Sources of Ore-Forming Fluids and Materials of Jiagangxueshan W-Mo Deposit
-
摘要: 甲岗雪山钨钼矿床位于西藏自治区申扎县境内,是西藏首例云英岩型钨矿床,关于该矿床的研究对探讨区域成矿机制和指导找矿都具有重要意义.成矿作用与矿区内的二长花岗岩紧密相关,矿体主要产于岩体内部和紧邻岩体的围岩中.矿体的类型包括云英岩型和石英脉型,矿石多呈细脉状或者浸染状产在云英岩或云英岩化二长花岗岩体内部,少量呈大脉状产于围岩地层中.为了研究该矿床成矿流体及成矿物质的来源,挑选云英岩型矿体和石英脉型矿体中的黑钨矿、石英进行H、O同位素测试,挑选金属硫化物进行S、Pb同位素测试.结果显示,黑钨矿δ18OV-SMOW(‰)值集中在3.7~4.7;石英的δ18O水值为2.0‰~4.3‰,δD值为-131‰~-84‰,表明成矿流体主要来源于脱气后的岩浆水,可能混入了极少量大气降水.矿石硫化物δ34S的值为+2.2‰~+5.3‰,表明硫来自岩浆;硫化物的206Pb/204Pb、207Pb/204Pb、208Pb/204Pb值分别为18.582 2~18.797 1、15.671 7~15.760 6、39.462 5~39.501 2,进一步表明成矿物质铅主要来源于中拉萨地体前寒武纪变质基底部分熔融产生的岩浆,可能有少量来自围岩地层.Abstract: Jiagangxueshan W-Mo deposit, Shenzha County, is the first greisen-type W deposit in Tibet. Studying the deposit is of great significance in the regional metallogenic mechanism and prospecting. The mineralization is strongly linked with the monzogranite located in the center of the deposit, and ores usually occur in inner monzogranite or sedimentary wall rocks that are adjacent to the monzogranite. The orebody types of the deposit contain greisen-type and quartz vein-type. The majority of ores distribute in greisens and intensively greisenized monzogranites in the form of veinlets or dissemination, while the minority mainly precipitated in the sedimentary wall rocks, presenting as wide quartz veins. To investigate the sources of ore -forming fluids and materials of Jiagangxueshan W -Mo deposit, wolframites and quartzs, metal sulfides from greisen-and quartz vein-type orebodies are sellected for H, O and S-Pb isotope analysis, respectively. δ18OV-SMOW (‰) values of wolframite of the deposit range from 3.7-4.7. The hydrogen and oxygen isotope compositions of the quartzs selected from ores show that the δ18Owater values of quartzs are ranging from 2.0‰-4.3‰, with the δD values range from -131‰ to -84‰. The H-O data indicate that ore-forming fluids were derived from residual magma water after degassing. δ34S values of the sulfides range from +2.2‰ to +5.3‰, indicative of a magmatic source of sulfur. The values of 206Pb/204Pb、207Pb/204Pb、208Pb/204Pb are 18.582 2-18.797 1、15.671 7-15.760 6、39.462 5-39.501 2, respectively, which further show that the ore-forming materials were derived from Precambrian metamorphic basement of the central Lhasa subterrane.
-
Key words:
- ore-forming fluid /
- ore-forming material /
- tungsten deposit /
- Jiagangxueshan /
- Tibet /
- deposits
-
图 1 (a) 拉萨地体构造框架图;(b)甲岗雪山W-Mo矿床矿区地质图
a据Zhu et al.(2011);b.改自程立人等,2002.中华人民共和国1:25万申扎县幅地质图.吉林大学地质调查院,长春
Fig. 1. (a) Tectonic framework of Lhasa terrane; (b) regional geological map of Jiagangxueshan deposit
图 4 (a) 黑钨矿δ18OV-SMOW (‰)频率分布直方图;(b)甲岗雪山钨钼矿床成矿流体δ18O水-δD图解
底图据Taylor(1974);钨锡系列初始岩浆水和再平衡岩浆水范围据张理刚(1987);文献数据王治华等(2007)
Fig. 4. (a)Histogram of δ18OV-SMOW (‰) of wolframite, (b) ore-forming fluid δ18O水-δD plot of Jiagangxueshan W-Mo deposit
图 6 甲岗雪山钨钼矿床矿石铅同位素构造模式图
底图据Zartman and Doe(1981);中拉萨地体前寒武纪变质基底数据潘桂棠等(2006);张泽明等(2010);花岗斑岩数据引自Fu et al.(2017);来姑组地层数据程顺波等(2008)
Fig. 6. Pb isotope compositions of sulfides from the Jiagangxueshan W-Mo deposit
图 7 (a) 甲岗雪山钨钼矿床成矿地球动力学背景示意;(b)甲岗雪山钨钼矿床成矿模式
Fig. 7. (a)Metallogenic geodynamic sketch map of Jiagangxueshan W-Mo deposit, (b) metallogenic model for the JiagangxueshanW-Mo deposit
表 1 甲岗雪山钨钼矿床黑钨矿及石英的H、O同位素特征
Table 1. Hydrogen and oxygen isotope composition of wolframite and quartz of Jiagangxueshan W-Mo deposit
样号 测试矿物 样品来源 δ18O(‰) δ18O(‰) δD(‰) 温度(℃) JG14-17-5 黑钨矿 云英岩型钨矿体 4.3 5.9 - 289 JG14-17-6 黑钨矿 云英岩型钨矿体 4.4 6.0 - 289 JG14-24-1 黑钨矿 云英岩型钨钼矿体 4.6 6.2 - 289 JG14-25-1 黑钨矿 云英岩型钨矿体 4.7 6.3 - 289 JG14-40-3 黑钨矿 云英岩型钨矿体 4.3 5.9 - 289 JG14-52-1 黑钨矿 云英岩型钨矿体 4.2 5.8 - 289 JG14-56-1 黑钨矿 云英岩型钨矿体 3.7 5.3 - 289 JG14-29-2 黑钨矿 石英脉型钨矿体 4.3 5.7 - 272 JG14-33-1 黑钨矿 石英脉型钨矿体 4.3 5.7 - 272 JG14-64-3 黑钨矿 石英脉型钨钼矿体 4.7 6.1 - 272 JG13-11 石英 云英岩型钨矿体 11.1 3.8 -84 289 JG14-11-2 石英 云英岩型钨矿体 12.2 4.9 -131 289 JG14-17-6 石英 云英岩型钨矿体 10.6 3.3 -125 289 JG14-25-1 石英 云英岩型钨矿体 10.8 3.5 -119 289 JG14-52-1 石英 云英岩型钨矿体 10.7 3.4 -90 289 JG14-63-6 石英 云英岩型钨钼矿体 10.4 3.1 -91 289 JG13-12 石英 石英脉型钨矿体 10.5 2.6 -99 272 JG14-29-1 石英 石英脉型钼钨矿体 10.4 2.5 -106 272 JG13-15 石英 围岩内不含矿石英脉 10 0.2 -104 232 JG14-32-3 石英 围岩内不含矿石英脉 10.6 0.8 -123 232 JG14-50-3 石英 围岩内不含矿石英脉 11.6 1.8 -101 232 表 2 甲岗雪山钨钼矿床硫化物硫同位素数据
Table 2. Sulfur isotope composition of sulfides from Jia-gangxueshan W-Mo deposit
样号 测试矿物 样品来源 δ34S(‰) JG13-1 辉钼矿 云英岩型矿体 4.3 JG13-2-1 辉钼矿 云英岩型矿体 5.0 JG13-2-2 辉钼矿 云英岩型矿体 4.4 JG14-63-5 辉钼矿 云英岩型矿体 5.0 JG14-20-4 黄铁矿 云英岩型矿体 4.7 JG14-20-5 黄铁矿 云英岩型矿体 4.8 JG14-59-1 方铅矿 云英岩型矿体 2.2 JG13-2 辉钼矿 石英脉型矿体 4.2 JG14-28-2 辉钼矿 石英脉型矿体 5.0 JG14-29-1 辉钼矿 石英脉型矿体 5.3 JG14-32-2 辉钼矿 石英脉型矿体 5.2 JG14-64-3 辉钼矿 石英脉型矿体 4.5 JG14-29-3 黄铁矿 石英脉型矿体 4.9 JG14-32-2 黄铁矿 石英脉型矿体 4.9 JG14-28-1 黄铜矿 石英脉型矿体 5.3 表 3 甲岗雪山钨钼矿床矿石Pb同位素组成数据
Table 3. Pb isotope composition of sulfides from Jiagangxue-shan W-Mo deposit
样号 测试矿物 样品来源 206Pb/ 204Pb 207Pb/ 204Pb 208Pb/ 204Pb JG14-63-5 辉钼矿 云英岩型矿体 18.716 4 15.731 6 39.272 4 JG14-20-4 黄铁矿 云英岩型矿体 18.776 0 15.750 9 39.462 5 JG14-20-5 黄铁矿 云英岩型矿体 18.780 1 15.752 1 39.472 8 JG14-59-1 方铅矿 云英岩型矿体 18.782 3 15.753 0 39.479 8 JG13-2 辉钼矿 石英脉型矿体 18.797 1 15.760 6 39.501 2 JG14-28-2 辉钼矿 石英脉型矿体 18.608 8 15.691 1 39.043 4 JG14-29-1 辉钼矿 石英脉型矿体 18.584 0 15.671 7 38.889 7 JG14-32-2 辉钼矿 石英脉型矿体 18.784 2 15.756 2 39.480 1 JG14-64-3 辉钼矿 石英脉型矿体 18.582 2 15.689 1 39.019 8 JG14-64-6 辉钼矿 石英脉型矿体 18.675 7 15.706 3 39.118 0 JG14-29-3 黄铁矿 石英脉型矿体 18.754 4 15.745 8 39.409 8 JG14-32-2 黄铁矿 石英脉型矿体 18.607 1 15.722 7 39.150 6 JG14-28-1 黄铜矿 石英脉型矿体 18.769 8 15.748 9 39.443 0 -
[1] Cao, H. W., Pei, Q. M., Zhang, S. T., et al., 2017. Geology, Geochemistry and Genesis of the Eocene Lailishan Sn Deposit in the Sanjiang Region, SW China. Journal of Asian Earth Sciences, 137:220-240. doi: 10.1016/j.jseaes.2017.01.005 [2] Cheng, S.B., Pang, Y.C., Cao, L., 2008.The Genesis of Meng-ya' a Skarn-Type Lead-Zinc Deposit, Tibet.Geology and Mineral Resources of South China, 24(3):50-56(in Chi-nese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HNKC200803008.htm [3] Clayton, R.N., Mayeda, T.K., 1963.The Use of Bromine Pen-tafluoride in the Extraction of Oxygen from Oxides and Silicates for Isotopic Analysis. Geochimica et Cosmochi-mica Acta, 27(1):43-52. doi: 10.1016/0016-7037(63)90071-1 [4] Dong, X., Zhang, Z.M., Liu, F., et al., 2011.Zircon U-Pb Geo-chronology of the Nyainqentanglha Group from the Lha-sa Terrane:New Constraints on the Triassic Orogeny of the South Tibet.Journal of Asian Earth Sciences, 42(4):732-739.doi: 10.1016/j.jseaes.2011.01.014 [5] Fu, Q., Xu, B., Zheng, Y. C., et al., 2017. Two Episodes of Mineralization in the Mengya' a Deposit and Implications for the Evolution and Intensity of Pb-Zn-(Ag) Mineraliza-tion in the Lhasa Terrane, Tibet. Ore Geology Reviews, 90:877-896. doi: 10.1016/j.oregeor-ev.2017.01.008 [6] Ge, L.S., Zou, Y.L., Xing, J.B., et al., 2004.Discovery of the Jaggang Snow Mountain Tungsten-Molybdenum-Cop-per-Gold Polymetallic Occurrence in the Northern Part of the Gangdise Block, Tibet.Geological Bulletin of Chi-na, 23(9):1033-1039 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z2029.htm [7] He, X. X., Zhu, X. K., Yang, C., et al., 2005. High-Precision Analysis of Pb Isotope Ratios Using MC-ICP-MS.Acta Geoscientia Sinica, 26(Suppl. 1):19-22 (in Chinese with English abstract). [8] Hou, Z. Q., Cook, N. J., 2009. Metallogenesis of the Tibetan Collisional Orogen:A Review and Introduction to the Special Issue. Ore Geology Reviews, 36(1-3):2-24.doi: 10.1016/j.oregeorev.2009.05.001 [9] Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015a. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen.Econom-ic Geology, 110(6):1541-1575. doi: 10.2113/econgeo.110.6.1541 [10] Hou, Z.Q., Mo, X.X., Yang, Z.M., et al., 2006a.Metallogene-ses in the Collisional Orogen of the Qinghai-Tibet Pla-teau:Tectonic Setting, Tempo-Spatial Distribution and Ore Deposit Types. Geology in China, 33(2):340-351(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200602013.htm [11] Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006c.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅱ.Mineralization in Late-Collisional Transformation Setting. Mineral De-posits, 25(5):521-543(in Chinese with English abstract). [12] Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006d.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineraliza-tion in Post-Collisional Extension Setting. Mineral De-posits, 25(6):629-651 (in Chinese with English abstract). [13] Hou, Z. Q., Yang, Z. M., Lu, Y. J., et al., 2015b. A Genetic Linkage between Subduction-and Collision-Related Por-phyry Cu Deposits in Continental Collision Zones.Geolo-gy, 43(3):247-250.doi: 10.1130/g36362.1 [14] Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006b.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅰ. Mineraliza-tion in Main Collisional Orogenic Setting.Mineral Depos-its, 25(4):337-358 (in Chinese with English abstract). [15] Hou, Z. Q., Zheng, Y. C., Yang, Z. M., et al., 2013. Contribu-tion of Mantle Components within Juvenile Lower-Crust to Collisional Zone Porphyry Cu Systems in Tibet. Min-eralium Deposita, 48(2):173-192. doi: 10.1007/s00126-012-0415-6 [16] Huang, L. H., 2017. Geochemical Characteristics and Genesis of Enlightenment of Hahaigang W-Mo Polymetallic De-posit in Tibet(Dissertation). China University of Geosci-ences, Beijing(in Chinese with English abstract). [17] Kapp, P., Yin, A., Harrison, T. M., et al., 2005. Cretaceous-Tertiary Shortening, Basin Development, and Volcanism in Central Tibet.Geological Society of America Bulletin, 117(7):865-878. doi: 10.1130/B25595.1 [18] Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014 [19] Liang, W., Zhang, L. K., Xia, X. B., et al., 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Sci-ence, 43(8):2742-2754(in Chinese with English ab-stract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808015 [20] Ma, W., Liu, Y.C., Yang, Z.S., et al., 2017.Alteration, Miner-alization, and Genesis of the Lietinggang-Leqingla Pb-Zn-Fe-Cu-Mo Skarn Deposit, Tibet, China.Ore Geolo-gy Reviews, 90:897-912. doi: 10.1016/j.oregeorev.2017.04.034 [21] Matsuhisa, Y., Goldsmith, J.R., Clayton, R.N., 1979.Oxygen Isotopic Fractionation in the System Quartz-Albite-Anor-thite-Water. Geochimica et Cosmochimica Acta, 43(7):1131-1140. doi: 10.1016/0016-7037(79)90099-1 [22] Ohmoto, H., 1972.Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits.Economic Geology, 67(5):551-578.doi: 10.2113/gsecongeo.67.5.551 [23] Ohmoto, H., 1986.Stable Isotope Geochemistry of Ore Depos-its. Reviews in Mineralogy and Geochemistry, 16(1):491-559. [24] Pan, G.T., Ding, J., Yao, D.S., et al., 2004.Guidebook of 1:1 500 000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas. Chengdu Cartographic Press, Chengdu (in Chinese). [25] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Tempo-ral Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533(in Chinese with English abstract). [26] Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883.doi: 10.2113/gsecongeo.69.6.843 [27] Wang, Z.H., Wang, K.Q., Yu, W.Q., et al., 2006a.Re-Os Iso-topic Ages of Tungsten-Molybdenum (Bismuth) Poly-Metallic Ore Deposit in the Jiagang Snowy Mountain, Shenzha County, Tibet and the Implications.Geology of Anhui, 16(2):112-115, 119(in Chinese with English ab-stract). [28] Wang, Z.H., Wu, X.Q., Wang, K.Q., et al., 2006b.Geochemi-cal Characteristics of the Garuo Monzogranite in the Jag-gang Xueshan W-Mo (-Bi) District, Southwestern Xainza, Tibet, China. Geological Bulletin of China, 25(12):1487-1491(in Chinese with English abstract). [29] Wang, Z.H., Wu, X.Q., Wang, K.Q., et al., 2007.Stable Iso-tope and Ore Genesis of Jiagangxueshan W-Mo-Bi Polymetallic Deposit, Shenzha County, Tibet. Geology and Prospecting, 43(3):6-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200612018.htm [30] Wei, W. F., Hu, R. Z., Bi, X. W., et al., 2012. Infrared Micro-thermometric and Stable Isotopic Study of Fluid Inclu-sions in Wolframite at the Xihuashan Tungsten Deposit, Jiangxi Province, China. Mineralium Deposita, 47(6):589-605. doi: 10.1007/s00126-011-0377-0 [31] Wu, C.D., Zheng, Y.C., Zhang, S., et al., 2015.Ar-Ar Age of Biotite from the Nuri Cu-W-Mo Deposit in Tibet, and Its Geodynamic Significance. Acta Geologica Sinica, 89(9):1673-1682 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201509010 [32] Wu, K.X., Hu, R.Z., Bi, X.W., et al., 2002.Ore Lead Isotopes as a Tracer for Ore-Forming Material Sources:A Re-view. Geology Geochemistry, 30(3):73-81(in Chinese with English abstract). [33] Xu, P.Y., Zheng, Y.C., Fu, Q., et al., 2017.Geology of the Jia-gangxueshan W-Mo Polymetallic Deposit:The First Greisen-Type W Deposit in Tibet. Acta Petrologica et Mineralogica, 36(2):227-240(in Chinese with English abstract). [34] Yang, Z.M., Hou, Z.Q., White, N.C., et al., 2009.Geology of the Post-Collisional Porphyry Copper-Molybdenum De-posit at Qulong, Tibet.Ore Geology Reviews, 36(1-3):133-159. doi: 10.1016/j.oregeor-ev.2009.03.003 [35] Yang, Z.M., Lu, Y.J., Hou, Z.Q., et al., 2015.High-Mg Dio-rite from Qulong in Southern Tibet:Implications for the Genesis of Adakite-Like Intrusions and Associated Por-phyry Cu Deposits in Collisional Orogens.Journal of Pe-trology, 56(2):227-254.doi: 10.1093/petrol-ogy/egu076 [36] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Hi-malayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211 [37] Zartman, R.E., Doe, B.R., 1981.Plumbotectonics:The Model. Tectonophysics, 75(1-2):135-162. doi: 10.1016/0040-1951(81)90213-4 [38] Zhang, L. G., 1987. Oxygen Isotope Studies of Wolframite in Tungsten Ore Deposits of South China. Geochimica, 16(3):233-242(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=faf75e2683295e1a7882a941735e8d80&encoded=0&v=paper_preview&mkt=zh-cn [39] Zhang, L.G., Liu, J.X., Chen, Z.S., et al., 1994.Experimental Investigations of Oxygen Isotope Fractionation in Cassit-erite and Wolframite. Economic Geology, 89(1):150-157. doi: 10.2113/gsecongeo.89.1.150 [40] Zhang, Z.M., Dong, X., Geng, G.S., et al., 2010.Precambrian Metamorphism of the Northern Lhasa Terrane, South Tibet and Its Tectonic Implications.Acta Geologica Sini-ca, 84(4):449-456 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201004001 [41] Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mecha-nism of Leucogranites. Earth Science, 43(1):82-98(in Chinese with English abstract). [42] Zhao, X. Y., Yang, Z. S., Zheng, Y. C., et al., 2015. Geology and Genesis of the Post-Collisional Porphyry-Skarn De-posit at Bangpu, Tibet.Ore Geology Reviews, 70:486-509.doi: 10.1016/j.oregeorev.2014.09.014 [43] Zheng, Y. C., Fu, Q., Hou, Z. Q., et al., 2015. Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Polymetallic Belt in the Lhasa Terrane, Southern Tibet.Ore Geology Reviews, 70:510-532. doi: 10.1016/j.oregeorev.2015.04.004 [44] Zheng, Y.C., Hou, Z.Q., Li, Q.Y., et al., 2012a.Origin of Late Oligocene Adakitic Intrusives in the Southeastern Lhasa Terrane:Evidence from In-Situ Zircon U-Pb Dating, Hf-O Isotopes, and Whole-Rock Geochemistry.Lithos, 148:296-311.doi: 10.1016/j.lithos.2012.05.026 [45] Zheng, Y. C., Hou, Z. Q., Li, W., et al., 2012b. Petrogenesis and Geological Implications of the Oligocene Chongmu-da-Mingze Adakite-Like Intrusions and Their Mafic En-claves, Southern Tibet.The Journal of Geology, 120(6):647-669.doi: 10.1086/667812 [46] Zheng, Y. C., Liu, S. A., Wu, C. D., et al., 2019. Cu Isotopes Reveal Initial Cu Enrichment in Sources of Giant Por-phyry Deposits in a Collisional Setting. Geology, 47(2):135-138. doi: 10.1130/g45362.1 [47] Zheng, Y. F., 2001. Theoretical Modeling of Stable Isotope Systems and Its Applications to Geochemistry of Hydro-thermal Ore Deposits.Mineral Deposits, 20(1):57-70, 85(in Chinese with English abstract). [48] Zheng, Y.F., Fu, B., Zhang, X.H., 1996.Effects of Magma De-gassing on the Carbon and Sulfur Isotope Compositions of Igneous Rocks. Chinese Journal of Geology, 31(1):43-53 (in Chinese with English abstract). [49] Zhu, D.C., Pan, G.T., Wang, L.Q., et al., 2008.Tempo-Spa-tial Variations of Mesozoic Magmatic Rocks in the Gang-dise Belt, Tibet, China, with a Discussion of Geodynam-ic Setting-Related Issues.Geological Bulletin of China, 27(9):1535-1550(in Chinese with English abstract). [50] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Ter-rane:Record of a Microcontinent and Its Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. doi: 10.1016/j.epsl.2010.11.005 [51] 程顺波, 庞迎春, 曹亮, 2008.西藏蒙亚啊矽卡岩铅锌矿床的成因探讨.华南地质与矿产, 24(3):50-56. doi: 10.3969/j.issn.1007-3701.2008.03.008 [52] 葛良胜, 邹依林, 邢俊兵, 等, 2004.西藏冈底斯地块北部甲岗雪山钨钼铜金多金属矿产地的发现及意义.地质通报, 23(9):1033-1039. doi: 10.3969/j.issn.1671-2552.2004.09.029 [53] 何学贤, 朱祥坤, 杨淳, 等, 2005.多接收器等离子体质谱(MC-ICP-MS) Pb同位素高精度研究.地球学报, 26(增刊1):19-22. http://d.old.wanfangdata.com.cn/Periodical/dqxb2005z1008 [54] 侯增谦, 莫宣学, 杨志明, 等, 2006a.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质, 33(2):340-351. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200602013 [55] 侯增谦, 曲晓明, 杨竹森, 等, 2006d.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [56] 侯增谦, 潘桂棠, 王安建, 等, 2006c.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [57] 侯增谦, 潘桂棠, 王安建, 等, 2006c.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [58] 侯增谦, 杨竹森, 徐文艺, 等, 2006b.青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [59] 黄礼恒, 2017.西藏哈海岗钨钼多金属矿床地球化学特征及成因启示(硕士学位论文).北京: 中国地质大学. [60] 李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014 [61] 梁维, 张林奎, 夏祥标, 等, 2018.藏南地区错那洞钨锡多金属矿床地质特征及成因.地球科学, 43(8):2742-2754. http://earth-science.net/WebPage/Article.aspx?id=3909 [62] 潘桂棠, 丁俊, 姚冬生, 等, 2004.青藏高原及邻区地质图(1:1 500 000).成都:成都地图出版社. [63] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 [64] 王治华, 王科强, 喻万强, 等, 2006a.西藏申扎县甲岗雪山钨钼(铋)多金属矿床的Re-Os同位素年龄及其意义.安徽地质, 16(2):112-115, 119. http://d.old.wanfangdata.com.cn/Periodical/ahdz200602006 [65] 王治华, 吴兴泉, 王科强, 等, 2006b.西藏申扎西南部甲岗雪山钨钼(铋)矿区嘎若二长花岗岩体的地球化学特征.地质通报, 25(12):1487-1491. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200612019 [66] 王治华, 吴兴泉, 王科强, 等, 2007.西藏申扎县甲岗雪山钨、钼、铋多金属矿床稳定同位素地球化学特征及矿床成因探讨.地质与勘探, 43(3):6-10. doi: 10.3969/j.issn.0495-5331.2007.03.002 [67] 吴昌炟, 郑远川, 张松, 等, 2015.冈底斯南缘努日Cu-W-Mo多金属矿床黑云母Ar-Ar定年及其地质意义.地质学报, 89(9):1673-1682. doi: 10.3969/j.issn.0001-5717.2015.09.010 [68] 吴开兴, 胡瑞忠, 毕献武, 等, 2002.矿石铅同位素示踪成矿物质来源综述.地质地球化学, 30(3):73-81. doi: 10.3969/j.issn.1672-9250.2002.03.013 [69] 徐培言, 郑远川, 付强, 等, 2017.西藏首例云英岩型钨矿:甲岗雪山W-Mo多金属矿床地质特征研究.岩石矿物学杂志, 36(2):227-240. doi: 10.3969/j.issn.1000-6524.2017.02.008 [70] 张理刚, 1987.华南钨矿床黑钨矿的氧同位素研究.地球化学, 16(3):233-242. doi: 10.3321/j.issn:0379-1726.1987.03.005 [71] 张泽明, 董昕, 耿官升, 等, 2010.青藏高原拉萨地体北部的前寒武纪变质作用及构造意义.地质学报, 84(4):449-456. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201004001 [72] 张泽明, 康东艳, 丁慧霞, 等, 2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学, 43(1):82-98. http://www.cqvip.com/QK/94035X/201801/674481867.html [73] 郑永飞, 2001.稳定同位素体系理论模式及其矿床地球化学应用.矿床地质, 20(1):57-70, 85. doi: 10.3969/j.issn.0258-7106.2001.01.007 [74] 郑永飞, 傅斌, 张学华, 1996.岩浆去气作用碳硫同位素效应.地质科学, 31(1):43-53. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX601.004.htm [75] 朱弟成, 潘桂棠, 王立全, 等, 2008.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报, 27(9):1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013