, S.L., Jahn, B.M., et al., 2001.Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China.Lithos, 58(3-4):145-168. https://doi.org/10.1016/s0024-4937(01)00055-x [37] Xu, Y.G., He, B., Chung, S.L., et al., 2004.Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province.Geology, 32(10):917-920. https://doi.org/10.1130/g20602.1 [38] Zhang, Z.C., Wang, F.S., Hao, Y.L., 2005.Picrites from the Emeishan Large Igneous Province:Evidence for the Mantle Plume Activity.Bulletin of Mineralogy, Petrology and Geochemistry, 24(1):17-22 (in Chinese with English abstract). [39] 陈智梁, 陈世瑜, 1987.扬子地块西缘地质构造演化.重庆:重庆出版社, 104-120. [40] 甘晓春, 赵风清, 金文山, 等, 1996.华南火成岩中捕获锆石的早元古代-太古宙U-Pb年龄信息.地球化学, 25(2): 112-120. doi: 10.3321/j.issn:0379-1726.1996.02.002 [41] 何斌, 徐义刚, 肖龙, 等, 2006.峨眉山地幔柱上升的沉积响应及其地质意义.地质论评, 52(1): 30-37. doi: 10.3321/j.issn:0371-5736.2006.01.005 [42] 侯增谦, 卢记仁, 林盛中, 2005.峨眉地幔柱轴部的榴辉岩-地幔岩源区:主元素、痕量元素及Sr、Nd、Pb同位素证据.地质学报, 79(2): 200-219. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200502007 [43] 侯增谦, 汪云亮, 张成江, 等, 1999.峨眉火成岩省地幔热柱的主要元素及Cr, Ni地球化学特征.地质论评, 45(增刊): 880-884. http://d.old.wanfangdata.com.cn/Periodical/OA000002294 [44] 李宏博, 张招崇, 吕林素, 2010.峨眉山大火成岩省基性墙群几何学研究及对地幔柱中心的指示意义.岩石学报, 26(10): 3143-3152. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010025 [45] 李学仁, 王剑, 万友利, 等, 2018.羌塘盆地东部那益雄组玄武岩地球化学特征及构造意义.地球科学, 43(2): 401-416. http://www.earth-science.net/WebPage/Article.aspx?id=3749 [46] 刘玉平, 叶霖, 李朝阳, 等, 2006.滇东南发现新元古代岩浆岩:SHRIMP锆石U-Pb年代学和岩石地球化学证据.岩石学报, 22(4): 916-926. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604015 [47] 潘杏南, 赵济汀, 张选阳, 等, 1987.康滇构造与裂谷作用.重庆:重庆出版社, 214-224. [48] 宋谢炎, 侯增谦, 曹志敏, 等, 2001.峨眉大火成岩省的岩石地球化学特征及时限.地质学报, 75(4): 498-506. doi: 10.3321/j.issn:0001-5717.2001.04.009 [49] 王艳, 马昌前, 王连训, 等, 2018.扬子东南缘新元古代花岗岩的锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素:对地壳生长的约束.地球科学, 43(3): 635-654. http://www.earth-science.net/WebPage/Article.aspx?id=3772 [50] 汪云亮, 张成江, 修淑芝, 2001.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别.岩石学报, 17(3): 413-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200103009 [51] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [52] 肖龙, 徐义刚, 梅厚钧, 等, 2003.云南宾川地区峨眉山玄武岩地球化学特征岩石类型及随时间演化规律.地质科学, 38(4): 478-494. doi: 10.3321/j.issn:0563-5020.2003.04.007 [53] 熊舜华, 李建林, 1984.峨眉山区晚二叠世大陆裂谷边缘玄武岩系的特征.成都地质学院学报, 11(3): 43-59. [54] 徐义刚, 钟孙霖, 2001.峨眉山大火成岩省:地幔柱活动的证据及其熔融条件.地球化学, 30(1): 1-9. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201602010 [55] 张招崇, 王福生, 郝艳丽, 2005.峨眉山大火成岩省中的苦橄岩:地幔柱活动证据.矿物岩石地球化学通报, 24(1): 17-22. doi: 10.3969/j.issn.1007-2802.2005.01.003