• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大别造山带银水寺铅锌矿区正长花岗斑岩脉锆石U-Pb年代学、地球化学特征和地质意义

    吴皓然 谢玉玲 钟日晨 王莹

    吴皓然, 谢玉玲, 钟日晨, 王莹, 2020. 大别造山带银水寺铅锌矿区正长花岗斑岩脉锆石U-Pb年代学、地球化学特征和地质意义. 地球科学, 45(3): 910-929. doi: 10.3799/dqkx.2019.070
    引用本文: 吴皓然, 谢玉玲, 钟日晨, 王莹, 2020. 大别造山带银水寺铅锌矿区正长花岗斑岩脉锆石U-Pb年代学、地球化学特征和地质意义. 地球科学, 45(3): 910-929. doi: 10.3799/dqkx.2019.070
    Wu Haoran, Xie Yuling, Zhong Richen, Wang Ying, 2020. Geochronology, Geochemistry and Geological Significance of the Syeno-Granite Porphyry from Yinshuisi Pb-Zn Deposit, Dabie Orogenic Belt. Earth Science, 45(3): 910-929. doi: 10.3799/dqkx.2019.070
    Citation: Wu Haoran, Xie Yuling, Zhong Richen, Wang Ying, 2020. Geochronology, Geochemistry and Geological Significance of the Syeno-Granite Porphyry from Yinshuisi Pb-Zn Deposit, Dabie Orogenic Belt. Earth Science, 45(3): 910-929. doi: 10.3799/dqkx.2019.070

    大别造山带银水寺铅锌矿区正长花岗斑岩脉锆石U-Pb年代学、地球化学特征和地质意义

    doi: 10.3799/dqkx.2019.070
    基金项目: 

    自然资源部公益性行业基金项目 201011011

    中国地质调查局项目 2014-01-020-010

    详细信息
      作者简介:

      吴皓然(1991-), 男, 博士研究生, 主要从事矿床学方面的研究

      通讯作者:

      谢玉玲

    • 中图分类号: P588.1;P597.3

    Geochronology, Geochemistry and Geological Significance of the Syeno-Granite Porphyry from Yinshuisi Pb-Zn Deposit, Dabie Orogenic Belt

    • 摘要: 银水寺铅锌矿床位于大别造山带北缘,是大别山地区最大的矽卡岩型矿床.目前对矿区岩浆作用时限、岩石地球化学、岩石形成环境等方面的研究较为薄弱,在一定程度上制约了对该区铅锌成矿规律的认识.在详细野外地质调查的基础上,对矿区出露的正长花岗斑岩脉的岩石学、成岩年代学、岩石化学和同位素地球化学进行了系统研究.结果表明,银水寺矿区正长花岗斑岩脉锆石LA-ICP-MS U-Pb年龄为125.4±0.4 Ma,表明其形成时代为早白垩世.全岩地球化学分析显示,正长花岗斑岩脉表现为高硅(SiO2=71.43%~72.71%)、高钾(K2O=4.62%~4.88%)、富碱(7.47%~7.81%)、弱过铝质(A/CNK=1.03~1.06)、富Fe低Ca,贫Sr、Ba、Ti、P,轻稀土富集、重稀土亏损,具Eu负异常,Ce异常不明显,稀土配分图呈典型的右倾型,显示出A型花岗岩的特征.岩石具有富集的Sr-Nd-Hf同位素组成:全岩(87Sr/86Sr)i值为0.710 21~0.710 53,εNdt)值在-20.0~-19.2之间;锆石εHft)值为-26.7~-23.8,位于地幔演化线之下;TDM2值变化于2 663~2 845 Ma之间,指示其起源于大别杂岩与扬子板块北缘的古老下地壳物质的混合.结合区域地质背景,认为矿区正长花岗斑岩脉形成于扬子克拉通与华北克拉通碰撞造山后的大规模伸展环境,软流圈地幔上涌作用于减薄的岩石圈,与西向俯冲的古太平洋板片俯冲角度改变造成的强烈弧后拉张有关.

       

    • 图  1  大别造山带地质简图

      1.中新生代地层; 2.二郎坪群; 3.秦岭群; 4.信阳群; 5.苏家河群; 6.红安群; 7.宿松群; 8.庐镇关群; 9.佛子岭群; 10.梅山群; 11.桐柏-大别变质杂岩; 12.燕山期火山岩; 13.燕山期花岗岩; 14.超镁铁质岩; 15.断裂; 16.矿床. XSF.信阳-舒城断裂;TTF.桐柏-桐城断裂.据杨泽强(2007)修改

      Fig.  1.  Geological sketch map of the Dabie Orogenic Belt

      图  2  银水寺区域地质简图

      1.第四系; 2.金刚台组; 3.三尖铺组; 4.凤凰台组; 5.胡油坊组; 6.佛子岭岩群; 7.庐镇关岩群; 8.梅山单元正长花岗岩; 9.老猫洞单元黑云母正长花岗斑岩; 10.草房单元角闪石英二长岩; 11.花岗斑岩; 12.逆掩断层; 13.平移断层; 14.矿床.据杜建国(2000)修改

      Fig.  2.  Geological sketch map of the Yinshuisi district

      图  3  银水寺铅锌矿床地质简图(a)和3号勘探线地质剖面图(b)

      杜建国(2000)修改

      Fig.  3.  Geological sketch map (a) and geological profile for prospecting line No.3 (b) of the Yinshuisi Pb-Zn deposit

      图  4  银水寺正长花岗斑岩脉手标本照片(a)及镜下特征(b)

      Qz.石英; Kfs.钾长石

      Fig.  4.  Hand specimen photo (a) and microscopic characteristics (b) of syeno-granite porphyry from Yinshuisi Pb-Zn deposit

      图  5  银水寺正长花岗斑岩脉的锆石阴极发光(CL)图像

      Fig.  5.  Cathodoluminescence (CL) images for zircons of syeno-granite porphyry from Yinshuisi Pb-Zn deposit

      图  6  银水寺正长花岗斑岩脉的锆石U-Pb年龄谐和图

      Fig.  6.  Zircon concordia diagram of syeno-granite porphyry from Yinshuisi Pb-Zn deposit

      图  7  银水寺正长花岗斑岩脉的TAS图解(a)、AR-SiO2图解(b)、SiO2-K2O图解(c)和A/CNK-A/NK图解(d)

      图a据Middlemost (1994);图b据Wright (1969);图c据Peccerillo and Taylor (1976);图d据Maniar and Piccoli (1989). 1.橄榄辉长岩; 2a.碱性辉长岩,2b.亚碱性辉长岩; 3.辉长闪长岩; 4.闪长岩; 5.花岗闪长岩; 6.花岗岩; 7.硅英岩; 8.二长辉长岩; 9.二长闪长岩; 10.二长岩; 11.石英二长岩; 12.正长岩; 13.副长石辉长岩; 14.副长石二长闪长岩; 15.副长石二长正长岩; 16.副长正长岩; 17.副长深长岩; 18.霓方钠岩、磷霞岩、粗白榴岩.大别成矿花岗岩数据引自Chen et al.(2017)

      Fig.  7.  TAS (a), AR-SiO2 (b), SiO2-K2O (c) and A/CNK-A/NK (d) diagrams of syeno-granite porphyry from Yinshuisi Pb-Zn deposit

      图  8  银水寺正长花岗斑岩脉的Harker图解

      Fig.  8.  Harker diagrams of syeno-granite porphyry from Yinshuisi Pb-Zn deposit

      图  9  银水寺正长花岗斑岩脉球粒陨石标准化稀土元素配分曲线(a)及原始地幔标准化微量元素蛛网图(b)

      球粒陨石和原始地幔标准化值据Sun and McDonough (1989)

      Fig.  9.  Chondrite-normalized rare earth elements pattern (a) and primitive mantle-normalized trace elements spider diagram (b) of syeno-granite porphyry from Yinshuisi Pb-Zn deposit

      图  10  银水寺正长花岗斑岩脉的K2O-Na2O岩石类型判别图解

      Collins et al. (1982)

      Fig.  10.  The K2O-Na2O diagram of syeno-granite porphyry from Yinshuisi Pb-Zn deposit

      图  11  银水寺正长花岗斑岩脉的(87Sr/86Sr)i-εNd(t)图解

      数据来源:崆岭群(Ames et al., 1996; Jahn et al., 1999; Ma et al., 2000);大别片麻岩、大别榴辉岩和大别早白垩世花岗岩(Zhao and Zheng, 2009)

      Fig.  11.  (87Sr/86Sr)i-εNd(t) diagram for syeno-granite porphyry from Yinshuisi Pb-Zn deposit

      图  12  银水寺正长花岗斑岩脉的t-εHf(t)图解

      数据来源:崆岭群花岗岩(Xiong et al., 2008;Peng et al., 2012);崆岭群片麻岩/混合岩(Zhang et al., 2006; Jiao et al., 2009);北大别片麻岩(Zhao et al., 2008);中南大别片麻岩(Zheng et al., 2006; Xia et al., 2009);大别早白垩世花岗岩(续海金等, 2008; Zhao et al., 2011)

      Fig.  12.  t-εHf(t) diagram for syeno-granite porphyry from Yinshuisi Pb-Zn deposit

      图  13  银水寺正长花岗斑岩脉的构造环境判别图解

      图a据Pearce et al. (1984);图b据Harris et al.(1986)

      Fig.  13.  Discrimination diagrams of tectonic environment for syeno-granite porphyry from Yinshuisi Pb-Zn deposit

      表  1  金寨地区近年来高精度岩浆岩测年结果

      Table  1.   Dating results of magmatic rock in Jinzhai district from recent years

      地区 岩性 测年方法 年龄(Ma) 资料来源
      响洪甸 霞石正长岩 LA-ICP-MS锆石U-Pb法 135.1±0.7 黄皓和薛怀民, 2012
      响洪甸 似斑状正长岩 SHRIMP锆石U-Pb法 125±1 周伟伟等, 2014
      响洪甸 细晶正长岩 LA-ICP-MS锆石U-Pb法 128.1±1.5 詹建华, 2015
      响洪甸 正长斑岩 LA-ICP-MS锆石U-Pb法 126~130 詹建华, 2015
      响洪甸 响岩 LA-ICP-MS锆石U-Pb法 131.8±2.1 刘晓强, 2014
      鲜花岭 石英闪长岩 LA-ICP-MS锆石U-Pb法 129.1±1.2 刘晓强, 2014
      鲜花岭 闪长玢岩 LA-ICP-MS锆石U-Pb法 129.1±1.3 刘晓强, 2014
      鲜花岭 石英正长斑岩 LA-ICP-MS锆石U-Pb法 128.4±1.3 刘晓强等, 2018
      鲜花岭 石英正长斑岩 LA-ICP-MS锆石U-Pb法 129.2±1.2 刘晓强等, 2018
      鲜花岭 闪长玢岩 LA-ICP-MS锆石U-Pb法 129±3 陈芳等, 2016
      古碑 花岗闪长岩 SHRIMP锆石U-Pb法 125±3 赵新福, 2007
      金寨 钾长花岗岩 LA-ICP-MS锆石U-Pb法 129.7±1.5 陈芳等, 2016
      金刚台 黑云母粗面岩 SHRIMP锆石U-Pb法 128.4±3.6 黄丹峰等, 2010
      金刚台 闪长玢岩 SHRIMP锆石U-Pb法 129.1±2.2 黄丹峰等, 2010
      金刚台 粗安岩 SHRIMP锆石U-Pb法 129±2 黄丹峰等, 2010
      金刚台 正长斑岩 LA-ICP-MS锆石U-Pb法 129.2±0.7 黄皓和薛怀民, 2012
      金刚台 熔结凝灰岩 LA-ICP-MS锆石U-Pb法 128.8±0.7 黄皓和薛怀民, 2012
      金刚台 粗面安山岩 LA-ICP-MS锆石U-Pb法 127.6±0.5 黄皓和薛怀民, 2012
      金刚台 流纹英安岩 LA-ICP-MS锆石U-Pb法 127.5±0.6 李鑫浩等, 2015
      金刚台 英安岩 LA-ICP-MS锆石U-Pb法 124.8±2.3 李鑫浩等, 2015
      金刚台 熔结凝灰岩 LA-ICP-MS锆石U-Pb法 123.3±0.7 李鑫浩等, 2015
      沙坪沟 中粒二长花岗岩 黑云母Ar-Ar坪年龄 136.8±1.6 徐晓春等, 2009
      沙坪沟 细粒二长花岗岩 黑云母Ar-Ar坪年龄 130.4±1.2 徐晓春等, 2009
      沙坪沟 细晶闪长岩 角闪石Ar-Ar坪年龄 125.4±1.0 徐晓春等, 2009
      沙坪沟 花岗斑岩 LA-ICP-MS锆石U-Pb法 111.5±1.5 张红等, 2011
      沙坪沟 石英正长岩 LA-ICP-MS锆石U-Pb法 111.7±1.9 张红等, 2011
      沙坪沟 细粒石英正长岩 LA-ICP-MS锆石U-Pb法 122.51±0.81 孟祥金等, 2012
      沙坪沟 中粒石英正长岩 LA-ICP-MS锆石U-Pb法 121.5±1.3 孟祥金等, 2012
      沙坪沟 正长斑岩 LA-ICP-MS锆石U-Pb法 120.7±1.1 孟祥金等, 2012
      沙坪沟 爆破角砾岩角砾 LA-ICP-MS锆石U-Pb法 131.6±2.6 陈红瑾等, 2013
      沙坪沟 爆破角砾岩基质 LA-ICP-MS锆石U-Pb法 112.9±1.2 陈红瑾等, 2013
      沙坪沟 石英正长斑岩 LA-ICP-MS锆石U-Pb法 116.1±2.2 陈红瑾等, 2013
      沙坪沟 斜长角闪石岩 LA-ICP-MS锆石U-Pb法 133.7±1.7 王萍, 2013
      沙坪沟 二长花岗岩 LA-ICP-MS锆石U-Pb法 133±1.2 王萍, 2013
      沙坪沟 花岗岩 LA-ICP-MS锆石U-Pb法 129.6±1.2 王萍, 2013
      沙坪沟 花岗岩 LA-ICP-MS锆石U-Pb法 126±1.7 王萍, 2013
      沙坪沟 花岗闪长岩 LA-ICP-MS锆石U-Pb法 129.2±1.6 王萍, 2013
      沙坪沟 闪长岩 LA-ICP-MS锆石U-Pb法 127.4±1.7 王萍, 2013
      沙坪沟 含斜长辉石岩 LA-ICP-MS锆石U-Pb法 128.5±1.5 王萍, 2013
      沙坪沟 石英正长岩 LA-ICP-MS锆石U-Pb法 115.9±1.3 王萍, 2013
      沙坪沟 花岗斑岩 LA-ICP-MS锆石U-Pb法 109.3±1.9 王萍, 2013
      沙坪沟 石英二长岩 LA-ICP-MS锆石U-Pb法 134±2 Wang et al., 2014
      沙坪沟 正长花岗岩 LA-ICP-MS锆石U-Pb法 132±1 Wang et al., 2014
      沙坪沟 花岗斑岩 LA-ICP-MS锆石U-Pb法 138±8 Wang et al., 2014
      沙坪沟 石英二长斑岩 LA-ICP-MS锆石U-Pb法 135±3 Wang et al., 2014
      沙坪沟 二长花岗岩 LA-ICP-MS锆石U-Pb法 135±1 Wang et al., 2014
      沙坪沟 黑云母闪长岩 LA-ICP-MS锆石U-Pb法 128±2 Wang et al., 2014
      沙坪沟 黑云母二长岩 LA-ICP-MS锆石U-Pb法 129±2 Wang et al., 2014
      沙坪沟 石英正长岩 LA-ICP-MS锆石U-Pb法 116±2 Wang et al., 2014
      沙坪沟 花岗斑岩 LA-ICP-MS锆石U-Pb法 114±1 Wang et al., 2014
      沙坪沟 二长花岗岩 LA-ICP-MS锆石U-Pb法 136.3±1.6 任志等, 2014
      沙坪沟 花岗闪长岩 LA-ICP-MS锆石U-Pb法 127.5±2.9 任志等, 2014
      沙坪沟 正长岩 LA-ICP-MS锆石U-Pb法 117.2±1.2 任志等, 2014
      沙坪沟 钾长花岗岩 LA-ICP-MS锆石U-Pb法 112.2±1.2 任志等, 2014
      沙坪沟 正长岩 LA-ICP-MS锆石U-Pb法 111.3±1.2 He et al., 2016
      沙坪沟 花岗斑岩 LA-ICP-MS锆石U-Pb法 115.6±2.3 刘晓强等, 2017
      沙坪沟 花岗斑岩 LA-ICP-MS锆石U-Pb法 116.3±2.1 刘晓强等, 2017
      沙坪沟 花岗斑岩 LA-ICP-MS锆石U-Pb法 116.2±2.7 刘晓强等, 2017
      沙坪沟 花岗斑岩 LA-ICP-MS锆石U-Pb法 115.5±1.8 刘晓强等, 2017
      沙坪沟 细粒花岗岩 LA-ICP-MS锆石U-Pb法 115.6±1.6 刘晓强等, 2017
      沙坪沟 正长花岗岩 LA-ICP-MS锆石U-Pb法 116.8±1.4 刘晓强等, 2017
      沙坪沟 隐爆角砾岩 LA-ICP-MS锆石U-Pb法 113.8±1.6 刘晓强等, 2017
      沙坪沟 绢英岩化细粒花岗岩 LA-ICP-MS锆石U-Pb法 134.1±1.7 刘晓强等, 2017
      银山畈 辉长岩 SHRIMP锆石U-Pb法 125.8±2.7 王世明等, 2010
      银山畈 辉绿岩 SHRIMP锆石U-Pb法 126±3 Xu et al., 2012
      银水寺 正长花岗斑岩 LA-ICP-MS锆石U-Pb法 125.4 ±0.4 本文
      下载: 导出CSV
    • [1] Amelin, Y., Lee, D. C., Halliday, A. N., 2000. Early-Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225. https://doi.org/10.1016/s0016-7037(00)00493-2
      [2] Amelin, Y., Lee, D. C., Halliday, A. N., et al., 1999. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733): 252-255. https://doi.org/10.1038/20426
      [3] Ames, L., Zhou, G. Z., Xiong, B. C., 1996. Geochronology and Isotopic Character of Ultrahigh-Pressure Metamorphism with Implications for Collision of the Sino-Korean and Yangtze Cratons, Central China. Tectonics, 15(2): 472-489. https://doi.org/10.1029/95tc02552
      [4] Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      [5] Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010
      [6] Bryant, D. L., Ayers, J. C., Gao, S., et al., 2004. Geochemical, Age, and Isotopic Constraints on the Location of the Sino-Korean/Yangtze Suture and Evolution of the Northern Dabie Complex, East Central China. Geological Society of America Bulletin, 116(5): 698-717. https://doi.org/ 10.1130/b25302.2
      [7] Chai, G. L., Li, S. Y., Xie, W., et al., 2018. Geochemical Assessment of Ore Potentiality of Luzhenguan Group and Foziling Group in Eastern Part of North Huaiyang Tectonic Belt. Mineral Deposits, 37(5): 1111-1123 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201805013
      [8] Chen, F., Peng, Z., Dong, T.T., et al., 2016. Geochemical Characteristics and Zircon U-Pb Age of ZhangchongDiorite Porphyrite in the East Part of North Huaiyang and Their Geological Significance. Geotectonica et Metallogenia, 40(6): 1289-1298 (in Chinese with English abstract).
      [9] Chen, H. J., Chen, Y. J., Zhang, J., et al., 2013. Zircon U-Pb Ages and Hf Isotope Characteristics of the Orebearing Intrusion from the Shapinggou Molybdenum Deposit, Jinzhai County, Anhui Province. Acta Petrologica et Mineralogica, 29(1): 131-145 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201301010
      [10] Chen, W., Mao, J. W., Xu, Z. W., et al., 2018. Two Stages of Cretaceous Granitic Magmatisms and Mo Mineralizations in West Dabie Orogenic Belt. Earth Science, 43(12): 4638-4650 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201812026
      [11] Chen, W., Xu, Z. W., Li, H. C., et al., 2013. Petrogenesis and Origin of the Xinxian Granitic Batholith in Henan Province and Its Implication for the Tectonic Evolution of the Western Dabie Area. Acta Geologica Sinica, 87(10): 1510-1524 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201310003
      [12] Chen, Y. J., Wang, P., Li, N., et al., 2017. The Collision-Type Porphyry Mo Deposits in Dabie Shan, China. Ore Geology Reviews, 81: 405-430. https://doi.org/10.1016/j.oregeorev.2016.03.025
      [13] Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/bf00374895
      [14] Du, J. G., 2000. On Researching of Mesozoic Magmatism and Geochemistry of Mineralization in Dabie Oregenic Belt (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract).
      [15] Fitton, J. G., James, D., Leeman, W. P., 1991. Basic Magmatism Associated with Late Cenozoic Extension in the Western United States: Compositional Variations in Space and Time. Journal of Geophysical Research: Solid Earth, 96(B8): 13693-13711. https://doi.org/10.1029/91jb00372
      [16] Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891): 837-840. https://doi.org/10.1038/nature00799
      [17] Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-x
      [18] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      [19] Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1-4): 215-230. https://doi.org/10.1016/s0012-821x(98)00152-6
      [20] Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04
      [21] He, T., Yang, X. Y., Deng, J. H., et al., 2016. Geochronology, Geochemistry and Hf-Sr-Nd Isotopes of the Ore-Bearing Syenite from the Shapinggou Porphyry Mo Deposit, East Qinling-Dabie Orogenic Belt. Solid Earth Sciences, 1(3): 101-117. https://doi.org/10.1016/j.sesci.2016.12.002
      [22] He, Y. S., Li, S. G., Hoefs, J., et al., 2011. Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 75(13): 3815-3838. https://doi.org/10.1016/j.gca.2011.04.011
      [23] Huang, D. F., Luo, Z. H., Lu, X. X., 2010.Zircon SHRIMP U-Pb Age and Tectonic Implications of Jingangtai Volcanic Rocks in North Margin of Dabie Mountains. Earth Science Frontiers, 17(1): 1-10 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201001001
      [24] Huang, F., Li, S. G., Dong, F., et al., 2008. High-Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 255(1-2): 1-13. https://doi.org/10.1016/j.chemgeo.2008.02.014
      [25] Huang, H. M., Xue, H. M., 2012. LA-ICP-MS Zircon U-Pb Ages of Early Cretaceous Volcanic Rocks from Jingangtai Formation in Beihuaiyang Belt on the Northern Margin of the Dabie Orogen and Their Geological Implications. Acta Petrologica et Mineralogica, 31(3): 371-381 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201203007
      [26] Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1-2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1
      [27] Jiang, L. L., Hu, S. Q., 2014. Metamorphic Stratigraphic Framework in the Eastern Part of the Dabie Mt. Geology of Anhui, 24(1):1-6 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahdz201401001
      [28] Jiao, W. F., Wu, Y. B., Yang, S. H., et al., 2009. The Oldest Basement Rock in the Yangtze Craton Revealed by Zircon U-Pb Age and Hf Isotope Composition. Science China Earth Sciences, 52(9): 1393-1399. https://doi.org/10.1007/s11430-009-0135-7
      [29] Kiminami, K., Imaoka, T., 2013. Spatiotemporal Variations of Jurassic-Cretaceous Magmatism in Eastern Asia (Tan-Lu Fault to SW Japan): Evidence for Flat-Slab Subduction and Slab Rollback. Terra Nova, 25(5): 414-422. https://doi.org/10.1111/ter.12051
      [30] King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
      [31] Li, H.M., Chen, Y.C., Ye, H.S., et al., 2008. Mo, (W), Au, Ag, Pb, Zn Minerogenetic Series Related to Mesozoic Magmatic Activities in the East Qinling-Dabie Mountains. Acta Geologica Sinica, 82(11): 1468-1477 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200811002
      [32] Li, S.G., Li, Q.L., Hou, Z.H., et al., 2005. Cooling History and Exhumation Mechanism of the Ultrahigh-Pressure Metamorphic Rocks in the Dabie Mountains, Central China. Acta Petrologica Sinica, 21(4): 1117-1124 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200504010
      [33] Li, X. H., Gao, X. Y., Zhang, Z. H., et al., 2015. LA-ICP-MS Zircon U-Pb Dating of Volcanic Rocks from the Jingangtai Formation and Stratigraphic Comparison. Geotectonica et Metallogenia, 39(4): 718-728 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201504014
      [34] Liu, X. Q., 2014. Mineralization and Petrogenesis of Yanshanian Magmatic Rocks, Dabie Orogen (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract).
      [35] Liu, X. Q., Yan, J., Wang, A. G., 2017. Characteristics and Petrogenesis of Shapinggou Ore-Bearing Porphyry in Northern Huaiyang Belt. Mineral Deposits, 36(4): 837-865 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704004
      [36] Liu, X. Q., Yan, J., Wang, A. G., 2018. Petrogenesis of Quartz Syenite Porphyry in the Gongdongchong Pb-Zn Deposit, North Huaiyang Belt. Acta Geologica Sinica, 92(1): 41-64 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201801004
      [37] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      [38] Lu, S. M., Peng, H. H., Sheng, Z. L., et al., 2002.Potential Value of Lead-Zinc Mineral Ore Resources in the East of North Huaiyang Tectonic Zone. Geology of Anhui, 12(2): 114-119 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahdz200202007
      [39] Lu, S. M., Ruan, L. S., Zhao, L. L., et al., 2016. Two Stages of Diagenesis and Metallogenesis of Shapinggou Molybdenum Lead-Zinc Ore Field in Jinzhai County, Anhui Province. Acta Geologica Sinica, 90(6): 1167-1181 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201606008
      [40] Ma, C. Q., Ehlers, C., Xu, C. H., et al., 2000. The Roots of the Dabieshan Ultrahigh-Pressure Metamorphic Terrane: Constraints from Geochemistry and Nd-Sr Isotope Systematics. Precambrian Research, 102(3-4): 279-301. https://doi.org/10.1016/s0301-9268(00)00069-3
      [41] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643.https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      [42] Mao, J. W., Wang, Y. T., Zhang, Z. H., et al., 2003. Geodynamic Settings of Mesozoic Large-Scale Mineralization in North China and Adjacent Areas. Scientia Sinica Terrae, 33(4):289-299 (in Chinese).
      [43] Mao, J. W., Ye, H. S., Wang, R. T., et al., 2009. Mineral Deposit Model of Mesozoic Porphyry Mo and Vein-Type Pb-Zn-Ag Ore Deposits in the Eastern Qinling, Central China and Its Implication for Prospecting. Geological Bulletin of China, 28(1): 72-79 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200901009
      [44] Meng, X. J., Xu, W. Y., Lu, Q. T., et al., 2012. Zircon U-Pb Dating of Ore-Bearing Rocks and Molybdenite Re-Os Age in Shapinggou Porphyry Molybdenum deposit, Anhui Province. Acta Geologica Sinica, 86(3): 486-494 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201203010
      [45] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [46] Mingram, B., Trumbull, R. B., Littman, S., et al., 2000. A Petrogenetic Study of Anorogenic Felsic Magmatism in the Cretaceous Paresis Ring Complex, Namibia: Evidence for Mixing of Crust and Mantle-Derived Components. Lithos, 54(1-2): 1-22. https://doi.org/10.1016/s0024-4937(00)00033-5
      [47] Mushkin, A., Navon, O., Halicz, L., et al., 2003. The Petrogenesis of A-Type Magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832. https://doi.org/10.1093/petrology/44.5.815
      [48] Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613(1997)0250743:gomatg > 2.3.co; 2 doi: 10.1130/0091-7613(1997)0250743:gomatg>2.3.co;2
      [49] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      [50] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      [51] Peng, M., Wu, Y. B., Gao, S., et al., 2012. Geochemistry, Zircon U-Pb Age and Hf Isotope Compositions of Paleoproterozoic Aluminous A-Type Granites from the Kongling Terrain, Yangtze Block: Constraints on Petrogenesis and Geologic Implications. Gondwana Research, 22(1): 140-151. https://doi.org/10.1016/j.gr.2011.08.012
      [52] Peng, Z., Lu, S. M., Xu, X. C., et al., 2005. Regional Metallogenetic Regularity of Gold-Polymetallic Deposits in the East of North Huaiyang Tectonic Belt. Journal of Hefei University of Technology (Natural Science), 28(4): 364-368 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hfgydxxb200504007
      [53] Qiu, J. S., Xiao, E., Hu, J., et al., 2008. Petrogenesis of Highly Fractionated Ⅰ-Type Granites in the Coastal Area of Northeastern Fujian Province: Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes. Acta Petrologica Sinica, 24(11): 2468-2484 (in Chinese with English abstract).
      [54] Qiu, X. F., Yang, H. M., Zhao, X. M., et al., 2019. Neoarchean Granitic Gneisses in Kongling Complex, Yangtze Craton: Petrogenesis and Tectonic Implications. Earth Science, 44(2): 415-426 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201902005
      [55] Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      [56] Ren, Z., Zhou, T. F., Hollings, P., et al., 2018. Magmatism in the Shapinggou District of the Dabie Orogen, China: Implications for the Formation of Porphyry Mo Deposits in a Collisional Orogenic Belt. Lithos, 308-309: 346-363. https://doi.org/10.1016/j.lithos.2018.03.013
      [57] Ren, Z., Zhou, T. F., Yuan, F., et al., 2014. The Stages of Magmatic System in Shapinggou Molybdenum Deposit District, Anhui Province: Evidence from Geochronology and Geochemistry. Acta Petrologica Sinica, 30(4): 1097-1116 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201404016
      [58] Shang, L., 2012. Petrogenesis of Late Mesozoic Igneous Rocks, Beihuaiyang, Anhui Province: Implication for Tectonic Evolution (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
      [59] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [60] Tejada, M. L. G., Geldmacher, J., Hauff, F., et al., 2016. Geochemistry and Age of Shatsky, Hess, and Ojin Rise Seamounts: Implications for a Connection between the Shatsky and Hess Rises. Geochimica et Cosmochimica Acta, 185: 302-327. https://doi.org/10.1016/j.gca.2016.04.006
      [61] Villaseca, C., Orejana, D., Paterson, B. A., 2007. Zr-LREE Rich Minerals in Residual Peraluminous Granulites, Another Factor in the Origin of Low Zr-LREE Granitic Melts? Lithos, 96(3-4): 375-386. https://doi.org/10.1016/j.lithos.2006.11.002
      [62] Wang, G. G., Ni, P., Yu, W., et al., 2014. Petrogenesis of Early Cretaceous Post-Collisional Granitoids at Shapinggou, Dabie Orogen: Implications for Crustal Architecture and Porphyry Mo Mineralization. Lithos, 184-187: 393-415. https://doi.org/10.1016/j.lithos.2013.11.009
      [63] Wang, G, C., Wang, P., Liu, C., et al., 2008. Geochronology Constraints on Transformation Age from Ductile to Brittle Deformation of the Shangma Fault and Its Tectonic Significance, Dabieshan, Central China. Journal of Earth Science, 19(2): 97-109. https://doi.org/10.1016/s1002-0705(08)60030-8
      [64] Wang, P., 2013. The Characteristics and Genesis of Magmatic Rocks in Shapinggou Molybdenum Ore Disdrict, Jinzhai, Anhui (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract).
      [65] Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10): 2609-2636. https://doi.org/10.1016/j.gca.2007.03.008
      [66] Wang, Q., Zhao, Z. H., Xiong, X. L., 2000. The Ascertainment of Late-Yanshanian A-Type Granite in Tongbai-Dabie Orogenic Belt. Acta Petrologica et Mineralogica, 19(4): 297-306, 315 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200004002
      [67] Wang, S. M., Ma, C. Q., Wang, L. Y., et al., 2010. SHRIMP Zircon U-Pb Dating, Geochemistry and Genesis of Early Cretaceous Basic Dykes from the Dabie Orogen. Earth Science, 35(4): 572-584 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201004009
      [68] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821x(83)90211-x[LinkOut]
      [69] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/bf00402202
      [70] Wright, J. B., 1969. A Simple Alkalinity Ratio and Its Application to Questions of Non-Orogenic Granite Genesis. Geological Magazine, 106(4): 370-384. https://doi.org/10.1017/s0016756800058222
      [71] Wu, H. R., Xie, Y. L., Wang, A. G., et al., 2018. Ore-Forming Process of Gongdongchong Breccia Type Pb-Zn Deposit, Anhui: Evidences from Geology, Fluid Inclusions and Isotopes of C, H, O and S. The Chinese Journal of Nonferrous Metals, 28(7): 1418-1441 (in Chinese with English abstract).
      [72] Wu, S. P., Wang, M. Y., Qi, K. J., 2007. Present Situation of Researches on A-Type Granites: A Review. Acta Petrologica et Mineralogica, 26(1): 57-66 (in Chinese with English abstract).
      [73] Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4): 1402-1428. https://doi.org/10.1016/j.gr.2012.09.007
      [74] Xia, Q. X., Zheng, Y. F., Yuan, H. L., et al., 2009. Contrasting Lu-Hf and U-Th-Pb Isotope Systematics between Metamorphic Growth and Recrystallization of Zircon from Eclogite-Facies Metagranites in the Dabie Orogen, China. Lithos, 112(3-4): 477-496. https://doi.org/10.1016/j.lithos.2009.04.015
      [75] Xiao, E., Hu, J., Zhang, Z. Z., et al., 2012. Petrogeochemistry, zircon U-Pb Dating and Lu-Hf Isotopic Compositions of the Haoping and Jinshanmiao Granites from the Huashan Complex Batholith in Eastern Qinling Orogen. Acta Petrologica Sinica, 28(12): 4031-4036 (in Chinese with English abstract).
      [76] Xie, Y. L., Li, L. M., Guo, X., et al., 2015. Chronology, Petrochemistry of Fine Grained Granite and Their Implication to Mo-Cu Mineralization in Xichong Mo Deposit, Anhui Province, China. Acta Petrologica Sinica, 31(7): 1929-1942 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507011
      [77] Xiong, Q., Zheng, J. P., Yu, C. M., et al., 2008. Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang: Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chinese Science Bulletin, 54(3): 436-446. https://doi.org/10.1007/s11434-008-0401-7
      [78] Xu, H. J., Ma, C. Q., Song, Y. R., et al., 2012. Early Cretaceous Intermediate-Mafic Dykes in the Dabie Orogen, Eastern China: Petrogenesis and Implications for Crust-Mantle Interaction. Lithos, 154: 83-99. https://doi.org/10.1016/j.lithos.2012.06.030
      [79] Xu, H. J., Ma, C. Q., Ye, K., 2007. Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen, Eastern China: SHRIMP Zircon U-Pb Dating and Geochemistry. Chemical Geology, 240(3-4): 238-259. https://doi.org/10.1016/j.chemgeo.2007.02.018
      [80] Xu, H. J., Ye, K., Ma, C. Q., 2008. Early Cretaceous Granitoids in the North Dabie and Their Tectonic Implications: Sr-Nd and Zircon Hf Isotopic Evidences. Acta Petrologica Sinica, 24(1): 87-103 (in Chinese with English abstract).
      [81] Xu, X. C., Lou, J. W., Lu, S. M., et al., 2009. Re-OsAges of Molybdenum-Lead-Zinc Polymetallic Deposits and 40Ar-39Ar Ages of Related Magmatic Rocks in Yinshan Area, Jinzhai, Anhui Province. Mineral Deposits, 28(5): 621-632 (in Chinese with English abstract).
      [82] Yang, Z. Q., 2007. Re-Os Isotopic Ages of Tangjiaping Molybdenum Deposit in Shangcheng County, Henan and Their Geological Significance. Mineral Deposits, 26(3): 289-295 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200703005
      [83] Zhan, J. H., 2015. Research on Magmatism-Mineralization in Xianghongdian Area Eastern Part of North Huaiyang Tectonic Belt (Dissertation). Hefei University of Technology, Hefei (in Chinese with English abstract).
      [84] Zhang, H., Sun, W. D., Yang, X. Y., et al., 2011. Geochronology and Metallogenesis of the Shapinggou Giant Porphyry Molybdenum Deposit in the Dabie Orogenic Belt. Acta Geologica Sinica, 85(12): 2039-2059 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201112007
      [85] Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon Isotope Evidence for ≥3.5 Ga Continental Crust in the Yangtze Craton of China. Precambrian Research, 146(1-2): 16-34. https://doi.org/10.1016/j.precamres.2006.01.002
      [86] Zhao, X. F., Li, J. W., Ma, C. Q., et al., 2007. Geochronology and Geochemistry of the Gubei Granodiorite, North Huaiyang: Implications for Mesozoic Tectonic Transition of the Dabie Orogen. Acta Petrologica Sinica, 23(6): 1392-1402 (in Chinese with English abstract).
      [87] Zhao, Z. F., Zheng, Y. F., 2009. Remelting of Subducted Continental Lithosphere: Petrogenesis of Mesozoic Magmatic Rocks in the Dabie-Sulu Orogenic Belt. Science China Earth Sciences, 52(9): 1295-1318. https://doi.org/10.1007/s11430-009-0134-8
      [88] Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2008. Zircon U-Pb Ages, Hf and O Isotopes Constrain the Crustal Architecture of the Ultrahigh-Pressure Dabie Orogen in China. Chemical Geology, 253(3-4): 222-242. https://doi.org/10.1016/j.chemgeo.2008.05.011
      [89] Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2011. Origin of Postcollisional Magmatic Rocks in the Dabie Orogen: Implications for Crust-Mantle Interaction and Crustal Architecture. Lithos, 126(1-2): 99-114. https://doi.org/10.1016/j.lithos.2011.06.010
      [90] Zheng, Y. F., Zhao, Z. F., Wu, Y. B., et al., 2006. Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chemical Geology, 231(1-2): 135-158. https://doi.org/10.1016/j.chemgeo.2006.01.005
      [91] Zhou, W.W., Cai, J.H., Yan, G.H., et al., 2014. Geochronology and Petrogeochemistry of Xianghongdian Alkaline Intrusion in Jinzhai County of Anhui Province and Its Significance. Mineral Deposits, 33(1): 104-122 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201401007
      [92] Zhu, G., Wang, W., Gu, C. C., et al., 2016. Late Mesozoic Evolution History of the Tan-Lu Fault Zone and Its Indication to Destruction Processes of the North China Craton. Acta Petrologica Sinica, 32(4); 935-949 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201604001
      [93] Zhu, J., Wu, C. X., Peng, S. G., et al., 2018. Geochronology and Geochemistry of Volcanic Rocks from the Huangchengshan Volcanogenic Epithermal Silver Deposit, Dabie Orogen, China: Implications for Tectonic Setting. Earth Science, 43(7): 2404-2419 (in Chinese with English abstract).
      [94] Zhu, R. X., Yang, J. H., Wu, F. Y., 2012. Timing of Destruction of the North China Craton. Lithos, 149: 51-60. https://doi.org/10.1016/j.lithos.2012.05.013
      [95] 柴广路, 李双应, 谢伟, 等, 2018.北淮阳东段庐镇关群和佛子岭群地层含矿性地球化学评价.矿床地质, 37(5):1111-1123.
      [96] 陈芳, 彭智, 董婷婷, 等, 2016.北淮阳东段张冲闪长玢岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其地质意义.大地构造与成矿学, 40(6): 1289-1298. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201606015
      [97] 陈红瑾, 陈衍景, 张静, 等, 2013.安徽省金寨县沙坪沟钼矿含矿岩体锆石U-Pb年龄和Hf同位素特征及其地质意义.岩石学报, 29(1):131-145. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201301010
      [98] 陈伟, 毛景文, 徐兆文, 等, 2018.西大别白垩纪两阶段花岗岩成岩及钼成矿作用的讨论.地球科学, 43(12): 4638-4650. doi: 10.3799/dqkx.2018.522
      [99] 陈伟, 徐兆文, 李红超, 等, 2013.河南新县花岗岩岩基的岩石成因、来源及对西大别构造演化的启示.地质学报, 87(10):1510-1524. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201310003
      [100] 杜建国, 2000.大别造山带中生代岩浆作用与成矿地球化学研究(博士学位论文).合肥: 合肥工业大学.
      [101] 黄丹峰, 罗照华, 卢欣祥, 2010.大别山北缘金刚台火山岩SHRIMP锆石U-Pb年龄及构造意义.地学前缘, 17(1): 1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001001
      [102] 黄皓, 薛怀民, 2012.北淮阳早白垩世金刚台组火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义.岩石矿物学杂志, 31(3): 371-381. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201203007
      [103] 江来利, 胡召齐, 2014.大别山东段的变质地层格架.安徽地质, 24(1):1-6. http://d.old.wanfangdata.com.cn/Periodical/ahdz201401001
      [104] 李厚民, 陈毓川, 叶会寿, 等, 2008.东秦岭-大别地区中生代与岩浆活动有关钼(钨)金银铅锌矿床成矿系列.地质学报, 82(11):1468-1477. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200811002
      [105] 李曙光, 李秋立, 侯振辉, 等, 2005.大别山超高压变质岩的冷却史及折返机制.岩石学报, 21(4): 1117-1124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200504010
      [106] 李鑫浩, 高昕宇, 张忠慧, 等, 2015.北淮阳早白垩世金刚台组火山岩LA-ICP-MS锆石U-Pb年龄及地层对比.大地构造与成矿学, 39(4): 718-728. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201504014
      [107] 刘晓强, 2014.大别造山带燕山期岩浆岩成矿作用与岩石成因(硕士学位论文).合肥: 合肥工业大学.
      [108] 刘晓强, 闫峻, 王爱国, 等, 2017.北淮阳沙坪沟钼矿床成矿斑岩体特征与成因.矿床地质, 36(4):837-865. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704004
      [109] 刘晓强, 闫峻, 王爱国, 等, 2018.北淮阳汞洞冲铅锌矿区石英正长斑岩成因.地质学报, 92(1):41-64. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201801004
      [110] 陆三明, 彭海辉, 盛中烈, 等, 2002.北淮阳构造带东段铅锌矿找矿前景.安徽地质, 12(2):114-119. http://d.old.wanfangdata.com.cn/Periodical/ahdz200202007
      [111] 陆三明, 阮林森, 赵丽丽, 等, 2016.安徽金寨县沙坪沟钼铅锌矿田两期成岩成矿作用.地质学报, 90(6):1167-1181. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201606008
      [112] 毛景文, 叶会寿, 王瑞廷, 等, 2009.东秦岭中生代钼铅锌银多金属矿床模型及其找矿评价.地质通报, 28(1):72-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200901009
      [113] 毛景文, 张作衡, 余金杰, 等, 2003.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示.中国科学:地球科学, 33(4):289-299. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200304001
      [114] 孟祥金, 徐文艺, 吕庆田, 等, 2012.安徽沙坪沟斑岩钼矿锆石U-Pb和辉钼矿Re-Os年龄.地质学报, 86(3): 486-494. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201203010
      [115] 彭智, 陆三明, 徐晓春, 等, 2005.北淮阳构造带东段金-多金属矿床区域成矿规律.合肥工业大学学报(自然科学版), 28(4):364-368. http://d.old.wanfangdata.com.cn/Periodical/hfgydxxb200504007
      [116] 邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11): 2468-2484. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200811002
      [117] 邱啸飞, 杨红梅, 赵小明, 等, 2019.扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义.地球科学, 44(2):415-426. doi: 10.3799/dqkx.2018.198
      [118] 任志, 周涛发, 袁峰, 等, 2014.安徽沙坪沟钼矿区中酸性侵入岩期次研究——年代学及岩石化学约束.岩石学报, 30(4):1097-1116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201404016
      [119] 商力, 2012.安徽北淮阳地区燕山晚期岩浆岩成因及其大地构造背景(硕士学位论文).南京: 南京大学.
      [120] 王萍, 2013.安徽金寨沙坪沟钼矿区岩浆岩特征及成因(硕士学位论文).合肥: 合肥工业大学.
      [121] 王强, 赵振华, 熊小林, 等, 2000.桐柏-大别造山带燕山晚期A型花岗岩的厘定.岩石矿物学杂志, 19(4): 297-306, 315. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz200004002
      [122] 王世明, 马昌前, 王琳燕, 等, 2010.大别山早白垩世基性脉岩SHRIMP锆石U-Pb定年、地球化学特征及成因.地球科学, 35(4): 572-584. doi: 10.3779/dqkx.2010.073
      [123] 吴皓然, 谢玉玲, 王爱国, 等, 2018.安徽汞洞冲角砾岩型铅锌矿床成矿作用过程:来自矿床地质、流体包裹体和C、H、O、S同位素的证据.中国有色金属学报, 28(7): 1418-1441. http://d.old.wanfangdata.com.cn/Periodical/zgysjsxb201807017
      [124] 吴锁平, 王梅英, 戚开静, 等, 2007.A型花岗岩研究现状及其述评.岩石矿物学杂志, 26(1):57-66. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz200701009
      [125] 肖娥, 胡建, 张遵忠, 等, 2012.东秦岭花山复式岩基中蒿坪与金山庙花岗岩体岩石地球化学、锆石U-Pb年代学和Lu-Hf同位素组成.岩石学报, 28(12):4031-4046. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201212019
      [126] 谢玉玲, 李腊梅, 郭翔, 等, 2015.安徽西冲钼矿床细粒花岗岩的岩石定年、岩石化学及与成矿的关系研究.岩石学报, 31(7):1929-1942. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507011
      [127] 续海金, 叶凯, 马昌前, 2008.北大别早白垩纪花岗岩类Sm-Nd和锆石Hf同位素及其构造意义.岩石学报, 24(1): 87-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200801007
      [128] 徐晓春, 楼金伟, 陆三明, 等, 2009.安徽金寨银山钼-铅-锌多金属矿床Re-Os和有关岩浆岩40Ar-39Ar年龄测定.矿床地质, 28(5): 621-632. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200905008
      [129] 杨泽强, 2007.河南商城县汤家坪钼矿辉钼矿铼-锇同位素年龄及地质意义.矿床地质, 26(3): 289-295. http://d.old.wanfangdata.com.cn/Periodical/kcdz200703005
      [130] 詹建华, 2015.北淮阳构造带东段响洪甸地区成岩成矿作用研究(硕士学位论文).合肥: 合肥工业大学.
      [131] 张红, 孙卫东, 杨晓勇, 等, 2011.大别造山带沙坪沟特大型斑岩钼矿床年代学及成矿机理研究.地质学报, 85(12):2039-2059. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201112007
      [132] 赵新福, 李建威, 马昌前, 等, 2007.北淮阳古碑花岗闪长岩侵位时代及地球化学特征:对大别山中生代构造体制转换的启示.岩石学报, 23(6):1392-1402. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200706015
      [133] 周伟伟, 蔡剑辉, 阎国翰, 等, 2014.安徽金寨响洪甸碱性侵入岩年代学、岩石地球化学及其意义.矿床地质, 33(1):104-122. http://d.old.wanfangdata.com.cn/Periodical/kcdz201401007
      [134] 朱光, 王薇, 顾承串, 等, 2016.郯庐断裂带晚中生代演化历史及其对华北克拉通破坏过程的指示.岩石学报, 32(4):935-949. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201604001
      [135] 朱江, 吴昌雄, 彭三国, 等, 2018.大别山皇城山银矿区及外围陈棚组火山岩U-Pb年代学、地球化学和成矿构造背景.地球科学, 43(7):2404-2419. doi: 10.3799/dqkx.2018.187
    • 吴皓然附表.docx
    • 加载中
    图(13) / 表(1)
    计量
    • 文章访问数:  2333
    • HTML全文浏览量:  785
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-29
    • 刊出日期:  2020-03-15

    目录

      /

      返回文章
      返回