• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    康滇地轴中南段牟定1101铀矿区沥青铀矿成矿时代及成因

    武勇 秦明宽 郭冬发 蔡煜琦 王凤岗 吴玉 郭国林 刘章月

    武勇, 秦明宽, 郭冬发, 蔡煜琦, 王凤岗, 吴玉, 郭国林, 刘章月, 2020. 康滇地轴中南段牟定1101铀矿区沥青铀矿成矿时代及成因. 地球科学, 45(2): 419-433. doi: 10.3799/dqkx.2019.058
    引用本文: 武勇, 秦明宽, 郭冬发, 蔡煜琦, 王凤岗, 吴玉, 郭国林, 刘章月, 2020. 康滇地轴中南段牟定1101铀矿区沥青铀矿成矿时代及成因. 地球科学, 45(2): 419-433. doi: 10.3799/dqkx.2019.058
    Wu Yong, Qin Mingkuan, Guo Dongfa, Cai Yuqi, Wang Fengang, Wu Yu, Guo Guolin, Liu Zhangyue, 2020. Metallogenic Chronology of the Pitchblende of 1101 Uranium Ore Area in Mouding, Middle-South Part of the Kangdian Axis and Its Geological Significance. Earth Science, 45(2): 419-433. doi: 10.3799/dqkx.2019.058
    Citation: Wu Yong, Qin Mingkuan, Guo Dongfa, Cai Yuqi, Wang Fengang, Wu Yu, Guo Guolin, Liu Zhangyue, 2020. Metallogenic Chronology of the Pitchblende of 1101 Uranium Ore Area in Mouding, Middle-South Part of the Kangdian Axis and Its Geological Significance. Earth Science, 45(2): 419-433. doi: 10.3799/dqkx.2019.058

    康滇地轴中南段牟定1101铀矿区沥青铀矿成矿时代及成因

    doi: 10.3799/dqkx.2019.058
    基金项目: 

    中核集团启明星项目 2018(294)

    国防预研项目 3210402

    中国地质调查局项目 DD2016013628

    中国核工业地质局项目 201713

    中国核工业地质局项目 201653

    详细信息
      作者简介:

      武勇(1986-), 男, 博士, 主要从事铀矿地质勘查与二次离子质谱同位素地质年代学研究

      通讯作者:

      秦明宽

    • 中图分类号: P629;P597;P611

    Metallogenic Chronology of the Pitchblende of 1101 Uranium Ore Area in Mouding, Middle-South Part of the Kangdian Axis and Its Geological Significance

    • 摘要: 牟定1101铀矿区是康滇地轴中南段发现高品位、巨粒晶质铀矿代表性产地之一.为了解铀矿物的形成时代及成因,利用微区、原位分析技术(EPMA、SEM、LA-ICP-MS)对该区3件沥青铀矿样品开展了主量化学成分、稀土元素分析及年龄测定.沥青铀矿电子探针(EPMA)化学成分具有高PbO、ThO2、Y2O3,低SiO2,Na2O,CaO,K2O,ZrO2含量特征,反映沥青铀矿形成之后遭受后期的蚀变、改造作用较弱.沥青铀矿的稀土元素ΣREE-(U/Th)、ΣREE-(ΣREE/ΣREE)N图解表明其为岩浆作用相关成因、形成于高温环境(T>450℃).3件沥青铀矿的U-Pb同位素年龄在(950±5 Ma、MSWD=0.025,953±9 Ma、MSWD=0.051,954±8 Ma、MSWD=0.085)之间,表明它们具有相近的形成时代(新元古界晚期).对比国外不同类型铀矿床,该区的铀成矿作用具有岩浆成因特征.新元古界晚期,Rodinia超大陆由聚合转化为裂解阶段,广泛引起了Pt1j苴林群发生区域变质、混合岩化、铀成矿作用.牟定1101铀矿区的成矿作用与~960 Ma Rodinia超大陆裂解地质事件所对应的晋宁构造运动有关.

       

    • 图  1  牟定1101铀矿区地质简图

      1.第四系;2.上侏罗统蛇店组;3.上侏罗统张家河组;4.下侏罗统冯家河组;5.下侏罗统干海子组;6.古元古界苴林群;7.寒武纪地层;8.晋宁期花岗岩;9.正断层;10.逆断层;11.推测断层;12.铀矿点

      Fig.  1.  Geological sketch of Mouding uranium area

      图  2  1101铀矿区露头及手标本照片

      a.铀矿点γ放射值;b.铀矿点露头铀矿物特征;c, d.为沥青铀矿测年、沥青铀矿单矿物分选样品; Ur.伽马(γ)放射值;Pit.沥青铀矿;Ur.晶质铀矿;Ua.钙铀云母;Qtz-Vein.石英脉;Ca.碳酸盐化;He.赤铁矿化

      Fig.  2.  Outcrop and H and specimen of the 1101 uranium ore area

      图  3  1101铀矿区沥青铀矿反射光、背散射(BSE)图像及测点位置

      a, c. MD01、MD31反射光照片;b, d. MD01、MD31背散射(BSE)照片;e. MD02沥青铀矿单矿物背散射(BSE)照片;红色圈为LA-ICP-MS同位素测试点区域;黄色圈为EPMA测试区域

      Fig.  3.  The analytical spot, Microscope and BSE images of the pitchblende

      图  4  1101铀矿区沥青铀矿化学成分与UO2相关图

      Fig.  4.  The correlation diagram of pitchblende chemical composition and UO2 of 1101 uranium ore area

      图  5  1101铀矿区沥青铀矿LA-ICP-MS U-Pb年龄谐和图

      a, b. MD01沥青铀矿同位素激光年龄图;c,d. MD02沥青铀矿激光同位素年龄图;e,f. MD31沥青铀矿激光同位素年龄图

      Fig.  5.  Concordia diagram of pitchblende from 1101 uranium ore area

      图  6  1101铀矿区MD01、MD02、MD31沥青铀矿样品LA-ICP-MS REE模式图

      Fig.  6.  Chondrite normalized REE patterns of pitchblende of the 1101 uranium ore area

      图  7  图a为1101铀矿区沥青铀矿主量元素(EPMA);图b为REE配分模式图与世界典型不同成因类型铀矿床对比图(数据据Alexandre, 2015

      Fig.  7.  The chemical composition and REE normalized patterns of differernt types uranium deposits

      图  8  图a为1101铀矿区沥青铀矿ΣREE-(U/Th)(底图据Frimmel et al., 2014);图b为ΣREE-(ΣREE/ΣREE)N图解(底图据Mercadier et al., 2011)

      Fig.  8.  The diagram of ΣREE-(U/Th); ΣREE-(ΣREE/ΣREE)N of 1101 uranium ore area

      图  9  1101铀矿区沥青铀矿与围岩稀土元素配分模式图

      Fig.  9.  The REE patterns of pitchblende and wall rock of the 1101 uranium ore area

    • [1] Alexandre, P., Kyser, K., Layton-Matthews, D., et al., 2015. Chemical Compositions of Natural Uraninite. The Canadian Mineralogist, 53(4): 595-622. https://doi.org/10.3749/canmin.1500017
      [2] Cantrell, K. J., Byrne, R. H., 1987. Rare Earth Element Complexation by Carbonate and Oxalate Ions. Geochimica et Cosmochimica Acta, 51(3): 597-605. https://doi.org/10.1016/0016-7037(87)90072-x
      [3] Chang, D., Chen, Y.L., Yuan, W., et al. 2015. Study on Trace Element Characteristics of Migmatisation Uranoum Ore in Haita Area of Miyi County, Sichuan. Acta Mineralogical Sinica, (S1): 272-273(in Chinese).
      [4] Chen, H.S., Ran, C.Y., 1993.Isotope Geochemistry of Copper Deposits in Kangdian Axis.Geology Press, Beijing(in Chinese).
      [5] Cheng, Y.L., 1992. A Preliminary Study of Uranium Mineralization Epochs on the Kanddian Axis. Acta Geological Sichuan. 12(1): 42-46(in Chinese with English abstract).
      [6] Cheng.Y.Q., 1987. On Migmatites and Migmatization-Half a Century's Recollection of Certain Related Problems. Bulletin of The Chinese Academy of Geological Sciences. 16: 5-19(in Chinese with English abstract)
      [7] Chipley, D., Polito, P. A., Kyser, T. K., 2007. Measurement of U-Pb Ages of Uraninite and Davidite by Laser Ablation-HR-ICP-MS. American Mineralogist, 92(11/12): 1925-1935. https://doi.org/10.2138/am.2007.2226
      [8] Cuney, M., Emetz, A., Mercadier, J., et al., 2012. Uranium Deposits Associated with Na-Metasomatism from Central Ukraine: A Review of some of the Major Deposits and Genetic Constraints. Ore Geology Reviews, 44: 82-106. https://doi.org/10.1016/j.oregeorev.2011.09.007
      [9] Cuney, M., 2010. Evolution of Uranium Fractionation Processes through Time: Driving the Secular Variation of Uranium Deposit Types. Economic Geology, 105(3): 553-569. https://doi.org/10.2113/gsecongeo.105.3.553
      [10] Eglinger, A., André-Mayer, A. S., Vanderhaeghe, O., et al., 2013. Geochemical Signatures of Uranium Oxides in the Lufilian Belt: From Unconformity-Related to Syn-Metamorphic Uranium Deposits during the Pan-African Orogenic Cycle. Ore Geology Reviews, 54: 197-213. https://doi.org/10.1016/j.oregeorev.2013.04.003
      [11] Evron, R., Kimmel, G., Eyal, Y., 1994. Thermal Recovery of Self-Radiation Damage in Uraninite and Thorianite. Journal of Nuclear Materials, 217(1/2): 54-66. https://doi.org/10.1016/0022-3115(94)90304-2
      [12] Forster, H. J., 1999. The Chemical Composition of Uraninite in Variscan Granites of the Erzgebirge, Germany. Mineralogical Magazine, 63(2): 239-252. https://doi.org/10.1180/002646199548466
      [13] Frimmel, H. E., Schedel, S., 2014. Uraninite Chemistry as Forensic Tool for Provenance Analysis. Applied Geochemistry, 48: 104-121. https://doi.org/10.1016/j.apgeochem.2014.07.013
      [14] Fryer, B. J., Taylor, R. P., 1987. Rare-Earth Element Distributions in Uraninites: Implications for Ore Genesis. Chemical Geology, 63(1/2): 101-108. https://doi.org/10.1016/0009-2541(87)90077-5
      [15] Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. http://cn.bing.com/academic/profile?id=b0492b09ac7555f460b3d5fffe9e5be2&encoded=0&v=paper_preview&mkt=zh-cn
      [16] Huang, G.L., Yin, Z.P., Ling, H.F., et al., 2010. Formation Age, Geochemical Characteristics and Genesis of Pitchblende from NO.302 Uranium Deposit in Northern Guangdong. Mineral Deposits, 29(2): 352-360(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201002017
      [17] Janeczek, J., Ewing, R. C., 1992. Structural Formula of Uraninite. Journal of Nuclear Materials, 190: 128-132. https://doi.org/10.1016/0022-3115(92)90082-v
      [18] Lai, S.C., Zhu, R.Z., 2017. Geochemical Characteristics and Its Continental Dynamic Implication of Neproterozoic Volcanic Rocks in Luding Areas of Sichuan, China. Journal of Earth Sciences and Environment, 39(4):460-475(in Chinese with English abstract).
      [19] Li, X.H., Zhou, H.W., Li, Z.X., et al., 2001. Zircon U-Pb Age and Petrochemical Characteristics of the Neoproterozoic Bimodal Volcanic from Western Yangtze Block. Geochemical, 30(4):315-322(in Chinese with English abstract).
      [20] Li, Z.H., Luo, Z.H., Chen, Y.L., et al., 2008. Geology and Geochemistry of the Kangding-Luding Metamorphosed Intrusions and Implication for Tectonic Setting. Geoscience, 22(2):181-189(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200802005
      [21] Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1/2/3/4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5
      [22] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. in Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [23] Liu, J.Y., Zhang, C.J., 2007. Metallization System of Panxi Area. Geology Press, Beijing(in Chinese with English abstract).
      [24] Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, 39.
      [25] Luo, Y.Y., 1990. A Preliminary Discussion on the Environment of Uranium Metallogeniesis in Kangdian Axis. Uranium Geology, (4): 226-231(in Chinese with English abstract).
      [26] Luo, Y.Y., Wei, M.J., Ma, G.Z., et al., 1998. Preliminary Analysis on Tectonic Movement and Uranium Metallogeny in Kangdian the Earth's Axis.Uranium Geology, 2: 72-81(in Chinese with English abstract).
      [27] McLennan, S. M., Taylor, S. R., 1979. Rare Earth Element Mobility Associated with Uranium Mineralisation. Nature, 282(5736): 247-250. https://doi.org/10.1038/282247a0
      [28] Mercadier, J., Cuney, M., Lach, P., et al., 2011. Origin of Uranium Deposits Revealed by their Rare Earth Element Signature. Terra Nova, 23(4): 264-269. https://doi.org/10.1111/j.1365-3121.2011.01008.x
      [29] Michard, A., Beaucaire, C., Michard, G., 1987. Uranium and Rare Earth Elements in CO2-Rich Waters from Vals-Les-Bains (France). Geochimica et Cosmochimica Acta, 51(4): 901-909. https://doi.org/10.1016/0016-7037(87)90103-7
      [30] Pagel, M., Pinte, G., Rotach, T.N., et al., 1987. The Rare-Earth Element in Natural Uranium Oxides. Mineralium Deposita, 27:81-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/039219219103915505
      [31] Peng, S. B., Kusky, T. M., Jiang, X. F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2/3): 577-594. https://doi.org/10.1016/j.gr.2011.07.010
      [32] Qian, F.R., 1996.Uranium Mineralization Types and Their Characteristics in Proterozoic of the Central-South Section of Kham-Dian(West Sichuan-Yunman) Axis. Uranium Geology.12(4): 214-219(in Chinese with English abstract).
      [33] Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5): 751-767. https://doi.org/10.1107/s0567739476001551
      [34] Spano, T. L., Simonetti, A., Wheeler, T., et al., 2017. A Novel Nuclear Forensic Tool Involving Deposit Type Normalized Rare Earth Element Signatures. Terra Nova, 29(5): 294-305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/ter.12275
      [35] Teng,, J.W., 1994. Kangdian Physics and dynamics of the lithosphere tectonic belt.Science press: 264.(in Chinese)
      [36] Wang, D.Y., Liu, F.Y., 1993. Geological Characteristics of Uranium Mineralization of Pre-Cambrian at The Southern Part of Xikang-Yunnan Axis. Geology of Yunnan. 12(1): 82-91(in Chinese with English abstract).
      [37] Tang, A., Li, G.L., Su, Y., et al., 2017. EPMA Chemical U-Th-Pb Dating of Uraninite in Ziyunshan Granite, Centre Jiangxi Province. Earth Science.42(3):378-388(in Chinese with English abstract).
      [38] Wang, F.G., Sun, Y., Yao, J., et al., 2017. Study on Characteristics of Gaint Grain Uraninite in Haita Area of Miyi County, Sichuan. World Nuclear Geoscience. 34(4): 187-193, 216 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjhdzkx201704001
      [39] Wang, H.J., Li, J.C., Xue, J.Y., et al., 2009. Neoproterozoic Metallogenesis in Xikang-Yunnan Axis and Its Relationship to Rodinia Supercontinent. World Nuclear Geoscience.26(2): 81-86.
      [40] Wang, Z.H., Deng, M., Cheng, J.X., et al., 2018. influence of Fault and Magmatism on Oil and Gas Preservation Condition, to the West of Kangdian Ancient Continent: Taking Yanyuan Basin as an Example. Earth Science, 43(10):3616-3624(in Chinese with English abstract).
      [41] Xie, B., Wang, H.J., Zhao, J.B., 2015. Study on Metallogenic Environment of Mouding 1101 Area in the Middle of Kangdian Axis. Progress Report on China Nuclear Science and Techology, 4: 58-63(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9275546
      [42] Xu, B., 2001. Recent Study of the Rodinia Supercontinent Evolution and Its Main Goal. Geological Science and Technology Information, 20(1):15-19(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200101003
      [43] Xu, D.E., 1992.Discussion on the Crustal Evolution and Uranium Mineralization of the Xikang-Yunnan Axis. Uranium Geology. 8(6): 348-353(in Chinese with English abstract).
      [44] Xu, Z.Q., Ouyang, X.D., Zhang, C.J., 2017. The Application and Significance of Electron Microprobe Dating on Datian Uraninite in Panzhihua. Rock and Mineral Analysis. 36(6):659-667 (in Chinese with English abstract).
      [45] Xu, Z.Q., Zhang, C.J., Chen, Y.L., et al., 2015. Characteristics and Significance of Uranium Bearing Rock Fill in Panzhihua Field. Acta Mineralogica Sinica, (S1357(in Chinese with English abstract).
      [46] Zhang, C.J., Chen, Y.L., Li, J.C., et al., 2015.The Discovery of Coase-Grained Uraninite in kangdian Axis and Its Geological Significance. Geological Bulletin of China, 2219-2226(in Chinese with English abstract).
      [47] Zhang, L., Chen, Y.L., Chang, D., et al., 2015. Study on Trace Element Characteristics of Migmatisation Uranoum Ore in Haita Area of Miyi County, Sichuan. Acta Mineralogical Sinica, (S1): 365-366.(in Chinese)
      [48] Zhao, J.X., Chen, Y.L., Li, Z.H., et al., 2006. Zircon U-Pb SHRIMP Dating for the Kangding Complex and Its Geological Significance. Geoscience, 20(3):378-385(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200603003
      [49] Zhong, F.J., Pan, J.Y., Xia, F., et al.2017.Geochemical Characteristics of Rare Earth Elements in Mineralization Process in the Changjiang Uranium Ore Field, Northern Guidong, China. Journal of Mineralogy and Petrology, 2: 63-73(in Chinese with English abstract).
      [50] Zong, K. Q., Chen, J. Y., Hu, Z. C., et al., 2015. In-Situ U-Pb Dating of Uraninite by Fs-LA-ICP-MS. Science China Earth Sciences, 58(10): 1731-1740(in Chinese with English abstract).
      [51] Zou, D.F., Li, F.L., Zhang, S., et al., 2011.Timing of No.335 Ore Deposit in Xiazhuang Uranium Ore Field, Northern Guangdong Province : Evidence from LA-ICP-MS U-Pb Dating of Pitchblende. Mineral Deposits.30(05): 912-923(in Chinese with English abstract).
      [52] 常丹, 陈友良, 袁为, 等, 2015.四川米易海塔地区混合岩型铀矿微量元素地球化学特征.矿物学报, (S1): 272-273. http://d.old.wanfangdata.com.cn/Conference/9132824
      [53] 陈好寿, 冉崇英, 1993.康滇地轴铜矿床同位素地球化学.北京:地质出版社.
      [54] 陈友良, 1992.康滇地轴铀矿化时代初探.四川地质学报, 12(1): 42-46. http://www.cnki.com.cn/Article/CJFDTotal-SCDB199201005.htm
      [55] 程裕淇, 1987.有关混合岩和混合岩化作用的一些问题对半个世纪以来某些基本认识的回顾.中国地质科学院院报, 16: 5-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002491748
      [56] 黄国龙, 尹征平, 凌洪飞, 等, 2010.粤北地区302矿床沥青铀矿的形成时代、地球化学特征及其成因研究.矿床地质, 29(02): 352-360. http://d.old.wanfangdata.com.cn/Periodical/kcdz201002017
      [57] 解波, 王红军, 赵剑波, 等, 2015.探讨康滇地轴中段牟定1101地区铀成矿环境.中国核科学技术进展报告, 4: 58-63. http://d.old.wanfangdata.com.cn/Conference/9275546
      [58] 赖绍聪, 朱韧之, 2017.四川泸定地区新元古代火山岩地球化学特征及其大陆动力学意义, 地球科学与环境学报, 39(4):460-474. http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb201704001
      [59] 李献华, 周汉文, 李正详, 等, 2001.扬子块体西缘新元古代双峰式火山岩的锆石U-Pb年龄和岩石化学特征.地球化学, 30(4):315-322. http://d.old.wanfangdata.com.cn/Periodical/dqhx200104003
      [60] 李志红, 罗照华, 陈岳龙, 等, 2008.康定-泸定地区变质侵入岩的地质地球化学特征及其构造环境.现代地质, 22(2):181-189. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ200802005.htm
      [61] 刘家铎, 张成江, 2007.攀西地区金属成矿系统.北京:地质出版社.
      [62] 刘作谆, 1979.三O七五矿区混合岩化作用及其对铀的成矿意义.铀矿地质, 2:33-38 http://www.cnki.com.cn/Article/CJFDTotal-YKDZ197904003.htm
      [63] 罗一月, 魏明基, 马光中, 1998.浅析康滇地轴构造运动与铀成矿的关系.铀矿地质, 2: 72-81. http://www.cnki.com.cn/Article/CJFDTotal-YKDZ199802001.htm
      [64] 罗一月, 1990.对"康滇地轴"轴成矿环境的初步探讨.铀矿地质, 4: 226-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Y2580338
      [65] 钱法荣, 1996.康滇地轴中南段元古代地层中铀矿化类型及其特征.铀矿地质, 12(4): 214-219. http://www.cnki.com.cn/Article/CJFDTotal-YKDZ604.003.htm
      [66] 唐傲, 李光来, 苏晔, 等, 2017.赣中紫云山花岗岩晶质铀矿的电子探针U-Th-Pb化学定年.地球科学, 42(3):378-388 doi: 10.3799/dqkx.2017.028
      [67] 滕吉文, 1994.康滇构造带岩石圈物理与动力学.北京: 科学出版社, 264.
      [68] 王鼎云, 刘凤祥, 1993.康滇地轴南段前寒武系铀成矿地质特征.云南地质, 12(1): 82-91. http://www.cnki.com.cn/Article/CJFDTotal-YNZD199301013.htm
      [69] 王凤岗, 孙悦, 姚建, 等, 2017.四川省米易县海塔地区石英脉中巨粒晶质铀矿特征研究.世界核地质科学, 34(4): 187-193. http://d.old.wanfangdata.com.cn/Periodical/sjhdzkx201704001
      [70] 王红军, 李巨初, 薛钧月, 2009.康滇地轴新元古代成矿作用与罗迪尼亚超大陆.世界核地质科学, 26(2): 81-86. http://d.old.wanfangdata.com.cn/Periodical/sjhdzkx200902004
      [71] 王正和, 邓敏, 程锦翔, 等, 2018.康滇古陆西侧断裂及岩浆活动对油气保存条件的影响:以盐源盆地为例.地球科学, 43(10):3616-3624. doi: 10.3799/dqkx.2018.225
      [72] 巫声扬, 刘兴源, 王德生, 等, 1992.康滇地轴中南段元古宙主要矿化特征及找矿方向.康滇地轴铀矿远景评价研讨会论文摘要汇编, 1992:53-55.
      [73] 徐备, 2001. Rodinia超大陆构造演化研究的新进展和主要目标.地质科技情报, 20(1):15-19 http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200101003
      [74] 胥德恩, 1992.康滇地轴地壳演化与铀成矿作用探讨.铀矿地质, 8(6): 348-353. http://www.cnki.com.cn/Article/CJFDTotal-YKDZ199206003.htm
      [75] 徐争启, 欧阳鑫东, 张成江, 等, 2017.电子探针化学测年在攀枝花大田晶质铀矿中的应用及其意义.岩矿测试, 36(6):659-667 http://d.old.wanfangdata.com.cn/Periodical/ykcs201706012
      [76] 徐争启, 张成江, 陈友良, 等, 2015.攀枝花大田含铀滚石特征及其意义.矿物学报, (S1357. http://d.old.wanfangdata.com.cn/Conference/9132768
      [77] 张成江, 陈友良, 李巨初, 等, 2015.康滇地轴巨粒晶质铀矿的发现及其地质意义.地质通报, 2219-2226. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201512008
      [78] 张龙, 陈友良, 常丹, 等, 2015.四川米易海塔地区混合岩型铀矿稀土元素地球化学特征.矿物学报. (S1: 365-366. http://d.old.wanfangdata.com.cn/Conference/9132762
      [79] 赵俊香, 陈岳龙, 李志红, 等, 2006.康定杂岩SHRIMP U-Pb定年及其地质意义.现代地质, 20(3):378-385 http://d.old.wanfangdata.com.cn/Periodical/xddz200603003
      [80] 钟福军, 潘家永, 夏菲, 等, 2017.粤北长江铀矿田成矿过程中稀土元素地球化学特征.矿物岩石. 2: 63-73. http://d.old.wanfangdata.com.cn/Periodical/kwys201702007
      [81] 宗克清, 陈金勇, 胡兆初, 等, 2015.铀矿FS-LA-ICP-MS原位微区U-Pb定年.中国科学:地球科学, 45:1304-1315 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201509005
      [82] 邹东风, 李方林, 张爽, 等, 2010.粤北下庄335矿床成矿时代的厘定:来自LA-ICP-MS沥青铀矿U-Pb年龄的制约.矿床地质. 30 (5): 912-923. http://d.old.wanfangdata.com.cn/Periodical/kcdz201105012
    • dqkx-45-2-419-Table1-7.pdf
    • 加载中
    图(9)
    计量
    • 文章访问数:  3535
    • HTML全文浏览量:  1044
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-10-05
    • 刊出日期:  2020-02-15

    目录

      /

      返回文章
      返回