• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    浙西南松阳地区斜长角闪岩变质作用演化及地质意义

    郭腾达 郑常青 周喜文 董云峰 周枭 王照元 宋旸 石磊

    郭腾达, 郑常青, 周喜文, 董云峰, 周枭, 王照元, 宋旸, 石磊, 2021. 浙西南松阳地区斜长角闪岩变质作用演化及地质意义. 地球科学, 46(2): 489-503. doi: 10.3799/dqkx.2019.059
    引用本文: 郭腾达, 郑常青, 周喜文, 董云峰, 周枭, 王照元, 宋旸, 石磊, 2021. 浙西南松阳地区斜长角闪岩变质作用演化及地质意义. 地球科学, 46(2): 489-503. doi: 10.3799/dqkx.2019.059
    Guo Tengda, Zheng Changqing, Zhou Xiwen, Dong Yunfeng, Zhou Xiao, Wang Zhaoyuan, Song Yang, Shi Lei, 2021. Metamorphism Evolution and Geological Significance of Amphibolite in Songyang Area of Southwest Zhejiang Province. Earth Science, 46(2): 489-503. doi: 10.3799/dqkx.2019.059
    Citation: Guo Tengda, Zheng Changqing, Zhou Xiwen, Dong Yunfeng, Zhou Xiao, Wang Zhaoyuan, Song Yang, Shi Lei, 2021. Metamorphism Evolution and Geological Significance of Amphibolite in Songyang Area of Southwest Zhejiang Province. Earth Science, 46(2): 489-503. doi: 10.3799/dqkx.2019.059

    浙西南松阳地区斜长角闪岩变质作用演化及地质意义

    doi: 10.3799/dqkx.2019.059
    基金项目: 

    国家自然科学基金项目 41472164

    国家自然科学基金项目 41872192

    中国地质调查局项目 121201102000150020-06

    详细信息
      作者简介:

      郭腾达(1993-), 男, 硕士, 主要从事变质岩石学研究.ORCID: 0000-0002-7284-6270.E-mail: guotd16@mails.jlu.edu.cn

      通讯作者:

      郑常青, ORCID: 0000-0002-9622-6922.E-mail: zhengchangqing@jlu.edu.cn

    • 中图分类号: P588.34

    Metamorphism Evolution and Geological Significance of Amphibolite in Songyang Area of Southwest Zhejiang Province

    • 摘要: 位于浙西南松阳地区八都杂岩的斜长角闪岩是构成前寒武纪基底的主要变质岩之一,但其原岩类型与变质演化特点目前尚不明确.开展了岩相学、矿物微区化学成分及全岩主微量元素研究,发现该斜长角闪岩的原岩类型为高铁拉斑玄武岩,可能形成于岛弧构造环境.石榴石核部保存有进变质信息,峰期变质阶段(M1)矿物组合为石榴石(边部)+浅闪石+斜长石(An=40~43)+单斜辉石+黑云母+钛铁矿;退变质阶段(M2)以阳起石+绿泥石+榍石±黑云母±钛铁矿等退变质矿物组合为特征.结合地质温压计、变质相平衡模拟,获得峰期变质阶段(M1)温压为710~740℃、800~850 MPa,退变质阶段(M2)温压为~440℃、~480 MPa;其变质演化过程具有顺时针型P-T演化轨迹.通过区域对比,八都杂岩斜长角闪岩变质作用时代可能为印支期,并经历了印支-华南-华北板块的俯冲碰撞过程.

       

    • 图  1  华南(a)及浙西南地区(b)区域地质简图

      Liu et al.(2009)Yu et al.(2012)Zhao et al.(2015)

      Fig.  1.  Geological sketch of South China (a) and Southwest Zhejiang Province (b)

      图  2  斜长角闪岩的显微照片

      a.钛铁矿发育榍石退变反应边;b.浅闪石具阳起石退变边, 单斜辉石具有角闪石退变边, 钛铁矿被包裹与浅闪石中; c.石榴石具斜长石冠状边, 红线为石榴石剖面线;d.浅闪石边部出现黑云母,且黑云母向绿泥石退变;e、f.石榴石边部环绕绿泥石与斜长石.矿物缩写:Grt.石榴石;Ed.浅闪石;Act.阳起石;Cpx.单斜辉石;Pl. 斜长石;Bt.黑云母;Ilm.钛铁矿;Sph. 榍石;Chl. 绿泥石

      Fig.  2.  Photomicographs of amphibolite

      图  3  斜长角闪岩的球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

      Fig.  3.  chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spider diagram (b) of amphibolite

      图  4  石榴石的(Alm+Spes)-Gro-Py图解(a)和成分剖面(b)

      石榴角闪岩中石榴石据郭腾达等(2018);退变榴辉岩与基性麻粒岩中石榴石据Zhao et al.(2017).剖面位置见图 2c.矿物缩写:Alm.铁铝榴石;Spes.锰铝榴石; Gro.钙铝榴石;Py.镁铝榴石

      Fig.  4.  (Alm+Spes)-Gro-Py compositional diagram of garnet (a) and profiles of garnet (b)

      图  5  角闪石的成分命名(a、b)、Ti-(Na+K) 关系图解(c)和Al-Ti关系图解(d)

      图a、b据王立本(2001)修改;图c、d据靳是琴(1991)修改. 石榴角闪岩中角闪石据郭腾达等(2018);退变榴辉岩与基性麻粒岩中角闪石据Zhao et al.(2017)

      Fig.  5.  The classification diagrams (a and b), Ti-(Na+K) diagram (c) and Al-Ti diagram (d) of amphiboles

      图  6  单斜辉石Wo-Fs-En图解(a)和AlVI-XMg关系图解(b)

      图a据特吕格(1959)修改. 石榴角闪岩和石榴辉石岩中单斜辉石据郭腾达等(2018);退变榴辉岩中单斜辉石据Zhao et al.(2017)

      Fig.  6.  Wo-Fs-En compositional diagram (a) and relationship between AlVI and XMg (b) of clinopyroxene

      图  7  松阳地区斜长角闪岩P-T视剖面图及其反演P-T轨迹

      ①Bt Amph Grt Zo Sph Pa Ab Q;②Bt Amph Grt Zo Sph Pa Clin Ab Q Ru;③Bt Amph Grt Zo Sph Clin Ab Q Ru Ilm;④Bt Amph Grt Zo Clin Ab Q Ru Ilm;⑤Bt Amph Grt Zo Sph Clin Ab Q Ilm;⑥Bt Amph Pl Grt Zo Sph Clin Ab Q Ilm;⑦Bt Amph Pl Grt Zo Sph Clin Ab Q Ilm;⑧Bt Amph Pl Grt Sph Clin Ab Q;⑨Bt Amph Pl Grt Zo Sph Clin Ab Q Ilm;⑩Bt Amph Pl Grt Sph Clin Ab Q Ilm;⑪Bt Amph Pl Grt Clin Ab Q Ilm;⑫Bt Amph Pl Grt Zo Sph Clin Ab Q H2O;⑬Bt Amph Pl Grt Zo Sph Clin Q;⑭Bt Amph Pl Grt Fanth Clin Q Ilm;⑮Bt Amph Pl Grt Fanth Clin Q Ilm H2O;⑯Bt Amph Pl Grt Zo Sph Q H2O;⑰Bt Melt Amph Pl Grt Sph Di Q Ilm H2O;⑱Bt Amph Pl Grt Di Fanth Q Ilm H2O;⑲Bt Melt Pl Grt Sph Di Q;⑳Bt Melt Pl Grt Sph Di Q Ilm.黑线和箭头代表斜长角闪岩的P-T轨迹,虚线为推测的进变质轨迹,M1为峰期变质阶段,M2为退变质阶段.矿物缩写:Grt. 石榴石;Di. 透辉石;Amph. 角闪石;Bt. 黑云母;Pl. 斜长石;Ilm. 钛铁矿;Clin. 斜绿泥石;Sph. 榍石;Zo. 黝帘石;Ab. 钠长石;Fanth. 铁直闪石;Ru. 金红石;Melt. 熔体

      Fig.  7.  P-T pseudo section and metamorphism P-T path for amphibolite of Songyang area

      图  8  斜长角闪岩的变质作用演化P-T轨迹

      P-T格子中各变质相据Oh and Liou (1998),蓝晶石-矽线石-红柱石转化界限据Salje (1986).1.退变榴辉岩,据Zhao et al. (2017);2.泥质麻粒岩,据董云峰等(2018)3.石榴角闪二长片麻岩,据周枭等(2018);4.石榴辉石岩,据郭腾达等(2018).M1为峰期变质阶段,M2为退变质阶段

      Fig.  8.  Metamorphism P-T path of amphibolite

      图  9  斜长角闪岩的原岩恢复图解

      a. 据王仁民(1987);b. 据Winchester and Floyd(1977);c. 据Jensen(1976). UMK. 超基性科马提岩; BK. 玄武质科马提岩; HMT. 高镁拉斑玄武岩; HFT. 高铁拉斑玄武岩; TA. 拉斑质安山岩; TD. 拉斑质英安岩; TR.拉斑质流纹岩; CB.钙碱性玄武岩; CA.钙碱性安山岩; CD.钙碱性英安岩; CR.钙碱性流纹岩

      Fig.  9.  Diagram for initial rock recovery of amphibolite

      图  10  TiO2-10MnO-10P2O5图解(a)和Ti/100-Zr-Sr/2图解(b)

      图a据Pearce and Peate(1995);图b据Pearce(1982)

      Fig.  10.  Diagrams of TiO2-10MnO-10P2O5 (a) and Ti/100-Zr-Sr/2 (b)

    • [1] Anovitz, L. M. , 1991. Al Zoning in Pyroxene and Plagioclase: Window on Late Prograde to Early Retrograde PT Paths in Granulite Terranes. American Mineralogist, 76(7): 1328-1343. http://ammin.geoscienceworld.org/content/76/7-8/1328
      [2] Charvet, J. , Shu, L. S. , Shi, Y. S. , et al. , 1996. The Building of South China: Collision of Yangzi and Cathaysia Blocks, Problems and Tentative Answers. Journal of Southeast Asian Earth Sciences, 13(3-5): 223-235. https://doi.org/10.1016/0743-9547(96)00029-3
      [3] Chen, A. , 1999. Mirror-Image Thrusting in the South China Orogenic Belt: Tectonic Evidence from Western Fujian, Southeastern China. Tectonophysics, 305(4): 497-519. https://doi.org/10.1016/s0040-1951(99)00036-0
      [4] Chen, B. , Wang, H. N. , 2004. Geochemistry. Science Press, Beijing (in Chinese).
      [5] Chen, J. F. , Foland, K. A. , Xing, F. M. , et al. , 1991. Magmatism along the Southeast Margin of the Yangtze Block: Precambrian Collision of the Yangtze and Cathysia Blocks of China. Geology, 19(8): 815-818. https://doi.org/10.1130/0091-7613(1991)0190815:matsmo>2.3.co;2 doi: 10.1130/0091-7613(1991)0190815:matsmo>2.3.co;2
      [6] Chen, L. S., 2017. The Age and Tectonic Attribute of the Longquan Group: Constraints on the Evolution of the Cathaysia Block (Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract).
      [7] Connolly, J. A. D. , 2005. Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation. Earth and Planetary Science Letters, 236(1-2): 524-541. https://doi.org/10.1016/j.epsl.2005.04.033
      [8] Dale, J. , Holland, T. , Powell, R. , 2000. Hornblende-Garnet-Plagioclase Thermobarometry: A Natural Assemblage Calibration of the Thermodynamics of Hornblende. Contributions to Mineralogy and Petrology, 140(3): 353-362. https://doi.org/10.1007/s004100000187
      [9] Dong, Y. F. , Zheng, C. Q. , Zhou, X. W. , et al. , 2018. Metamorphism and Its Tectonic Implications of Early Mesozoic Pelitic Granulites from Badu Complex of Southwestern Zhejiang Province, South China. Earth Science, 43(1): 259-277(in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=SDMA201810001038
      [10] Gan, X. C. , Ji, H. M. , Sun, D. Z. , et al. , 1995. A Geochronological Study on Early Proterozoic Granitic Rocks, Southwestern Zhejiang. Acta Petrologica et Mineralogica, 14(1): 1-8(in Chinese with English abstract). http://www.researchgate.net/publication/312895048_A_geochronological_study_on_Early_Proterozoic_granitic_rocks_southwestern_Zhejiang_in_Chinese_with_English_abstract
      [11] Guo, T. D. , Zheng, C. Q. , Zhou, X. W. , at al. , 2018. Metamorphism Evolution and Geological Significance of Garnet Pyroxenite in Songyang Area of Southwestern Zhejiang Province. Acta Petrologica Sinica, 34(12): 3627-3642(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201812012.htm
      [12] Gupta, S. , Rodgers, J. , Hsü, K. J. , et al. , 1989. Comments and Reply on "Mesozoic Overthrust Tectonics in South China". Geology, 17(7): 669-673. https://doi.org/10.1130/0091-7613(1989)0170669:caromo>2.3.co;2 doi: 10.1130/0091-7613(1989)0170669:caromo>2.3.co;2
      [13] Hsü, K. J. , Sun, S. , Li, J. L. , et al. , 1988. Mesozoic Overthrust Tectonics in South China. Geology, 16(5): 418-421. https://doi.org/10.1130/0091-7613(1988)0160418:motisc>2.3.co;2 doi: 10.1130/0091-7613(1988)0160418:motisc>2.3.co;2
      [14] Hu, X. J. , Xu, J. K. , Tong, C. X. , et al. , 1991. The Precambrian Geology of Southwestern Zhejiang Province. Geological Publishing House, Beijing (in Chinese).
      [15] Jensen, L. S. , 1976. A New Plot for Classifying Subalkalic Volcanic Rocks. Ontario Division of Mines Miscellaneous Paper, 66: 22. http://ci.nii.ac.jp/naid/10013553315
      [16] Jin, S. Q. , 1991. Compositional Characteristics of Calcareous Amphibole from Metamorphic Facies in Different Regions. Chinese Science Bulletin, 36(11): 851-854(in Chinese). doi: 10.1360/csb1991-36-11-851
      [17] Jin, X. D. , Zhu, H. P. , 2000. Determination of 43 Trace Elements in Rock Samples by Double Focusing High Resolution Inductively Coupled Plasma-Mass Spectrometry. Chinese Journal of Analytieal Chemistry, 28(5): 563-567(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FXHX200005007.htm
      [18] Li, J. H. , Zhang, Y. Q. , Zhao, G. C. , et al. , 2017. New Insights into Phanerozoic Tectonics of South China: Early Paleozoic Sinistral and Triassic Dextral Transpression in the East Wuyishan and Chencai Domains, NE Cathaysia. Tectonics, 36(5): 819-853. https://doi.org/10.1002/2016tc004461
      [19] Li, X. H. , Lee, C. Y. , Liu, Y. , et al. , 1999. Geochemistry Characteristics of the Paleoproterozoic Meta Volcanics in the Cathaysia Block and Its Tectonic Significance. Acta Petrologica Sinica, 15(3): 364-370(in Chinese with English abstract). http://www.researchgate.net/publication/283868406_Geochemistry_characteristics_of_the_Paleoproterozoic_meta-volcanics_in_the_Cathaysia_block_and_it's_tectonic_significance
      [20] Li, X. H. , Zhao, J. X. , McCulloch, M. T. , et al. , 1997. Geochemical and Sm-Nd Isotopic Study of Neoproterozoic Ophiolites from Southeastern China: Petrogenesis and Tectonic Implications. Precambrian Research, 81(1-2): 129-144. https://doi.org/10.1016/s0301-9268(96)00032-0
      [21] Li, Z. X., 1998. Tectonic History of the Major East Asian Lithospheric Blocks since the Mid-Proterozoic: A Synthesis. In: Flower, M. F. J., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Washington, D. C. . https://doi.org/10.1029/gd027p0221
      [22] Li, Z. X. , Li, X. H. , 2007. Formation of the 1300 km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      [23] Liu, R., 2009. Pre-Hercynian Crustal Anatexis in the Cathaysia Block (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [24] Liu, R. , Zhou, H. W. , Zhang, L. , et al. , 2009. Paleoproterozoic Reworking of Ancient Crust in the Cathaysia Block, South China: Evidence from Zircon Trace Elements, U-Pb and Lu-Hf Isotopes. Chinese Science Bulletin, 54(9): 1543-1554. https://doi.org/10.1007/s11434-009-0096-4
      [25] Oh, C. W. , Liou, J. G. , 1998. A Petrogenetic Grid for Eclogite and Related Facies under High-Pressure Metamorphism. The Island Arc, 7(1-2): 36-51. https://doi.org/10.1046/j.1440-1738.1998.00180.x
      [26] Pearce, J. A. , 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. Andesites, 8: 525-548.
      [27] Pearce, J. A. , Peate, D. W. , 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      [28] Ravna, K. , 2000. The Garnet-Clinopyroxene Fe2+-Mg Geothermometer: An Updated Calibration. Journal of Metamorphic Geology, 18(2): 211-219. https://doi.org/10.1046/j.1525-1314.2000.00247.x
      [29] Rowley, D. B. , Ziegler, A. M. , Nie, G. , 1989. Comment on "Mesozoic Overthrust Tectonics in South China". Geology, 17(4): 394-396. https://doi.org/10.1130/0091-7613(1989)017<0384:caromo>2.3.co;2 doi: 10.1130/0091-7613(1989)017<0384:caromo>2.3.co;2
      [30] Salje, E. , 1986. Heat Capacities and Entropies of Andalusite and Sillimanite: The Influence of Fibrolitization on the Phase Diagram of the Al2SiO5 Polymorphs. American Mineralogist, 71(11-12): 1366-1371. http://ci.nii.ac.jp/naid/80003362534
      [31] Shu, L. S. , 2006. Predevonian Tectonic Evolution of South China: From Cathaysian Block to Caledonian Period Folded Orogenic Belt. Geological Journal of China Universities, 12(4): 418-431(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030173364
      [32] Shu, L. S. , 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252283503.html
      [33] Shu, L. S. , Charvet, J. , Shi, Y. S. , et al. , 1991. Structural Analysis of the Nanchang-Wanzai Sinistral Ductile Shear Zone (Jiangnan Region, South China). Journal of Southeast Asian Earth Sciences, 6(1): 13-23. https://doi.org/10.1016/0743-9547(91)90091-b
      [34] Troger, W. E., 1959. Tabellen Zur Optischen Bestimmung Der Gesteinsbilden Den Minerale (Guo, M. S., Trans. ). Geological Publishing House, Beijing (in Chinese).
      [35] Wang, L. B. , 2001. Nomenclature of Amphibole: Report of the International Mineralogical Association New Mineral and Mineral Nomenclature Committee, Amphibole Specialized Committee. Acta Petrologica et Mineralogica, 20(1): 84-100(in Chinese with English abstract).
      [36] Wang, R. M. , 1987. Graphic Discrimination Method of Metamorphic Rock Original Rock. Geological Publishing House, Beijing (in Chinese).
      [37] Wang, Y. J. , Fan, W. M. , Zhang, G. W. , et al. , 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      [38] Wang, Y. J. , Fan, W. M. , Zhao, G. C. , et al. , 2007. Zircon U-Pb Geochronology of Gneissic Rocks in the Yunkai Massif and Its Implications on the Caledonian Event in the South China Block. Gondwana Research, 12(4): 404-416. https://doi.org/10.1016/j.gr.2006.10.003
      [39] Wang, Y. J. , Wu, C. M. , Zhang, A. M. , et al. , 2012. Kwangsian and Indosinian Reworking of the Eastern South China Block: Constraints on Zircon U-Pb Geochronology and Metamorphism of Amphibolites and Granulites. Lithos, 150: 227-242. https://doi.org/10.1016/j.lithos.2012.04.022
      [40] Wang, Y. J. , Zhang, Y. H. , Fan, W. M. , et al. , 2002. Numerical Modeling of the Formation of Indo-Sinian Peraluminous Granitoids in Hunan Province: Basaltic Underplating versus Tectonic Thickening. Scientia Sinica Terrae, 32(6): 491-499(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200211007.htm
      [41] Wang, Y. J. , Zhang, Y. H. , Fan, W. M. , et al. , 2005. Structural Signatures and 40Ar/39Ar Geochronology of the Indosinian Xuefengshan Tectonic Belt, South China Block. Journal of Structural Geology, 27(6): 985-998. https://doi.org/10.1016/j.jsg.2005.04.004
      [42] Wei, C. J. , 2011. Approaches and Advancement of the Study of Metamorphic P-T-t Paths. Earth Science Frontiers, 18(2): 1-16(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201102003.htm
      [43] Winchester, J. A. , Floyd, P. A. , 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [44] Xiang, H. , Zhang, L. , Zhou, H. W. , et al. , 2008. U-Pb Zircon Geochronology and Hf Isotope Study of Metamorphosed Basic-Ultrabasic Rocks from Metamorphic Basement in Southwestern Zhejiang: The Response of the Cathaysia Block to Indosinian Orogenic Event. Scientia Sinica Terrae, 38(4): 401-413(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG200806003.htm
      [45] Xu, X. S. , O'Reilly, S. Y. , Griffin, W. L. , et al. , 2007. The Crust of Cathaysia: Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1-2): 51-78. https://doi.org/10.1016/j.precamres.2007.04.010
      [46] Xue, H. M. , Ma, F. , Song, Y. Q. , et al. , 2010. Geochronology and Geochemisty of the Neoproterozoic Granitoid Association from Eastern Segment of the Jiangnan Orogen, China: Constraints on the Timing and Process of Amalgamation between the Yangtze and Cathaysia Blocks. Acta Petrologica Sinica, 26(11): 3215-3244(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201011006.htm
      [47] Yang, J. , Wang, J. R. , Zhang, Q. , et al. , 2016. Global IAB Data Excavation: The Performance in Basalt Discrimination Diagrams and Preliminary Interpretation. Geological Bulletin of China, 35(12): 1937-1949(in Chinese with English abstract). http://www.researchgate.net/publication/312129688_Global_IAB_data_excavation_The_performance_in_basalt_discrimination_diagrams_and_preliminary_interpretation
      [48] Yu, J. H. , O'Reilly, S. Y. , Zhou, M. F. , et al. , 2012. U-Pb Geochronology and Hf-Nd Isotopic Geochemistry of the Badu Complex, Southeastern China: Implications for the Precambrian Crustal Evolution and Paleogeography of the Cathaysia Block. Precambrian Research, 222-223: 424-449. https://doi.org/10.1016/j.precamres.2011.07.014
      [49] Yu, J. H. , Wang, L. J. , O'Reilly, S. Y. , et al. , 2009. A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3-4): 347-363. https://doi.org/10.1016/j.precamres.2009.08.009
      [50] Zhai, M. G. , 1991. Two Types of Archaean Meta-Basalts and Their Geotectonic Significance. Chinese Journal of Geology, 26(3): 222-230(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX199103002.htm
      [51] Zhang, G. W. , Guo, A. L. , Wang, Y. J. , et al. , 2013. Tectonics of South China Continent and Its Implications. Science China Earth Sciences, 43(10): 1553-1582(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201311002.htm
      [52] Zhao, L. , Zhai, M. G. , Santosh, M. , et al. , 2017. Early Mesozoic Retrograded Eclogite and Mafic Granulite from the Badu Complex of the Cathaysia Block, South China: Petrology and Tectonic Implications. Gondwana Research, 42: 84-103. https://doi.org/10.1016/j.gr.2016.10.002
      [53] Zhao, L. , Zhai, M. G. , Zhou, X. W. , et al. , 2015. Geochronology and Geochemistry of a Suite of Mafic Rocks in Chencai Area, South China: Implications for Petrogenesis and Tectonic Setting. Lithos, 236-237: 226-244. https://doi.org/10.1016/j.lithos.2015.09.004
      [54] Zhao, L. , Zhou, X. W. , 2012. The Metamorphic Evolution and pT Path of Pelitic Granulite from the Badu Group in Southwestern Zhejiang Province. Acta Petrologica et Mineralogica, 31(1): 61-72(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201201009.htm
      [55] Zhao, L. , Zhou, X. W. , Zhai, M. G. , et al. , 2018. Petrologic and Zircon U-Pb Geochronological Characteristics of the Pelitic Granulites from the Badu Complex of the Cathaysia Block, South China. Journal of Asian Earth Sciences, 158: 65-79. https://doi.org/10.1016/j.jseaes.2018.02.017
      [56] Zhou, X. , Zheng, C. Q. , Zhou, X. W. , et al. , 2018. Genesis and Metamorphic Evolution of Garnet Amphibolite Monzogneiss from Suichang-Dazhe Region in Southwestern Zhejiang Province. Earth Science, 43(1): 199-219(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201801016.htm
      [57] Zhou, X. M. , Sun, T. , Shen, W. Z. , et al. , 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004
      [58] 陈驳, 王鹤年, 2004. 地球化学. 北京: 科学出版社.
      [59] 陈林燊, 2017. 龙泉群形成时代与构造属性及对华夏地块演化的限定(硕士学位论文). 杭州: 浙江大学.
      [60] 董云峰, 郑常青, 周喜文, 等, 2018. 浙西南八都杂岩早中生代泥质麻粒岩变质作用及构造意义. 地球科学, 43(1): 259-277. doi: 10.3799/dqkx.2018.016
      [61] 甘晓春, 季惠民, 孙大中, 等, 1995. 浙西南早元古代花岗质岩石的年代. 岩石矿物学杂志, 14(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW501.000.htm
      [62] 郭腾达, 郑常青, 周喜文, 等, 2018. 浙西南松阳地区石榴辉石岩变质作用演化与地质意义. 岩石学报, 34(12): 3627-3642. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812012.htm
      [63] 胡雄健, 许金坤, 童朝旭, 等, 1991. 浙西南前寒武纪地质. 北京: 地质出版杜.
      [64] 靳是琴, 1991. 不同区域变质相中钙质角闪石的成分特征. 科学通报, 36(11): 851-854. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199111015.htm
      [65] 靳新娣, 朱和平, 2000. 岩石样品中43种元素的高分辨等离子质谱测定. 分析化学, 28(5): 563-567. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200005007.htm
      [66] 李献华, 李寄嵎, 刘颖, 等, 1999. 华夏古陆古元古代变质火山岩的地球化学特征及其构造意义. 岩石学报, 15(3): 364-370. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199903004.htm
      [67] 刘锐, 2009. 华夏地块前海西期地壳深熔作用(博士学位论文). 武汉: 中国地质大学.
      [68] 舒良树, 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200604002.htm
      [69] 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm
      [70] 特吕格, W. E., 1959. 造岩矿物光性鉴定表(郭明山译). 北京: 地质出版社.
      [71] 王立本, 2001. 角闪石命名法: 国际矿物学协会新矿物及矿物命名委员会角闪石专业委员会的报告. 岩石矿物学杂志, 20(1): 84-100. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200101011.htm
      [72] 王仁民, 1987. 变质岩原岩图解判别法. 北京: 地质出版社.
      [73] 王岳军, Zhang, Y. H. , 范蔚茗, 等, 2002. 湖南印支期过铝质花岗岩的形成: 岩浆底侵与地壳加厚热效应的数值模拟. 中国科学: 地球科学, 32(6): 491-499. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200206005.htm
      [74] 魏春景, 2011. 变质作用p-T-t轨迹的研究方法与进展. 地学前缘, 18(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102003.htm
      [75] 向华, 张利, 周汉文, 等, 2008. 浙西南变质基底基性-超基性变质岩锆石U-Pb年龄、Hf同位素研究: 华夏地块变质基底对华南印支期造山的响应. 中国科学: 地球科学, 38(4): 401-413. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200804001.htm
      [76] 薛怀民, 马芳, 宋永勤, 等, 2010. 江南造山带东段新元古代花岗岩组合的年代学和地球化学: 对扬子与华夏地块拼合时间与过程的约束. 岩石学报, 26(11): 3215-3244. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201011006.htm
      [77] 杨婧, 王金荣, 张旗, 等, 2016. 全球岛弧玄武岩数据挖掘: 在玄武岩判别图上的表现及初步解释. 地质通报, 35(12): 1937-1949. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201612001.htm
      [78] 翟明国, 1991. 太古代变质玄武岩的地球化学特征及大地构造意义. 地质科学, 26(3): 222-230. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199103002.htm
      [79] 张国伟, 郭安林, 王岳军, 等, 2013. 中国华南大陆构造与问题. 中国科学: 地球科学, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
      [80] 赵磊, 周喜文, 2012. 浙西南八都群泥质麻粒岩的变质演化与pT轨迹. 岩石矿物学杂志, 31(1): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201201009.htm
      [81] 周枭, 郑常青, 周喜文, 等, 2018. 浙西南遂昌-大柘地区石榴角闪二长片麻岩成因及变质演化. 地球科学, 43(1): 199-219. doi: 10.3799/dqkx.2018.012
    • 加载中
    图(10)
    计量
    • 文章访问数:  828
    • HTML全文浏览量:  201
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-06-22
    • 刊出日期:  2021-02-15

    目录

      /

      返回文章
      返回