• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏冈底斯斑岩型铜钼矿床的Cu、Mo同位素组成及其意义

    胡文峰 张烨恺 刘金华 郭亮 周炼

    胡文峰, 张烨恺, 刘金华, 郭亮, 周炼, 2019. 西藏冈底斯斑岩型铜钼矿床的Cu、Mo同位素组成及其意义. 地球科学, 44(6): 1923-1934. doi: 10.3799/dqkx.2019.077
    引用本文: 胡文峰, 张烨恺, 刘金华, 郭亮, 周炼, 2019. 西藏冈底斯斑岩型铜钼矿床的Cu、Mo同位素组成及其意义. 地球科学, 44(6): 1923-1934. doi: 10.3799/dqkx.2019.077
    Hu Wenfeng, Zhang Yekai, Liu Jinhua, Guo Liang, Zhou Lian, 2019. The Isotopic Compositions of Copper and Molybdenum from Porphyry Cu-Mo Deposit in the Gangdese, Tibet, and Their Significance. Earth Science, 44(6): 1923-1934. doi: 10.3799/dqkx.2019.077
    Citation: Hu Wenfeng, Zhang Yekai, Liu Jinhua, Guo Liang, Zhou Lian, 2019. The Isotopic Compositions of Copper and Molybdenum from Porphyry Cu-Mo Deposit in the Gangdese, Tibet, and Their Significance. Earth Science, 44(6): 1923-1934. doi: 10.3799/dqkx.2019.077

    西藏冈底斯斑岩型铜钼矿床的Cu、Mo同位素组成及其意义

    doi: 10.3799/dqkx.2019.077
    基金项目: 

    国家重大研发计划 2016YFC0600309

    国家自然科学基金 41473007

    国家自然科学基金 41673013

    详细信息
      作者简介:

      胡文峰(1995-), 硕士, 主要从事过渡元素同位素地球化学研究

      通讯作者:

      周炼

    • 中图分类号: P611

    The Isotopic Compositions of Copper and Molybdenum from Porphyry Cu-Mo Deposit in the Gangdese, Tibet, and Their Significance

    • 摘要: 选取西藏冈底斯成矿带的驱龙、达布斑岩型铜钼矿及鸡公村石英脉型钼矿为研究对象, 分别挑选含矿斑岩和石英脉中的黄铜矿、辉钼矿进行Cu、Mo同位素测定.结果表明, 西藏冈底斯斑岩型黄铜矿的δ65/63Cu介于0.01‰~0.98‰, 辉钼矿的δ97/95Mo介于-0.34‰~-0.15‰, 热液脉型矿床中辉钼矿的δ97/95Mo介于-0.35‰~-0.23‰.形成于陆-陆碰撞造山后的冈底斯斑岩型铜钼矿床的Cu同位素与俯冲带产出的斑岩型矿床中的Cu同位素组成具有一定的相似性, 均表现为单峰分布的特征.驱龙斑岩型矿床中热液脉与含矿斑岩中的δ65/63Cu具有一致性, 可能反映了二者在来源上具有一致性.在冈底斯斑岩型铜钼矿床中, 不同蚀变带具有不同的Cu、Mo同位素组成, 自蚀变中心向外, δ65/63Cu与δ97/95Mo表现出负相关趋势, 可能与成矿流体的性质密切相关.冈底斯石英脉型钼矿较斑岩型铜钼矿δ97/95Mo相对偏负, 结合两类矿床的成矿年代, 可能暗示两类矿床的成矿物质是同一源区连续演化的结果.

       

    • 图  1  西藏冈底斯带斑岩型铜-钼矿分布

      Hou et al.(2015)修改

      Fig.  1.  Distribution map of the porphyry Cu-Mo deposits in Gangdese belt in Tibet

      图  2  矿物组合及蚀变类型

      a~c.钾化带; d~f.过渡带; g~i.绢云母化带; j~l.绿泥石化带; a~k为正交偏光, c, l为单偏光

      Fig.  2.  Characteristics of alteration and mineralization assemblages

      图  4  不同蚀变带的Cu同位素变化

      Fig.  4.  Variation of Cu isotope of the different alteration zones

      图  6  不同蚀变带的Mo同位素变化

      Fig.  6.  Variation of Mo isotope of different alteration zones

      图  7  黄铜矿的Cu-辉钼矿的Mo同位素关系

      Fig.  7.  Relationship for Cu-Mo isotopes

      图  3  (a) 驱龙矿床的Cu同位素组成; (b)不同构造背景下斑岩型矿床的Cu同位素组成

      BSE:硅酸岩地球; 热液脉:驱龙矿区的早期A脉、B脉及晚期D脉; 部分数据李振清等, 2009; Mathur et al., 2009; Wu et al., 2017

      Fig.  3.  Compareative of Cu isotope composition in different tectonic settings

      图  5  不同矿床Mo同位素组成对比

      BSE.硅酸岩地球; 部分数据引自Greber et al.(2011), Wang et al.(2016)

      Fig.  5.  Comparison of Mo isotopic composition in the different deposits

    • [1] Asael, D., Matthews, A., Bar-Matthews, M., et al., 2007.Cop-per Isotope Fractionation in Sedimentary Copper Miner-alization (Timna Valley, Israel). Chemical Geology, 243(3-4):238-254. https://doi.org/10.1016/j.chem-geo.2007.06.007
      [2] Ehrlich, S., Butler, I., Halicz, L., et al., 2004. Experimental Study of the Copper Isotope Fractionation between Aqueous Cu(Ⅱ) and Covellite, CuS. Chemical Geology, 209(3-4):259-269. https://doi.org/10.1016/j.chem-geo.2004.06.010
      [3] Greber, N. D., Hofmann, B. A., Voegelin, A. R., et al., 2011.Mo Isotope Composition in Mo-Rich High-and Low-T Hydrothermal Systems from the Swiss Alps.Geochimica et Cosmochimica Acta, 75(21):6600-6609. https://doi.org/10.1016/j.gca.2011.08.034
      [4] Hou, Q.H., Zhou, L., Gao, S., et al., 2016.Use of Ga for Mass Bias Correction for the Accurate Determination of Cop-per Isotope Ratio in the NIST SRM 3114 Cu Standard and Geological Samples by MC-ICPMS.Journal of Ana-lytical Atomic Spectrometry, 31(1):280-287. doi: 10.1039/C4JA00488D
      [5] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      [6] Hou, Z. Q., Lv, Q. T., Wang, A. J., et al., 2003. Continental Collision and Related Metallogeny:A Case Study of Min-eralization in Tibetan Orogen. Mineral Deposits, 22(4):319-333(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200304000.htm
      [7] Hou, Z. Q., Zheng, Y. C., Yang, Z. M., et al., 2013. Contribu-tion of Mantle Components within Juvenile Lower-Crust to Collisional Zone Porphyry Cu Systems in Tibet.Min-eralium Deposita, 48(2):173-192. https://doi.org/10.1007/s00126-012-0415-6
      [8] Huang, L.C., Jiang, S.Y., 2012.Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Porphyric-Like Muscovite Granite in the Dahutang Tungsten Deposit, Ji-angxi Province. Acta Petrologica Sinica, 28(12):3887-3900(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201212008.htm
      [9] Larson, P. B., Maher, K., Ramos, F. C., et al., 2003. Copper Isotope Ratios in Magmatic and Hydrothermal Ore-Forming Environments. Chemical Geology, 201(3-4):337-350. doi: 10.1016/j.chemgeo.2003.08.006
      [10] Li, Y.X., Li, G.M., Xie, Y.L., et al., 2018.Properties and Evo-lution Path of Ore-Forming Fluid in Qiagong Polymetal-lic Deposit of Middle Gangdese in Tibet, China. Earth Science, 43(8):2684-2700(in Chinese with English ab-stract). https://doi.org/10.3799/dqkx.2018.170
      [11] Li, Z.Q., Yang, Z.M., Zhu, X.K., et al., 2009.Cu Isotope Com-position of Qulong Porphyry Cu Deposit, Tibet. Acta Geologica Sinica, 83(12):1985-1996(in Chinese with English abstract).
      [12] Malinovsky, D., Rodushkin, I., Baxter, D.C., et al., 2005.Mo-lybdenum Isotope Ratio Measurements on Geological Samples by MC-ICPMS. International Journal of Mass Spectrometry, 245(1-3):94-107. doi: 10.1016/j.ijms.2005.07.007
      [13] Markl, G., Lahaye, Y, Schwinn, G., 2006.Copper Isotopes as Monitors of Redox Processes in Hydrothermal Mineral-ization. Geochimica et Cosmochimica Acta, 70(16):4215-4228. doi: 10.1016/j.gca.2006.06.1369
      [14] Mathur, R., Titley, S., Barra, F., et al., 2009.Exploration Po-tential of Cu Isotope Fractionation in Porphyry Copper Deposits. Journal of Geochemical Exploration, 102(1):1-6. https://doi.org/10.1016/j.gexplo.2008.09.004
      [15] Nie, L. M., Li, Z. Q., Fang, X. J., 2012. Cu Isotope Fraction-ation during Magma Evolution Process of Qulong Por-phyry Copper Deposit, Tibet. Mineral Deposits, 31(4):718-726(in Chinese with English abstract).
      [16] Qu, X. M., Hou, Z. Q., Zaw, K., et al., 2007. Characteristics and Genesis of Gangdese Porphyry Copper Deposits in the Southern Tibetan Plateau:Preliminary Geochemical and Geochronological Results.Ore Geology Reviews, 31(1-4):205-223. doi: 10.1016/j.oregeorev.2005.03.012
      [17] Rempel, K.U., Migdisov, A.A., Williams-Jones, A.E., 2006.The Solubility and Speciation of Molybdenum in Water Vapour at Elevated Temperatures and Pressures:Impli-cations for Ore Genesis. Geochimica et Cosmochimica Acta, 70(3):687-696. https://doi.org/10.1016/j.gca.2005.09.013
      [18] Rempel, K.U., Williams-Jones, A.E., Migdisov, A.A., 2008. The Solubility of Molybdenum Dioxide and Trioxide in HCl-Bearing Water Vapour at 350℃ and Pressures up to 160 bars. Geochimica et Cosmochimica Acta, 72(13):3074-3083. https://doi.org/10.1016/j.gca.2008.04.015
      [19] Rempel, K.U., Williams-Jones, A.E., Migdisov, A.A., 2009. The Partitioning of Molybdenum (VI) between Aqueous Liquid and Vapour at Temperatures up to 370℃. Geo-chimica et Cosmochimica Acta, 73(11):3381-3392. https://doi.org/10.1016/j.gca.2009.03.004
      [20] Seo, J. H., Guillong, M., Heinrich, C. A., 2012. Separation of Molybdenum and Copper in Porphyry Deposits:The Roles of Sulfur, Redox, and pH in Ore Mineral Deposi-tion at Bingham Canyon. Economic Geology, 107(2):333-356. https://doi.org/10.2113/econgeo.107.2.333
      [21] Shafiei, B., Shamanian, G., Mathur, R., et al., 2015. Mo Isotope Fractionation during Hydrothermal Evolution of Porphyry Cu Systems.Mineralium Deposita, 50(3):281-291. https://doi.org/10.1007/s00126-014-0537-0
      [22] Wang, Y., Zhou, L., Gao, S., et al., 2016.Variation of Molyb-denum Isotopes in Molybdenite from Porphyry and Vein Mo Deposits in the Gangdese Metallogenic Belt, Tibetan Plateau and Its Implications.Mineralium Deposita, 51(2):201-210. doi: 10.1007/s00126-015-0602-3
      [23] Wang, Y. Y., Tang, J. X., Zheng, W. B., et al., 2015. Mecha-nism of Metal Precipitation in Dabu Porphyry Cu-Mo Deposit, Quxu Country, Tibet. Mineral Deposits, 34(1):81-97(in Chinese with English abstract).
      [24] Wu, S., Zheng, Y.Y., Wang, D., et al., 2017.Variation of Cop-per Isotopes in Chalcopyrite from Dabu Porphyry Cu-Mo Deposit in Tibet and Implications for Mineral Explo-ration.Ore Geology Reviews, 90:14-24. https://doi.org/10.1016/j.oregeorev.2017.10.001
      [25] Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008.Qulong Su-perlarge Porphyry Cu Deposit in Tibet:Geology, Altera-tion and Mineralization. Mineral Deposits, 27(3):279-318(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200803003.htm
      [26] Yang, Z.M., Xie, Y.L., Li, G.M., et al., 2006.SEM/EDS Con-straints on Nature of Ore-Forming Fluids in Gangdese Porphyry Copper Belt:Case Studies of Qulong and Tinggong Deposits.Mineral Deposits, 25(2):147-154(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200602003.htm
      [27] Yao, J.M., Mathur, R., Sun, W.D., et al., 2016.Fractionation of Cu and Mo Isotopes Caused by Vapor-Liquid Parti-tioning, Evidence from the Dahutang W-Cu-Mo Ore Field. Geochemistry, Geophysics, Geosystems, 17(5):1725-1739. https://doi.org/10.1002/2016gc006328
      [28] Zhang, S.K., Zheng, Y.Y., Zhang, G.Y., et al., 2013.Geochro-nological Constraints on Jigongcun Quartz-Vein Type Molybdenum Deposit in Quxu County, Tibet. Mineral Deposits, 32(3):641-648(in Chinese with English ab-stract).
      [29] Zhang, S.T., Zhao, P.D., 2011.Porphyry Ore Deposits:Impor-tant Study Subjects of Nontraditional Mineral Resources. Earth Science, 36(2):247-254(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201102010.htm
      [30] Zhao, P. P., Li, J., Zhang, L., et al., 2016. Molybdenum Mass Fractions and Isotopic Compositions of International Geological Reference Materials. Geostandards and Geo-analytical Research, 40(2):217-226. https://doi.org/10.1111/j.1751-908x.2015.00373.x
      [31] Zheng, H. T., Zheng, Y. Y., Xu, J., et al., 2018. Zircon U-Pb Ages and Petrogenesis of Ore-Bearing Porphyry for Qin-gcaoshan Porphyry Cu-Au Deposit, Tibet.Earth Science, 43(8):2858-2874(in Chinese with English abstract).
      [32] Zheng, Y. Y., Xue, Y. X., Cheng, L. J., et al., 2004. Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science, 29(1):103-108(in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200401018
      [33] Zhu, X.K., Guo, Y., Williams, R.J.P., et al., 2002.Mass Frac-tionation Processes of Transition Metal Isotopes. Earth and Planetary Science Letters, 200(1-2):47-62. https://doi.org/10.1016/s0012-821x(02)00615-5
      [34] Zhu, X.K., O'Nions, R.K., Guo, Y., et al., 2000.Determination of Natural Cu-Isotope Variation by Plasma-Source Mass Spectrometry:Implications for Use as Geochemical Trac-ers.Chemical Geology, 163(1-4):139-149. https://doi.org/10.1016/s0009-2541(99)00076-5
      [35] 侯增谦, 吕庆田, 王安建, 等, 2003.初论陆-陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质, 22(4):319-333. doi: 10.3969/j.issn.0258-7106.2003.04.001
      [36] 黄兰椿, 蒋少涌, 2012.江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究.岩石学报, 28(12):3887-3900. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201212008
      [37] 李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8):2684-2700. http://earth-science.net/WebPage/Article.aspx?id=3905
      [38] 李振清, 杨志明, 朱祥坤, 等, 2009.西藏驱龙斑岩铜矿铜同位素研究.地质学报, 83(12):1985-1996. doi: 10.3321/j.issn:0001-5717.2009.12.013
      [39] 聂龙敏, 李振清, 房小捷, 等, 2012.西藏驱龙斑岩铜矿床岩浆演化过程中的Cu同位素分馏.矿床地质, 31(4):718-726. doi: 10.3969/j.issn.0258-7106.2012.04.005
      [40] 王艺云, 唐菊兴, 郑文宝, 等, 2015.西藏曲水县达布斑岩型铜钼矿床金属沉淀机制探讨.矿床地质, 34(1):81-97. http://d.old.wanfangdata.com.cn/Periodical/kcdz201501005
      [41] 杨志明, 侯增谦, 宋玉财, 等, 2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质, 27(3):279-318. doi: 10.3969/j.issn.0258-7106.2008.03.002
      [42] 杨志明, 谢玉玲, 李光明, 等, 2006.西藏冈底斯斑岩铜矿带成矿流体的扫描电镜(能谱)约束——以驱龙和厅宫矿床为例.矿床地质, 25(2):147-154. doi: 10.3969/j.issn.0258-7106.2006.02.004
      [43] 张苏坤, 郑有业, 张刚阳, 等, 2013.西藏曲水县鸡公村石英脉型钼矿床成矿时代约束.矿床地质, 32(3):641-648. doi: 10.3969/j.issn.0258-7106.2013.03.014
      [44] 张寿庭, 赵鹏大, 2011.斑岩型矿床——非传统矿产资源研究的重要对象.地球科学, 36(2):247-254. http://earth-science.net/WebPage/Article.aspx?id=2087
      [45] 郑海涛, 郑有业, 徐净, 等, 2018.西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因.地球科学, 43(8):2858-2874. http://earth-science.net/WebPage/Article.aspx?id=3917
      [46] 郑有业, 薛迎喜, 程力军, 等, 2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学, 29(1):103-108. doi: 10.3321/j.issn:1000-2383.2004.01.018
    • dqkx-44-6-1923-Table.pdf
    • 加载中
    图(7)
    计量
    • 文章访问数:  3561
    • HTML全文浏览量:  1373
    • PDF下载量:  54
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-08-25
    • 刊出日期:  2019-06-15

    目录

      /

      返回文章
      返回