Geophysical Observation of Typical Landslides in Three Gorges Reservoir Area and Its Significance: A Case Study of Sifangbei Landslide in Wanzhou District
-
摘要: 滑坡是最严重的地质灾害之一,查明滑坡形态特征及滑坡形成机制对于滑坡体稳定性分析、滑坡灾害风险管理和政府治理决策等方面具有重要意义.前人研究滑坡形态及其形成机制较少结合地球物理实测方法,其工程地质剖面绘制多局限于点信息的获取方式,而结合地球物理实测方法有利于从线、面同时获取更丰富的滑坡体地质信息,更加准确量化滑移面埋深和透视滑床形态.鉴于此,以灾害频发的三峡库区万州区为研究对象,采用网格高密度电法实测区内不同深度地层的电阻率值,并以此生成二维电阻率剖面和构建滑床三维形态;同时,将剖面电性分布特征与钻孔资料及地质调查资料相结合,对滑坡区地层结构、滑移面埋深以及滑床形态等多个影响滑坡的重要因素综合分析.结果表明,在研究区开展网格高密度电法实测工作,可获取地层电性结构特征以及构建滑坡体三维形态;实测剖面显示四方碑滑坡属于古滑坡,且存在拉裂槽现象.将实测剖面获取的滑移面埋深和构建的三维滑床形态进行钻孔标定,可对滑坡体内部结构及物质组成进行“透视”,从而为滑坡形成机制分析提供依据,同时也给其他类似区域地质调查中的滑坡稳定性评价及预测预报工作提供理论指导和技术参考.通过高密度电法揭示三峡库区典型滑坡体三维形态特征的理论方法和技术路线成功引入滑坡形成机制分析,可为研究滑坡形成机制和理论提供新思路,具有推广意义.Abstract: Landslide is one of the most serious geological disasters. Finding out the morphological characteristics of landslide and the formation mechanism of landslide is of great significance to landslide stability analysis, risk management of landslide hazards and government decision-making. Previous studies on landslide morphology and its formation mechanism are seldom combined with geophysical approach. The engineering geological profile drawing is limited to the acquisition of point-level information. The combination of geophysical measurement methods is conducive to obtaining more abundant landslide geological information from two-three dimension, and to quantifying the buried depth of sliding surface and perspective sliding bed morphology more accurately. In view of this, we take the hazardous Wanzhou area in the Three Gorges reservoir area as the research object, and apply high density grid resistivity method to measure resistivity values of different depth strata in the study area, to generate twodimensional resistivity profiles for the first time so that we can further construct three-dimensional shape of sliding bed. At the same time, the important factors affecting the landslide, such as the stratum structure, the depth of the slip surface and the shape of the slip bed, are comprehensively analyzed by integration of the electrical features of the section with the borehole data and geological survey data. The results show that the high-density grid resistivity method can accurately acquire the electrical structure characteristics of the stratum and construct a three-dimensional shape of the landslide body. The measured profile shows that the Sifangbei landslide belongs to an ancient landslide, and there exists the phenomenon of drawing crack trough. By calibrating the buried depth of the slip surface obtained from the measured profile and the three-dimensional slip bed configuration, the internal structure and material composition of the landslide body can be "perspective", which provides a basis for the analysis of the formation mechanism of the landslide, as well as theoretical guidance and technical reference for the evaluation and prediction of landslide stability in the other similar regional geological surveys. The theoretical method and technical route of revealing the threedimensional morphological characteristics of typical landslides in the Three Gorges Reservoir area by high-density electrical method are successfully introduced into the analysis of landslide formation mechanism, which can provide new ideas and approach for the study of landslide formation mechanism and theory, and can be widely used in many areas.
-
Key words:
- Three Gorges Reservoir area /
- landslide /
- geophysics /
- sliding bed morphology /
- drawing crack trough
-
图 1 万州区周围构造纲要图
改自《长江山峡水利枢纽库区万县市迁建城镇新址地质论证报告》,长江水利委员会综合勘测局,1996
Fig. 1. The structural sketch map of Wanzhou district
表 1 研究区地层岩性
Table 1. Summary of stratigraphic lithology in the study area
系 统 组 地层代号 厚度(m) 岩性描述 第四系 Q 0.5~90.0 人工堆积、冲洪积、崩积、坡积、残坡积及滑坡堆积物 侏罗系 上统 遂宁组 J3s > 10.0 泥质粉砂岩、紫红色泥岩、褐红色粉砂岩细粒长石砂岩 中统 上沙溪庙组
第二段J2s2 > 25.0 褐红色粉细砂岩夹紫红色泥岩、紫灰色长石石英砂以岩及泥质粉砂岩 上沙溪庙组
第三段J2s3 7.0~50.0 褐红、灰绿色细砂岩,粉砂岩,紫红杂灰黄粉砂质粘土岩及泥岩 -
[1] Bruno, F., Martillier, F., 2000. Test of High-Resolution Seismic Reflection and Other Geophysical Techniques on the Boup Landslide in the Swiss Alps. Surveys in Geophysics, 21 (4):333-348. doi: 10.1023%2FA%3A1006736824075 [2] Deng, Q.L., Wang, X.P., 2000. Growth History of Huangtupo Landslide:Down-Slope Overlapping-Landsliding-Modification. Earth Science, 25(1):44-50(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200001009.htm [3] Epada, P. D., Sylvestre, G., Tabod, T. C., 2012. Geophysical and Geotechnical Investigations of a Landslide in Kekem Area, Western Cameroon. International Journal of Geosciences, 3(4):780-789. https://doi.org/10.4236/ijg.2012.34079 [4] Feng, X.J., Li, Z.S., Song, L.S., et al., 2003. Seismic Exploration of Boqishan Landslide in Baoji. Hydrogeology & Engineering Geology, 30(4):55-58 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz200304012 [5] Gu, T.F., Wang, J.D., Wang, N.Q., et al., 2013. Geological Features of Loess Landslide at Lüliang Airport and Its 3D Stability Analysis. Rock and Soil Mechanics, 34(7):2009-2016(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201307027 [6] He, Q.L., Li, X.L., Wang, Z.Y., et al., 2016. The Application of High Density Electrical Method to the Exploration Management of Landslide Geological Disasters. Chinese Journal of Engineering Geophysics, 13(1):99-104(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdqwlxb201601017 [7] Hemeda, S., Pitilakis, K., 2010. Serapeum Temple and the Ancient Annex Daughter Library in Alexandria, Egypt:Geotechnical-Geophysical Investigations and Stability Analysis under Static and Seismic Conditions. Engineering Geology, 113(1-4):33-43. https://doi.org/10.1016/j.enggeo.2010.02.002 [8] Jian, W.X., Yang, J., 2013. Formation Mechanism of No.1 Part Slide of Huangtupo Landslide in the Three Gorges Reservoir Area. Earth Science, 38(3):625-631 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_371471 [9] Jiang, Y.L., Zhou, Q.Q., Huang, X., et al., 2008. Application of the High Density Resistivity Method to Landslide Prediction. Journal of Chengdu University of Technology(Science & Technology Edition), 35(5):542-546(in Chinese with English abstract). [10] Jin, W. M., Du, B. J., 2004. Application of Shallow Seismic Prospecting in Landslide Surveying. Coal Geology of China, 16(Suppl.):91-93 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmtdz2004z1042 [11] Kong, F.L., Chen, C., Sun, G.J., et al., 2008. Application of Multi-Electrodes Electrical Method to Landslide Investigation in Qingjiang Shuibuya Reservoir. Chinese Journal of Engineering Geophysics, 5(2):201-204(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdqwlxb200802013 [12] le Roux, O., Jongmans, D., Kasperski, J., et al., 2011.Deep Geophysical Investigation of the Large Séchilienne Landslide(Western Alps, France)and Calibration with Geological Data. Engineering Geology, 120(1-4):18-31. https://doi.org/10.1016/j.enggeo.2011.03.004 [13] Li, X., 2010. Study on Prediction Criteria and Forecasting Model of Sifangbei Landslide (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [14] Lin, S., Tang, Q. J., Li, Y., et al., 2017. Analysis and Characteristics of Faults around Danjiangkou Reservoir, West Hubei Province. Earth Science, 42(10):1830-1841(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201710016 [15] Liu, L., Yin, K. L., Wang, J. J., et al., 2016. Dynamic Evaluation of Regional Landslide Hazard Due to Rainfall:A Case Study in Wanzhou Central District, Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35(3):558-569(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201603013.htm [16] Liu, X.M., 2010. A Study on Geomorgraphic Character and Landslide Evolution in Wanzhou City, Three Gorges Reservoir (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [17] Loke, M. H., Barker, R. D., 1996a. Rapid Least-Squares Inversion of Apparent Resistivity Pseudosections by a Quasi-Newton Method. Geophysical Prospecting, 44(1):131-152. https://doi.org/10.1111/j.1365-2478.1996.tb00142.x [18] Loke, M. H., Barker, R. D., 1996b. Practical Techniques for 3D Resistivity Surveys and Data Inversion. Geophysical Prospecting, 44(3):499-523. https://doi.org/10.1111/j.1365-2478.1996.tb00162.x [19] Luo, D. G., Liu, J. P., Jin, C., et al., 2017. Instantaneous Seismic Attributes and Response Characteristics of Active Faults. Earth Science, 42(3):462-470(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201703013 [20] Luo, Y., He, S. M., He, J. C., et al., 2014. Effect of Rainfall Patterns on Stability of Shallow Landslide.Earth Science, 39(9):1357-1363 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201409012.htm [21] Ristic, A., Abolmasov, B., Govedarica, M., et al., 2012. Shallow-landslide Spatial Structure Interpretation using a Multi-Geophysical Approach. Acta Geotechnica Slovenica, 9(1):47-59. [22] Torgoev, A., Lamair, L., Torgoev, I., et al., 2013.A Review of Recent Case Studies of Landslides Investigated in the Tien Shan Using Microseismic and Other Geophysical Methods. Springer, Berlin, 285-294. http://cn.bing.com/academic/profile?id=135c941fc95d94d5fe9ad1fc3a3368db&encoded=0&v=paper_preview&mkt=zh-cn [23] Vafidis, A., Economou, N., Ganiatsos, Y., et al., 2005. Integrated Geophysical Studies at Ancient Itanos (Greece). Journal of Archaeological Science, 32(7):1023-1036. https://doi.org/10.1016/j.jas.2005.02.007 [24] Wang, B., Zhu, J.B., Tang, H.M., et al., 2008. Study on Creep Behavior of Slip Band Soil of Huangtupo Landslide. Journal of Yangtze River Scientific Research Institute, 25 (1):49-52(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb200801013 [25] Wang, D.J., Tang, H.M., Li, C.D., et al., 2016. Stability Analysis of Colluvial Landslide Due to Heavy Rainfall.Rock and Soil Mechanics, 37(2):439-445(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201602017 [26] Wang, F., 2017. Reserach on Landslide Risk Assessement and Management in Wanzhou District. China University of Geosciences, Wuhan(in Chinese). [27] Wang, J.J., Yin, K.L., Xiao, L.L., et al., 2014. Landslide Susceptibility Assessment Based on GIS and Weighted Information Value:A Case Study of Wanzhou District, Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 33(4):797-808(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201404018.htm [28] Wang, M., He, Z.C., Shi, X.M., et al., 2003. Application of the Combined Geophysical Methods on Mengdong River Landslide Survey. West-China Exploration Engineering, 15(11):168-170 (in Chinese with English abstract). [29] Xiao, T., Yin, K. L., Yang, B. B., et al., 2018. Stability and Deformation Trend Prediction of the Sifangbei Landslide in the Three Gorges Reservoir. The Chinese Journal of Geological Hazard and Control, 29(1):10-14(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb201801003 [30] Xu, X.Q., Su, L.J., Liang S.Q., et al., 2015. A Review of Geophysical Detection Methods of Landslide Structure Characteristics. Progress in Geophysics, 30(3):1449-1458(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201503061 [31] Yin, Y. P., 2004. The Major Geological Disasters in the Three Gorges Reservoir Area Resettlement Site and Prevention. Geologic Publishing House, Beijing(in Chinese). [32] Zhang, G. B., 2012. Exploration and Effectiveness Analysis of High-Density Resistivity Method on Chujiaying Giant Landslide Site. Progress in Geophysics, 27(6):2716-2721(in Chinese with English abstract). [33] Zhang, J., Yin, K.L., Wang, J.J., et al., 2016. Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35(2):284-296 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201602009 [34] Zhang, M., Hu, R. L., Yin, Y. P., et al., 2014. Study of Mechanism of Landslide Induced by Rainfall in Gently Inclined Red Stratum in East Sichuan Basin. Chinese Journal of Rock Mechanics and Engineering, 33(S2):3783-3790(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2014z2048 [35] Zhu, D. B., 2002. Summarization of Engineering Geophysics in Major of Geophysical Prospecting and Information Technique. Progress in Geophysics, 17(1):163-170(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200201024 [36] 邓清禄, 王学平, 2000.黄土坡滑坡的发育历史:坠覆-滑坡-改造.地球科学, 25 (1):44-50. doi: 10.3321/j.issn:1000-2383.2000.01.008 [37] 冯希杰, 李忠生, 宋立胜, 等, 2003.宝鸡簸箕山滑坡地震勘探.水文地质工程地质, 30 (4):55-58. doi: 10.3969/j.issn.1000-3665.2003.04.012 [38] 谷天峰, 王家鼎, 王念秦, 等, 2013.吕梁机场黄土滑坡特征及其三维稳定性分析.岩土力学, 34 (7):2009-2016. http://d.old.wanfangdata.com.cn/Periodical/ytlx201307027 [39] 何清立, 李霄龙, 王志勇, 等, 2016.高密度电法在滑坡地质灾害勘查治理中的应用.工程地球物理学报, 13(1):99-104. doi: 10.3969/j.issn.1672-7940.2016.01.017 [40] 江玉乐, 周清强, 黄鑫, 等, 2008.高密度电阻率法在滑坡探测中的应用.成都理工大学学报(自然科学版), 35(5):542-546. doi: 10.3969/j.issn.1671-9727.2008.05.011 [41] 简文星, 杨金, 2013.三峡库区黄土坡滑坡Ⅰ号崩滑体成因.地球科学, 38 (3):625-631. http://d.old.wanfangdata.com.cn/Periodical/dqkx201303020 [42] 金维民, 杜兵建, 2004.浅层地震勘探在滑坡勘查中应用.中国煤田地质, 16 (增刊):91-93. http://d.old.wanfangdata.com.cn/Periodical/zgmtdz2004z1042 [43] 孔繁良, 陈超, 孙冠军, 等, 2008.高密度电法在清江水布垭库区滑坡调查中的应用.工程地球物理学报, 5(2):201-204. doi: 10.3969/j.issn.1672-7940.2008.02.013 [44] 李旭, 2010.三峡库区四方碑滑坡预报判据研究(博士学位论文).成都: 成都理工大学. http://cdmd.cnki.com.cn/Article/CDMD-10616-2010218487.htm [45] 林松, 唐启家, 李媛, 等, 2017.鄂西丹江口水库区域周边断裂构造解析及特征.地球科学, 42 (10):1830-1841. http://d.old.wanfangdata.com.cn/Periodical/dqkx201710016 [46] 刘磊, 殷坤龙, 王佳佳, 等, 2016.降雨影响下的区域滑坡危险性动态评价研究——以三峡库区万州主城区为例.岩石力学与工程学报, 35 (3):558-569. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201603013 [47] 刘雪梅, 2010.三峡库区万州区地貌特征及滑坡演化过程研究(博士学位论文).武汉: 中国地质大学. http://cdmd.cnki.com.cn/article/cdmd-10491-2010250553.htm [48] 罗登贵, 刘江平, 金聪, 等, 2017.活断层的地震响应特征与瞬时地震属性.地球科学, 42 (3):462-470. http://d.old.wanfangdata.com.cn/Periodical/dqkx201703013 [49] 罗渝, 何思明, 何尽川, 等, 2014.降雨类型对浅层滑坡稳定性的影响.地球科学, 39 (9):1357-1363. http://www.cnki.com.cn/Article/CJFDTotal-DQKX201409012.htm [50] 汪斌, 朱杰兵, 唐辉明, 等, 2008.黄土坡滑坡滑带土的蠕变特性研究.长江科学院院报, 25 (1):49-52. doi: 10.3969/j.issn.1001-5485.2008.01.013 [51] 汪丁建, 唐辉明, 李长冬, 等, 2016.强降雨作用下堆积层滑坡稳定性分析.岩土力学, 37 (2):439-445. http://d.old.wanfangdata.com.cn/Periodical/ytlx201602017 [52] 王芳, 2017.万州区滑坡灾害风险评价与管理研究(博士学位论文).武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1017740157.htm [53] 王佳佳, 殷坤龙, 肖莉丽, 等, 2014.基于GIS和信息量的滑坡灾害易发性评价——以三峡库区万州区为例.岩石力学与工程学报, 33 (4):797-808. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201404018 [54] 王敏, 何振才, 师学明, 等, 2003.综合地球物理方法在猛洞河地带滑坡调查中的应用.西部探矿工程, 15(11):168-170. doi: 10.3969/j.issn.1004-5716.2003.11.084 [55] 肖婷, 殷坤龙, 杨背背, 等, 2018.三峡库区四方碑滑坡稳定性与变形趋势预测.中国地质灾害与防治学报, 29(1):10-14. http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201801003 [56] 徐兴倩, 苏立君, 梁双庆, 等, 2015.地球物理方法探测滑坡体结构特征研究现状综述.地球物理学进展, 30(3):1449-1458. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201503061 [57] 殷跃平, 2004.长江三峡库区移民迁建新址重大地质灾害及其防治研究.北京:地质出版社. [58] 张光保, 2012.褚家营巨型滑坡的高密度电法勘察及效果分析.地球物理学进展, 27 (6):2716-2721. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz201206052 [59] 张俊, 殷坤龙, 王佳佳, 等, 2016.三峡库区万州区滑坡灾害易发性评价研究.岩石力学与工程学报, 35 (2):284-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201602009 [60] 张明, 胡瑞林, 殷跃平, 等, 2014.川东缓倾红层中降雨诱发型滑坡机制研究.岩石力学与工程学报, 33(S2):3783-3790. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2014z2048 [61] 朱德兵, 2002.工程地球物理方法技术研究现状综述.地球物理学进展, 17 (1):163-170. doi: 10.3969/j.issn.1004-2903.2002.01.024