The Isotopic Compositions of Copper and Molybdenum from Porphyry Cu-Mo Deposit in the Gangdese, Tibet, and Their Significance
-
摘要: 选取西藏冈底斯成矿带的驱龙、达布斑岩型铜钼矿及鸡公村石英脉型钼矿为研究对象, 分别挑选含矿斑岩和石英脉中的黄铜矿、辉钼矿进行Cu、Mo同位素测定.结果表明, 西藏冈底斯斑岩型黄铜矿的δ65/63Cu介于0.01‰~0.98‰, 辉钼矿的δ97/95Mo介于-0.34‰~-0.15‰, 热液脉型矿床中辉钼矿的δ97/95Mo介于-0.35‰~-0.23‰.形成于陆-陆碰撞造山后的冈底斯斑岩型铜钼矿床的Cu同位素与俯冲带产出的斑岩型矿床中的Cu同位素组成具有一定的相似性, 均表现为单峰分布的特征.驱龙斑岩型矿床中热液脉与含矿斑岩中的δ65/63Cu具有一致性, 可能反映了二者在来源上具有一致性.在冈底斯斑岩型铜钼矿床中, 不同蚀变带具有不同的Cu、Mo同位素组成, 自蚀变中心向外, δ65/63Cu与δ97/95Mo表现出负相关趋势, 可能与成矿流体的性质密切相关.冈底斯石英脉型钼矿较斑岩型铜钼矿δ97/95Mo相对偏负, 结合两类矿床的成矿年代, 可能暗示两类矿床的成矿物质是同一源区连续演化的结果.Abstract: We present Mo and Cu isotope of molybdenite and chalcopyrite from two porphyry deposits (Qulong, Dabu) and one quartz-molybdenite vein -type deposit (Jigongcun) along the Gangdese metallogenic belt in the Tibetan Plateau.The results show that the range of δ65/63Cu in the Gangdese porphyry deposit in Tibet is between +0.01‰-+0.98‰, and the range of δ97/95Mo is between -0.34‰ to -0.15‰.The δ97/95Mo of molybdenum in the quartz-molybdenite vein-type deposit is obviously lighter, and cluster from -0.35 ‰ to -0.23‰. Two types porphyry deposits produced in different tectonic settings from the island arc and collisional orogenic belt, it is found that they have similar range of δ65/63Cu in chalcopyrite, all of which are characterized by unimodal distribution; In contrast, the hydrothermal veins and ore-bearing porphyry from the Qulong porphyry deposit have a similar range of δ65/63Cu in chalcopyrite, which suggest that the origin of Cu is consistent. In addition, in the collisional orogenic belt porphyry deposit, different alteration zones have different Cu, Mo isotopic compositions, and from the center outward of the the alteration zone, Cu-Mo isotopic has a certain negative correlation, and this relationship have close relationship with the property of mineral fluid. Comparing the range of δ97/95Mo of the quartz vein type and porphyry type of deposits in the Gangdese area, it is found that the former has a lower δ97/95Mo, which may suggest that the ore sources of the two types of deposits are consistent.
-
Key words:
- Gangdese metallogenic belt /
- copper isotope /
- molybdenum isotope /
- alteration zone /
- deposits /
- petrology
-
图 1 西藏冈底斯带斑岩型铜-钼矿分布
Fig. 1. Distribution map of the porphyry Cu-Mo deposits in Gangdese belt in Tibet
图 3 (a) 驱龙矿床的Cu同位素组成; (b)不同构造背景下斑岩型矿床的Cu同位素组成
BSE:硅酸岩地球; 热液脉:驱龙矿区的早期A脉、B脉及晚期D脉; 部分数据李振清等, 2009; Mathur et al., 2009; Wu et al., 2017
Fig. 3. Compareative of Cu isotope composition in different tectonic settings
图 5 不同矿床Mo同位素组成对比
BSE.硅酸岩地球; 部分数据引自Greber et al.(2011), Wang et al.(2016)
Fig. 5. Comparison of Mo isotopic composition in the different deposits
-
[1] Asael, D., Matthews, A., Bar-Matthews, M., et al., 2007.Cop-per Isotope Fractionation in Sedimentary Copper Miner-alization (Timna Valley, Israel). Chemical Geology, 243(3-4):238-254. https://doi.org/10.1016/j.chem-geo.2007.06.007 [2] Ehrlich, S., Butler, I., Halicz, L., et al., 2004. Experimental Study of the Copper Isotope Fractionation between Aqueous Cu(Ⅱ) and Covellite, CuS. Chemical Geology, 209(3-4):259-269. https://doi.org/10.1016/j.chem-geo.2004.06.010 [3] Greber, N. D., Hofmann, B. A., Voegelin, A. R., et al., 2011.Mo Isotope Composition in Mo-Rich High-and Low-T Hydrothermal Systems from the Swiss Alps.Geochimica et Cosmochimica Acta, 75(21):6600-6609. https://doi.org/10.1016/j.gca.2011.08.034 [4] Hou, Q.H., Zhou, L., Gao, S., et al., 2016.Use of Ga for Mass Bias Correction for the Accurate Determination of Cop-per Isotope Ratio in the NIST SRM 3114 Cu Standard and Geological Samples by MC-ICPMS.Journal of Ana-lytical Atomic Spectrometry, 31(1):280-287. doi: 10.1039/C4JA00488D [5] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 [6] Hou, Z. Q., Lv, Q. T., Wang, A. J., et al., 2003. Continental Collision and Related Metallogeny:A Case Study of Min-eralization in Tibetan Orogen. Mineral Deposits, 22(4):319-333(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200304000.htm [7] Hou, Z. Q., Zheng, Y. C., Yang, Z. M., et al., 2013. Contribu-tion of Mantle Components within Juvenile Lower-Crust to Collisional Zone Porphyry Cu Systems in Tibet.Min-eralium Deposita, 48(2):173-192. https://doi.org/10.1007/s00126-012-0415-6 [8] Huang, L.C., Jiang, S.Y., 2012.Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Porphyric-Like Muscovite Granite in the Dahutang Tungsten Deposit, Ji-angxi Province. Acta Petrologica Sinica, 28(12):3887-3900(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201212008.htm [9] Larson, P. B., Maher, K., Ramos, F. C., et al., 2003. Copper Isotope Ratios in Magmatic and Hydrothermal Ore-Forming Environments. Chemical Geology, 201(3-4):337-350. doi: 10.1016/j.chemgeo.2003.08.006 [10] Li, Y.X., Li, G.M., Xie, Y.L., et al., 2018.Properties and Evo-lution Path of Ore-Forming Fluid in Qiagong Polymetal-lic Deposit of Middle Gangdese in Tibet, China. Earth Science, 43(8):2684-2700(in Chinese with English ab-stract). https://doi.org/10.3799/dqkx.2018.170 [11] Li, Z.Q., Yang, Z.M., Zhu, X.K., et al., 2009.Cu Isotope Com-position of Qulong Porphyry Cu Deposit, Tibet. Acta Geologica Sinica, 83(12):1985-1996(in Chinese with English abstract). [12] Malinovsky, D., Rodushkin, I., Baxter, D.C., et al., 2005.Mo-lybdenum Isotope Ratio Measurements on Geological Samples by MC-ICPMS. International Journal of Mass Spectrometry, 245(1-3):94-107. doi: 10.1016/j.ijms.2005.07.007 [13] Markl, G., Lahaye, Y, Schwinn, G., 2006.Copper Isotopes as Monitors of Redox Processes in Hydrothermal Mineral-ization. Geochimica et Cosmochimica Acta, 70(16):4215-4228. doi: 10.1016/j.gca.2006.06.1369 [14] Mathur, R., Titley, S., Barra, F., et al., 2009.Exploration Po-tential of Cu Isotope Fractionation in Porphyry Copper Deposits. Journal of Geochemical Exploration, 102(1):1-6. https://doi.org/10.1016/j.gexplo.2008.09.004 [15] Nie, L. M., Li, Z. Q., Fang, X. J., 2012. Cu Isotope Fraction-ation during Magma Evolution Process of Qulong Por-phyry Copper Deposit, Tibet. Mineral Deposits, 31(4):718-726(in Chinese with English abstract). [16] Qu, X. M., Hou, Z. Q., Zaw, K., et al., 2007. Characteristics and Genesis of Gangdese Porphyry Copper Deposits in the Southern Tibetan Plateau:Preliminary Geochemical and Geochronological Results.Ore Geology Reviews, 31(1-4):205-223. doi: 10.1016/j.oregeorev.2005.03.012 [17] Rempel, K.U., Migdisov, A.A., Williams-Jones, A.E., 2006.The Solubility and Speciation of Molybdenum in Water Vapour at Elevated Temperatures and Pressures:Impli-cations for Ore Genesis. Geochimica et Cosmochimica Acta, 70(3):687-696. https://doi.org/10.1016/j.gca.2005.09.013 [18] Rempel, K.U., Williams-Jones, A.E., Migdisov, A.A., 2008. The Solubility of Molybdenum Dioxide and Trioxide in HCl-Bearing Water Vapour at 350℃ and Pressures up to 160 bars. Geochimica et Cosmochimica Acta, 72(13):3074-3083. https://doi.org/10.1016/j.gca.2008.04.015 [19] Rempel, K.U., Williams-Jones, A.E., Migdisov, A.A., 2009. The Partitioning of Molybdenum (VI) between Aqueous Liquid and Vapour at Temperatures up to 370℃. Geo-chimica et Cosmochimica Acta, 73(11):3381-3392. https://doi.org/10.1016/j.gca.2009.03.004 [20] Seo, J. H., Guillong, M., Heinrich, C. A., 2012. Separation of Molybdenum and Copper in Porphyry Deposits:The Roles of Sulfur, Redox, and pH in Ore Mineral Deposi-tion at Bingham Canyon. Economic Geology, 107(2):333-356. https://doi.org/10.2113/econgeo.107.2.333 [21] Shafiei, B., Shamanian, G., Mathur, R., et al., 2015. Mo Isotope Fractionation during Hydrothermal Evolution of Porphyry Cu Systems.Mineralium Deposita, 50(3):281-291. https://doi.org/10.1007/s00126-014-0537-0 [22] Wang, Y., Zhou, L., Gao, S., et al., 2016.Variation of Molyb-denum Isotopes in Molybdenite from Porphyry and Vein Mo Deposits in the Gangdese Metallogenic Belt, Tibetan Plateau and Its Implications.Mineralium Deposita, 51(2):201-210. doi: 10.1007/s00126-015-0602-3 [23] Wang, Y. Y., Tang, J. X., Zheng, W. B., et al., 2015. Mecha-nism of Metal Precipitation in Dabu Porphyry Cu-Mo Deposit, Quxu Country, Tibet. Mineral Deposits, 34(1):81-97(in Chinese with English abstract). [24] Wu, S., Zheng, Y.Y., Wang, D., et al., 2017.Variation of Cop-per Isotopes in Chalcopyrite from Dabu Porphyry Cu-Mo Deposit in Tibet and Implications for Mineral Explo-ration.Ore Geology Reviews, 90:14-24. https://doi.org/10.1016/j.oregeorev.2017.10.001 [25] Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008.Qulong Su-perlarge Porphyry Cu Deposit in Tibet:Geology, Altera-tion and Mineralization. Mineral Deposits, 27(3):279-318(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200803003.htm [26] Yang, Z.M., Xie, Y.L., Li, G.M., et al., 2006.SEM/EDS Con-straints on Nature of Ore-Forming Fluids in Gangdese Porphyry Copper Belt:Case Studies of Qulong and Tinggong Deposits.Mineral Deposits, 25(2):147-154(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200602003.htm [27] Yao, J.M., Mathur, R., Sun, W.D., et al., 2016.Fractionation of Cu and Mo Isotopes Caused by Vapor-Liquid Parti-tioning, Evidence from the Dahutang W-Cu-Mo Ore Field. Geochemistry, Geophysics, Geosystems, 17(5):1725-1739. https://doi.org/10.1002/2016gc006328 [28] Zhang, S.K., Zheng, Y.Y., Zhang, G.Y., et al., 2013.Geochro-nological Constraints on Jigongcun Quartz-Vein Type Molybdenum Deposit in Quxu County, Tibet. Mineral Deposits, 32(3):641-648(in Chinese with English ab-stract). [29] Zhang, S.T., Zhao, P.D., 2011.Porphyry Ore Deposits:Impor-tant Study Subjects of Nontraditional Mineral Resources. Earth Science, 36(2):247-254(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201102010.htm [30] Zhao, P. P., Li, J., Zhang, L., et al., 2016. Molybdenum Mass Fractions and Isotopic Compositions of International Geological Reference Materials. Geostandards and Geo-analytical Research, 40(2):217-226. https://doi.org/10.1111/j.1751-908x.2015.00373.x [31] Zheng, H. T., Zheng, Y. Y., Xu, J., et al., 2018. Zircon U-Pb Ages and Petrogenesis of Ore-Bearing Porphyry for Qin-gcaoshan Porphyry Cu-Au Deposit, Tibet.Earth Science, 43(8):2858-2874(in Chinese with English abstract). [32] Zheng, Y. Y., Xue, Y. X., Cheng, L. J., et al., 2004. Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science, 29(1):103-108(in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200401018 [33] Zhu, X.K., Guo, Y., Williams, R.J.P., et al., 2002.Mass Frac-tionation Processes of Transition Metal Isotopes. Earth and Planetary Science Letters, 200(1-2):47-62. https://doi.org/10.1016/s0012-821x(02)00615-5 [34] Zhu, X.K., O'Nions, R.K., Guo, Y., et al., 2000.Determination of Natural Cu-Isotope Variation by Plasma-Source Mass Spectrometry:Implications for Use as Geochemical Trac-ers.Chemical Geology, 163(1-4):139-149. https://doi.org/10.1016/s0009-2541(99)00076-5 [35] 侯增谦, 吕庆田, 王安建, 等, 2003.初论陆-陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质, 22(4):319-333. doi: 10.3969/j.issn.0258-7106.2003.04.001 [36] 黄兰椿, 蒋少涌, 2012.江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究.岩石学报, 28(12):3887-3900. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201212008 [37] 李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8):2684-2700. http://earth-science.net/WebPage/Article.aspx?id=3905 [38] 李振清, 杨志明, 朱祥坤, 等, 2009.西藏驱龙斑岩铜矿铜同位素研究.地质学报, 83(12):1985-1996. doi: 10.3321/j.issn:0001-5717.2009.12.013 [39] 聂龙敏, 李振清, 房小捷, 等, 2012.西藏驱龙斑岩铜矿床岩浆演化过程中的Cu同位素分馏.矿床地质, 31(4):718-726. doi: 10.3969/j.issn.0258-7106.2012.04.005 [40] 王艺云, 唐菊兴, 郑文宝, 等, 2015.西藏曲水县达布斑岩型铜钼矿床金属沉淀机制探讨.矿床地质, 34(1):81-97. http://d.old.wanfangdata.com.cn/Periodical/kcdz201501005 [41] 杨志明, 侯增谦, 宋玉财, 等, 2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质, 27(3):279-318. doi: 10.3969/j.issn.0258-7106.2008.03.002 [42] 杨志明, 谢玉玲, 李光明, 等, 2006.西藏冈底斯斑岩铜矿带成矿流体的扫描电镜(能谱)约束——以驱龙和厅宫矿床为例.矿床地质, 25(2):147-154. doi: 10.3969/j.issn.0258-7106.2006.02.004 [43] 张苏坤, 郑有业, 张刚阳, 等, 2013.西藏曲水县鸡公村石英脉型钼矿床成矿时代约束.矿床地质, 32(3):641-648. doi: 10.3969/j.issn.0258-7106.2013.03.014 [44] 张寿庭, 赵鹏大, 2011.斑岩型矿床——非传统矿产资源研究的重要对象.地球科学, 36(2):247-254. http://earth-science.net/WebPage/Article.aspx?id=2087 [45] 郑海涛, 郑有业, 徐净, 等, 2018.西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因.地球科学, 43(8):2858-2874. http://earth-science.net/WebPage/Article.aspx?id=3917 [46] 郑有业, 薛迎喜, 程力军, 等, 2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学, 29(1):103-108. doi: 10.3321/j.issn:1000-2383.2004.01.018 -
dqkx-44-6-1923-Table.pdf