The Bulk Crustal Composition of the Southeastern Lhasa Terrane and Its Origin
-
摘要: 造山带地壳结构和成分的基本特征对于认识大陆地壳成分演化和区域成矿背景具有重要意义.综合青藏高原拉萨地体东南部地球物理、高温高压岩石物性和岩浆岩地球化学资料,分析该地区地壳整体成分特征,并探讨其可能成因.该地区平均地壳波速显著低于全球大陆和造山带地壳的平均值,表明地壳整体具有中酸性成分,下地壳特征也可由中性岩石(残余体性质的中性含石榴石麻粒岩)解释.拉萨地体东南部整体地壳成分特征应与多阶段长英质化有关,包括碰撞前大陆弧演化阶段(以堆晶或残余体下地壳拆沉为主)和碰撞后高原垮塌阶段(以加厚下地壳拆沉为主,伴随印度古老长英质陆壳物质的俯冲回返/构造底侵).拉萨地体是研究大陆地壳成分演化的绝佳区域,亟待进一步开展多学科综合研究.Abstract: The structure and composition of orogenic belts are important for understanding the chemical evolution of the continental crust and the background for metallogenesis. This study integrates previously published crustal seismic structures, experimentally determined petrophysical properties of various rock types, and geochemical data of magmatic rocks from the southeastern Lhasa Terrane, in order to discuss the compositional features of the continental crust in this region and their possible causes. The average crustal seismic velocity in this region is lower than the average values of global continental crust and orogenic belts, suggesting a more felsic composition for the bulk continental crust. Moreover, the lower crust could also be composed of intermediate rocks (restitic intermediate garnet granulite). The felsic bulk crustal composition of the southeastern Lhasa terrane is supposed to be related to multiple episodes of felsification, including the pre-collisional continental arc evolution stage (mainly by delamination of cumulate or restitic lower crust) and the post-collisional plateau collapsing stage (mainly by delamination of thickened lower crust, which is accompanied by the relamination/tectonic underthrusting of felsic materials from the ancient Indian continental crust). The Lhasa terrane is one of the best places to study the chemical differentiation of continental crust, which demands further comprehensive studies of multiple disciplines.
-
Key words:
- continental crust /
- chemical differentiation /
- foundering /
- Nd isotopes /
- Gangdese /
- Tibetan Plateau /
- petrology
-
图 1 青藏高原拉萨地体岩浆岩分布
a.青藏高原地质体划分;b.拉萨地体分区和岩浆岩分布;b图改自潘桂棠等(2004),Zhu et al.(2011)
Fig. 1. Distribution of magmatic rocks in the Lhasa terrane, southern Tibet.
图 2 拉萨地体南部地壳波速结构与常见高级变质岩和岩浆岩纵波波速(Vp)对比
岩石物性资料来自Christensen and Mooney(1995),根据地温梯度模型(Hetényi et al., 2007)对应的温压条件对波速进行了校正.FGR.长英质麻粒岩,PGR.变沉积岩麻粒岩,MGR.基性麻粒岩,GGR.石榴石麻粒岩,ECL.榴辉岩,AND.安山岩,BAS.玄武岩,GRA.花岗岩,DIO.闪长岩,DIA.辉绿岩,GAB.辉长岩
Fig. 2. Comparison between the crustal velocity structure of South Lhasa terrane and compressional wave velocities (Vp) of typical high⁃grade metamorphic and igneous rocks
图 3 拉萨地体东南部SiO2>52%岩浆岩Nd同位素组成、Eu异常和Cr含量的协变图
数据来源以青藏高原岩浆岩数据库(Chapman and Kapp, 2017)为主.Eu/Eu*=EuN/(SmN×GdN)0.5,N代表球粒陨石值均一化,数值来源于McDonough and Sun(1995)
Fig. 3. εNd(t) vs. Eu/Eu*, εNd(t) vs. Cr, and Cr vs. Eu/Eu* of magmatic rocks with SiO2>52% in the southeastern Lhasa terrane
-
[1] Abers, G.A., Hacker, B.R., 2016.A MATLAB Toolbox and Excel Workbook for Calculating the Densities, Seismic Wave Speeds, and Major Element Composition of Minerals and Rocks at Pressure and Temperature. Geochemistry, Geophysics, Geosystems, 17(2):616-624. https://doi.org/10.1002/2015gc006171 [2] Bai, Z.M., Zhang, S.F., Braitenberg, C., 2013.Crustal Density Structure from 3D Gravity Modeling beneath Himalaya and Lhasa Blocks, Tibet. Journal of Asian Earth Sciences, 78:301-317. https://doi.org/10.1016/j.jseaes.2012.12.035 [3] Beck, S.L., Zandt, G., 2002.The Nature of Orogenic Crust in the Central Andes.Journal of Geophysical Research(Solid Earth), 107(B10):ESE 7-1-ESE 7-16. https://doi.org/10.1029/2000JB000124 [4] Becker, M., Le Roex, A.P., 2006.Geochemistry of South African on-and off-Craton, Group I and Group Ⅱ Kimberlites:Petrogenesis and Source Region Evolution. Journal of Petrology, 47(4):673-703. https://doi.org/10.1093/petrology/egi089 [5] Chan, G.N., Waters, D.J., Searle, M.P., et al., 2009.Probing the Basement of Southern Tibet:Evidence from Crustal Xenoliths Entrained in a Miocene Ultrapotassic Dyke.Journal of the Geological Society, 166(1):45-52. https://doi.org/10.1144/0016-76492007-145 [6] Chapman, A. D., Ducea, M. N., Kidder, S., et al., 2014. Geochemical Constraints on the Petrogenesis of the Salinian Arc, Central California:Implications for the Origin of Intermediate Magmas.Lithos, 200-201:126-141. https://doi.org/10.1016/j.lithos.2014.04.011 [7] Chapman, J. B., Ducea, M. N., Kapp, P., et al., 2017. Spatial and Temporal Radiogenic Isotopic Trends of Magmatism in Cordilleran Orogens. Gondwana Research, 48:189-204. https://doi.org/10.1016/j.gr.2017.04.019 [8] Chapman, J.B., Kapp, P., 2017.Tibetan Magmatism Database.Geochemistry, Geophysics, Geosystems, 18(11):4229-4234. doi: 10.1002/2017GC007217 [9] Christensen, N. I., Mooney, W. D., 1995. Seismic Velocity Structure and Composition of the Continental Crust:A Global View. Journal of Geophysical Research:Solid Earth, 100(B6):9761-9788. doi: 10.1029/95JB00259 [10] Chu, M. F., Chung, S. L., O'Reilly, S. Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks.Earth and Planetary Science Letters, 307(3-4):479-486. https://doi.org/10.1016/j.epsl.2011.05.020 [11] Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism.Earth-Science Reviews, 68(3-4):173-196. https://doi.org/10.1016/j.earscirev.2004.05.001 [12] Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones:Melting of Thickened Lower Crust beneath Southern Tibet.Geology, 31 (3):1021-1024. [13] De Paoli, M. C., Clarke, G. L., Daczko, N. R., 2012. Mineral Equilibria Modeling of the Granulite-Eclogite Transition:Effects of Whole-Rock Composition on Metamorphic Facies Type-Assemblages. Journal of Petrology, 53(5):949-970. https://doi.org/10.1093/petrology/egs004 [14] DeCelles, P.G., Ducea, M.N., Kapp, P., et al., 2009.Cyclicity in Cordilleran Orogenic Systems. Nat. Geosci., 2(4):251-257. https://doi.org/10.1038/ngeo469 [15] DeCelles, P.G., Horton, B.K., 2003.Early to Middle Tertiary Foreland Basin Development and the History of Andean Crustal Shortening in Bolivia.Bulletin of the Geological Society of America, 115(1):58-77. doi: 10.1130/0016-7606(2003)115<0058:ETMTFB>2.0.CO;2 [16] Ding, L., Xu, Q., Yue, Y.H., et al., 2014.The Andean-Type Gangdese Mountains:Paleoelevation Record from the Paleocene-Eocene Linzhou Basin.Earth and Planetary Science Letters, 392:250-264. https://doi.org/10.1016/j.epsl.2014.01.045 [17] Ding, L., Yue, Y. H., Cai, F. L., et al., 2006.40Ar/39Ar Geochronology, Geochemical and Sr-Nd-O Isotopic Characteristics of the High-Mg Ultrapotassic Rocks in Lhasa Block of Tibet:Implications in the Onset Time and Depth of NS-Striking Rift System.Acta Geologica Sinica, 80(9):1252-1261(in Chinese with English abstract). [18] Dong, X., Zhang, Z.M., Liu, F., et al., 2014.Late Paleozoic Intrusive Rocks from the Southeastern Lhasa Terrane, Tibetan Plateau, and Their Late Mesozoic Metamorphism and Tectonic Implications.Lithos, 198:249-262. https://doi.org/10.1016/j.lithos.2014.04.001 [19] Ducea, M.N., 2011.Fingerprinting Orogenic Delamination.Geology, 39(2):191-192. doi: 10.1130/focus022011.1 [20] Ducea, M.N., Chapman, A.D., 2018.Sub-Magmatic Arc Underplating by Trench and Forearc Materials in Shallow Subduction Systems; A Geologic Perspective and Implications. Earth-Science Reviews, 185:763-779. https://doi.org/10.1016/j.earscirev.2018.08.001 [21] Ducea, M.N., Saleeby, J.B., Bergantz, G., 2015.The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs.Annual Review of Earth and Planetary Sciences, 43(1):299-331. doi: 10.1146/annurev-earth-060614-105049 [22] Fielding, E.J., 1996.Tibet Uplift and Erosion.Tectonophysics, 260(1-3):55-84. doi: 10.1016/0040-1951(96)00076-5 [23] Francheteau, J., Jaupart, C., Jie, S, X., 1984.High Heat Flow in Southern Tibet.Nature, 307:32-36. https://doi.org/10.1038/307032a0 [24] Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton.Nature, 432:892-897. https://doi.org/10.1038/nature03162 [25] Grove, T., Parman, S., Bowring, S., et al., 2002.The Role of an H2O-Rich Fluid Component in the Generation of Primitive Basaltic Andesites and Andesites from the Mt. Shasta Region, N California.Contributions to Mineralogy and Petrology, 142(4):375-396. https://doi.org/10.1007/s004100100299 [26] Guan, Q., Zhu, D.C., Zhao, Z.D., et al., 2012.Crustal Thickening Prior to 38 Ma in Southern Tibet:Evidence from Lower Crust-Derived Adakitic Magmatism in the Gangdese Batholith.Gondwana Research, 21(1):88-99. https://doi.org/10.1016/j.gr.2011.07.004 [27] Guo, Z.F., Wilson, M., Liu, J.Q., 2007.Post-Collisional Adakites in South Tibet:Products of Partial Melting of Subduction-Modified Lower Crust. Lithos, 96(1-2):205-224. https://doi.org/10.1016/j.lithos.2006.09.011 [28] Guynn, J., Kapp, P., Gehrels, G. E., et al., 2012. U-Pb Geochronology of Basement Rocks in Central Tibet and Paleogeographic Implications. Journal of Asian Earth Sciences, 43(1):23-50. https://doi.org/10.1016/j.jseaes.2011.09.003 [29] Hacker, B.R., Kelemen, P.B., Behn, M.D., 2011.Differentiation of the Continental Crust by Relamination.Earth and Planetary Science Letters, 307(3-4):501-516. https://doi.org/10.1016/j.epsl.2011.05.024 [30] Hacker, B.R., Kelemen, P.B., Behn, M.D., 2015.Continental Lower Crust. Annual Review of Earth and Planetary Sciences, 43(1):167-205. doi: 10.1146/annurev-earth-050212-124117 [31] Harrison, T.M., Copeland, P., Kidd, W.S., et al., 1992.Raising Tibet.Science 255:1663-1670. doi: 10.1126/science.255.5052.1663 [32] Henry, P., Le Pichon, X., Goffé, B., 1997.Kinematic, Thermal and Petrological Model of the Himalayas:Constraints Related to Metamorphism within the Underthrust Indian Crust and Topographic Elevation. Tectonophysics, 273(1-2):31-56. doi: 10.1016/S0040-1951(96)00287-9 [33] Hetényi, G., Cattin, R., Brunet, F., et al., 2007.Density Distribution of the India Plate beneath the Tibetan Plateau:Geophysical and Petrological Constraints on the Kinetics of Lower-Crustal Eclogitization. Earth and Planetary Science Letters, 264(1-2):226-244. https://doi.org/10.1016/j.epsl.2007.09.036 [34] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 [35] Hou, Z.Q., Gao, Y.F., Qu, X.M., et al., 2004.Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet.Earth and Planetary Science Letters, 220(1-2):139-155. doi: 10.1016/S0012-821X(04)00007-X [36] Jagoutz, O., Behn, M. D., 2013. Foundering of Lower IslandArc Crust as an Explanation for the Origin of the Continental Moho. Nature, 504:131-134. https://doi.org/10.1038/nature12758 [37] Jagoutz, O., Schmidt, M. W., 2012. The Formation and Bulk Composition of Modern Juvenile Continental Crust:The Kohistan Arc. Chemical Geology, 298-299:79-96. https://doi.org/10.1016/j.chemgeo.2011.10.022 [38] Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3-4):229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020 [39] Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2012.Identification of Early Carboniferous Granitoids from Southern Tibet and Implications for Terrane Assembly Related to the Paleo-Tethyan Evolution. The Journal of Geology, 120(5):531-541. https://doi.org/10.1086/666742 [40] Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2014.The Gangdese Magmatic Constraints on a Latest Cretaceous Lithospheric Delamination of the Lhasa Terrane, Southern Tibet. Lithos, 210-211:168-180. https://doi.org/10.1016/j.lithos.2014.10.001 [41] Kapp, P., DeCelles, P.G., Leier, A.L., et al., 2007.The Gangdese Retroarc Fold-Thrust Belt Revealed.GSA Today, 17:4-9. [42] Kay, R. W., Kay, S. M., 1993. Delamination and Delamination Magmatism.Tectonophysics, 219(1-3):177-189. doi: 10.1016/0040-1951(93)90295-U [43] Kelemen, P.B., Behn, M.D., 2016.Formation of Lower Continental Crust by Relamination of Buoyant Arc Lavas and Plutons. Nature Geoscience, 9(3):197-205. https://doi.org/10.1038/ngeo2662 [44] Kind, R., Yuan, X., Saul, J., et al., 2002. Seismic Images of Crust and Upper Mantle beneath Tibet:Evidence for Eurasian Plate Subduction.Science, 298(5596):1219-1221. doi: 10.1126/science.1078115 [45] Kola-Ojo, O., Meissner, R., 2001. Southern Tibet:Its Deep Seismic Structure and Some Tectonic Implications.Journal of Asian Earth Sciences, 19(1-2):249-256. https://doi.org/10.1016/s1367-9120(00)00041-9 [46] Kono, Y., Ishikawa, M., Harigane, Y., et al., 2009.P-and S-Wave Velocities of the Lowermost Crustal Rocks from the Kohistan Arc:Implications for Seismic Moho Discontinuity Attributed to Abundant Garnet. Tectonophysics, 467(1-4):44-54. https://doi.org/10.1016/j.tecto.2008.12.010 [47] Kushiro, I., Syono, Y., Akimoto, S.I., 1968.Melting of a Peridotite Nodule at High Pressures and High Water Pressures. Journal of Geophysical Research, 73(18):6023-6029. doi: 10.1029/JB073i018p06023 [48] Lee, C.T.A., Anderson, D.L., 2015.Continental Crust Formation at Arcs, the Arclogite "Delamination" Cycle, and One Origin for Fertile Melting Anomalies in the Mantle.Science Bulletin, 60(13):1141-1156. https://doi.org/10.1007/s11434-015-0828-6 [49] Leech, M.L., 2001.Arrested Orogenic Development:Eclogitization, Delamination, and Tectonic Collapse. Earth and Planetary Science Letters, 185(1-2):149-159. https://doi.org/10.1016/s0012-821x(00)00374-5 [50] Ma, L., Wang, Q., Wyman, D. A., et al., 2013. Late Cretaceous Crustal Growth in the Gangdese Area, Southern Tibet:Petrological and Sr-Nd-Hf-O Isotopic Evidence from Zhengga Diorite-Gabbro.Chemical Geology, 349-350:54-70. https://doi.org/10.1016/j.chemgeo.2013.04.005 [51] Ma, X.X., ,Xu, Z.Q., Meert, J.G., 2017.Syn-Convergence Extension in the Southern Lhasa Terrane:Evidence from Late Cretaceous Adakitic Granodiorite and Coeval Gabbroic-Dioritic Dykes. Journal of Geodynamics, 110:12-30. doi: 10.1016/j.jog.2017.07.004 [52] Maierová, P., Schulmann, K., Gerya, T., 2018. Relamination Styles in Collisional Orogens.Tectonics, 37(1):224-250. https://doi.org/10.1002/2017tc004677 [53] McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4 [54] Meissner, R., Mooney, W., 1998.Weakness of the Lower Continental Crust:A Condition for Delamination, Uplift, and Escape. Tectonophysics, 296(1-2):47-60. https://doi.org/10.1016/s0040-1951(98)00136-x [55] Meissner, R., Tilmann, F., Haines, S., 2004.About the Lithospheric Structure of Central Tibet, Based on Seismic Data from the INDEPTH Ⅲ Profile. Tectonophysics, 380(1-2):1-25. https://doi.org/10.1016/j.tecto.2003.11.007 [56] Meng, Y.K., Xu, Z.Q., Santosh, M., et al., 2016.Late Triassic Crustal Growth in Southern Tibet:Evidence from the Gangdese Magmatic Belt.Gondwana Research, 37:449-464. https://doi.org/10.1016/j.gr.2015.10.007 [57] Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis.Journal of Petrology, 40(9):1399-1424. https://doi.org/10.1093/petroj/40.9.1399 [58] Mitchell, A.L., Grove, T.L., 2015.Melting the Hydrous, Subarc Mantle:The Origin of Primitive Andesites. Contributions to Mineralogy and Petrology, 170(2):13. https://doi.org/10.1007/s00410-015-1161-4 [59] Mo, X.X., Hou, Z.Q., Niu, Y.L., et al., 2007.Mantle Contributions to Crustal Thickening during Continental Collision:Evidence from Cenozoic Igneous Rocks in Southern Tibet.Lithos, 96(1-2):225-242. https://doi.org/10.1016/j.lithos.2006.10.005 [60] Nábelek, J., Hetényi, G., Vergne, J., et al., 2009.Underplating in the Himalaya-Tibet Collision Zone Revealed by the Hi-CLIMB Experiment.Science, 325(5946):1371-1374. doi: 10.1126/science.1167719 [61] Nelson, K.D., Zhao, W.J., Brown, L.D., et al., 1996.Partially Molten Middle Crust beneath Southern Tibet:Synthesis of Project INDEPTH Results. Science, 274(5293), 1684-1688. doi: 10.1126/science.274.5293.1684 [62] Niu, Y.L., Zhao, Z.D., Zhu, D.C., et al., 2013.Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis.Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004 [63] Owens, T.J., Zandt, G., 1997.Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387:37-43. https://doi.org/10.1038/387037a0 [64] Pan, G.T., Ding, J., Yao, D.S., et al., 2004.1:1 500 000 Geological Map of Qinghai-Xizang Plateau and Its Adjacent Regions. Chengdu Cartographic Publishing House, Chengdu(in Chinese). [65] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018 [66] Patiño Douce, A.E., 2004.Vapor-Absent Melting of Tonalite at 15-32 kbar.Journal of Petrology, 46(2):275-290. doi: 10.1093/petrology/egh071 [67] Qian, Q., Hermann, J., 2013.Partial Melting of Lower Crust at 10-15 kbar:Constraints on Adakite and TTG Formation.Contributions to Mineralogy and Petrology, 165(6):1195-1224. https://doi.org/10.1007/s00410-013-0854-9 [68] Rodgers, A. J., Schwartz, S. Y., 1997. Low Crustal Velocities and Mantle Lithospheric Variations in Southern Tibet from Regional Pnl Waveforms. Geophysical Research Letters, 24(1):9-12. https://doi.org/10.1029/96gl03774 [69] Rudnick, R. L., 1995. Making Continental Crust. Nature, 378:571-578. doi: 10.1038/378571a0 [70] Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33(3):267. https://doi.org/10.1029/95rg01302 [71] Rudnick, R.L., Gao, S., 2003.3.01-Composition of the Continental Crust.Treatise on Geochemistry, 3:1-64. [72] Saleeby, J., Ducea, M., Clemens-Knott, D., 2003. Production and Loss of High-Density Batholithic Root, Southern Sierra Nevada, California.Tectonics, 22(6):1-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=adcb120e4765fe12cc7199084a122f61 [73] Sherrington, H. F., Zandt, G., Frederiksen, A., 2004. Crustal Fabric in the Tibetan Plateau Based on Waveform Inversions for Seismic Anisotropy Parameters.Journal of Geophysical Research:Solid Earth, 109(B2):943. doi: 10.1029-2002JB002345/ [74] Wang, J.G., Hu, X.M., Garzanti, E., et al., 2017.Early Cretaceous Topographic Growth of the Lhasaplano, Tibetan Plateau:Constraints from the Damxung Conglomerate.Journal of Geophysical Research:Solid Earth, 122(7):5748-5765. doi: 10.1002/jgrb.v122.7 [75] Wang, Q., 2005. Shear Wave Properties and Poisson's Ratios of Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Orogenic Belt, China:Implications for Crustal Composition. Journal of Geophysical Research, 110(B8). https://doi.org/10.1029/2004jb003435 [76] Wang, Q., Ji, S.C., Salisbury, M.H., et al., 2005.Pressure Dependence and Anisotropy of P-Wave Velocities in Ultrahigh-Pressure Metamorphic Rocks from the Dabie-Sulu Orogenic Belt (China):Implications for Seismic Properties of Subducted Slabs and Origin of Mantle Reflections.Tectonophysics, 398(1-2):67-99. https://doi.org/10.1016/j.tecto.2004.12.001 [77] Wang, R., Collins, W. J., Weinberg, R. F., et al., 2016. Xenoliths in Ultrapotassic Volcanic Rocks in the Lhasa Block:Direct Evidence for Crust-Mantle Mixing and Metamorphism in the Deep Crust. Contributions to Mineralogy and Petrology, 171(7):62. https://doi.org/10.1007/s00410-016-1272-6 [78] Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet.Earth-Science Reviews, 181:122-143. https://doi.org/10.1016/j.earscirev.2018.02.019 [79] Ward, K.M., Zandt, G., Beck, S.L., et al., 2016.Lithospheric Structure beneath the Northern Central Andean Plateau from the Joint Inversion of Ambient Noise and Earthquake-Generated Surface Waves.Journal of Geophysical Research:Solid Earth, 121(11):8217-8238. https://doi.org/10.1002/2016jb013237 [80] Xu, Z.Q., Zhao, Z.B., Peng, M., et al., 2016.Review of "Orogenic Plateau". Acta Petrologica Sinica, 32(12):3557-3571(in Chinese with English abstract). [81] Yang, Z.M., Lu, Y.J., Hou, Z.Q., et al., 2015.High-Mg Diorite from Qulong in Southern Tibet:Implications for the Genesis of Adakite-Like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens.Journal of Petrology, 56(2):227-254. https://doi.org/10.1093/petrology/egu076 [82] Yuan, X.H., Ni, J., Kind, R., et al., 1997.Lithospheric and Upper Mantle Structure of Southern Tibet from a Seismological Passive Source Experiment.Journal of Geophysical Research:Solid Earth, 102(B12):27491-27500. https://doi.org/10.1029/97jb02379 [83] Zhang, Z. J., Deng, Y. F., Teng, J. W., et al., 2011. An Overview of the Crustal Structure of the Tibetan Plateau after 35 Years of Deep Seismic Soundings. Journal of Asian Earth Sciences, 40(4):977-989. https://doi.org/10.1016/j.jseaes.2010.03.010 [84] Zhang, Z. M., Dong, X., Xiang, H., et al., 2014. Metagabbros of the Gangdese Arc Root, South Tibet:Implications for the Growth of Continental Crust. Geochimica et Cosmochimica Acta, 143:268-284. https://doi.org/10.1016/j.gca.2014.01.045 [85] Zhao, Z.D., Mo, X.X., Dilek, Y., et al., 2009.Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet:Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2):190-212. https://doi.org/10.1016/j.lithos.2009.02.004 [86] Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2009. Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution:New Perspective. Earth Science Frontiers, 16(2):1-20(in Chinese with English abstract). [87] Zhu, D.C., Wang, Q., Cawood, P.A., et al., 2017.Raising the Gangdese Mountains in Southern Tibet.Journal of Geophysical Research:Solid Earth, 122(1):214-223. doi: 10.1002/2016JB013508 [88] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [89] 丁林, 岳雅慧, 蔡福龙, 等, 2006.西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约.地质学报, 80(9):1252-1261. doi: 10.3321/j.issn:0001-5717.2006.09.003 [90] 潘桂棠, 丁俊, 姚东生, 等, 2004.青藏高原及邻区地质图(1:1 500 000).成都:成都地图出版社. [91] 许志琴, 赵中宝, 彭淼, 等, 2016.论"造山的高原".岩石学报, 32(12):3557-3571. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201612001.htm [92] 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2):1-20. doi: 10.3321/j.issn:1005-2321.2009.02.001