• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏错那洞电气石花岗岩中电气石化学组成、硼同位素特征及意义

    代作文 李光明 丁俊 张林奎 曹华文 张志 梁维

    代作文, 李光明, 丁俊, 张林奎, 曹华文, 张志, 梁维, 2019. 西藏错那洞电气石花岗岩中电气石化学组成、硼同位素特征及意义. 地球科学, 44(6): 1849-1859. doi: 10.3799/dqkx.2019.043
    引用本文: 代作文, 李光明, 丁俊, 张林奎, 曹华文, 张志, 梁维, 2019. 西藏错那洞电气石花岗岩中电气石化学组成、硼同位素特征及意义. 地球科学, 44(6): 1849-1859. doi: 10.3799/dqkx.2019.043
    Dai Zuowen, Li Guangming, Ding Jun, Zhang Linkui, Cao Huawen, Zhang Zhi, Liang Wei, 2019. Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet. Earth Science, 44(6): 1849-1859. doi: 10.3799/dqkx.2019.043
    Citation: Dai Zuowen, Li Guangming, Ding Jun, Zhang Linkui, Cao Huawen, Zhang Zhi, Liang Wei, 2019. Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet. Earth Science, 44(6): 1849-1859. doi: 10.3799/dqkx.2019.043

    西藏错那洞电气石花岗岩中电气石化学组成、硼同位素特征及意义

    doi: 10.3799/dqkx.2019.043
    基金项目: 

    扎西康铅锌-稀有资源基地深部探测与勘查示范项目 2018YFC0604103

    详细信息
      作者简介:

      代作文(1988-), 男, 博士研究生, 主要从事青藏高原地质矿产勘查评价研究

      通讯作者:

      李光明

    • 中图分类号: P597

    Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet

    • 摘要: 为了对西藏错那洞电气石花岗岩源区进一步约束,利用显微镜、电子探针和激光剥蚀多接收等离子质谱仪,对错那洞电气石花岗岩中电气石的形态、成分及硼同位素组成进行了研究.结果表明,错那洞电气石花岗岩中的电气石为碱族黑/铁电气石,直接结晶自富硼熔体,与熔体之间未发生明显的硼同位素分馏.电气石δ11B值主要在-6.91‰~-9.17‰之间,与大陆地壳平均δ11B值(-10‰±3‰)相近,表明错那洞电气石花岗岩主要源自变质沉积岩的部分熔融.然而,与起源于变质沉积岩的花岗岩相比,样品的δ11B值明显偏高,而与前人报道的雅拉香波淡色花岗岩(源自石榴石角闪岩部分熔融)的δ11B值相似.因此,错那洞电气石花岗岩源区中,除了变质沉积岩外,可能还混入了少量石榴石角闪岩.

       

    • 图  1  喜马拉雅造山带简图(a)和错那洞穹隆地质图(b)

      a图据Zheng et al.(2016)修改;b图据Fu et al.(2018)梁维等(2018)修改;图 1a方框所示为雅拉香波

      Fig.  1.  Simplified geological map of Himalayan orogen (a) and geological map of the Cuonadong dome (b)

      图  2  错那洞电气石花岗岩野外露头(a)、电气石花岗岩显微照片(正交偏光)(b)和电子探针及硼同位素分析点位(c~f)

      Q.石英;Kf.钾长石;Pl.斜长石;Tm.电气石

      Fig.  2.  Outcrop of tourmaline granite from Cuonadong (a), microphotograph of tourmaline granite(crossed-polarized light) (b), and analytical spots of electron microprobe and boron isotope(c-f)

      图  3  错那洞电气石花岗岩中电气石类别划分图

      1.富Li花岗岩及相关的伟晶岩、细晶岩;2.贫Li花岗岩及相关的伟晶岩、细晶岩;3.富Fe3+石英-电气石岩(热液蚀变花岗岩);4.与Al饱和相共存的变质泥岩、变质砂岩;5.与Al饱和相不共存的变质泥岩、变质砂岩;6.富Fe3+石英-电气石岩,钙硅酸盐及变质泥岩;7.低Ca变铁镁质岩和富Cr、V变质沉积岩;8.变质碳酸盐岩和变质灰岩;9.富Ca变质泥岩,变质砂岩及钙硅酸盐;10.贫Ca变质泥岩,变质砂岩和石英-电气石岩;11.变质碳酸盐岩;12.变超铁镁质岩;据Henry and Guidotti (1985)Henry et al.(2011)

      Fig.  3.  Classification for the tourmalines of tourmaline granite from Cuonadong

      图  4  错那洞电气石花岗岩中电气石FeO/(FeO+MgO)-MgO图解

      Henry et al.(2011)

      Fig.  4.  FeO/(FeO+MgO)-MgO discriminant diagram for the tourmalines of tourmaline granite from Cuonadong

      图  5  错那洞电气石花岗岩中电气石硼同位素组成分布图

      图据Marschall and Jiang(2011);喜马拉雅淡色花岗岩中电气石硼同位素数据引自Yang et al.(2015)Gou et al.(2017)Hu et al.(2018)

      Fig.  5.  Range of boron isotopic compositions of the tourmalines of tourmaline granite from Cuonadong

    • [1] Chaussidon, M., Jambon, A., 1994. Boron Content and Isoto-pic Composition of Oceanic Basalts:Geochemical and Cosmochemical Implications. Earth and Planetary Sci-ence Letters, 121(3-4):731-733.
      [2] Dai, J.Q., Li, G.R., Guo, F.S., et al., 2018.Chemical Compo-nents and Boron Isotopic Composition of Tourmaline of Uranium Bearing Porphyroclastic Lava in Xiangshan, Ji-angxi. Journal of Jilin University (Earth Science Edi-tion), 48(5):1378-1393(in Chinese with English ab-stract).
      [3] Dutrow, B. L., Henry, D. J., 2011. Tourmaline:A Geologic DVD.Elements, 7(5):301-306. https://doi.org/10.2113/gselements.7.5.301
      [4] Fu, J. G., Li, G. M., Wang, G. H., et al., 2018. Synchronous Granite Intrusion and E-W Extension in the Cuonadong Dome, Southern Tibet, China:Evidence from Field Ob-servations and Thermochronologic Results. International Journal of Earth Sciences, 107(6):2023-2041. https://doi.org/10.1007/s00531-018-1585-y
      [5] Gou, G.N., Wang, Q., Wyman, D.A., et al., 2017.In Situ Bo-ron Isotopic Analyses of Tourmalines from Neogene Magmatic Rocks in the Northern and Southern Margins of Tibet:Evidence for Melting of Continental Crust and Sediment Recycling. Solid Earth Sciences, 2(2):43-54. https://doi.org/10.1016/j.sesci.2017.03.003
      [6] Guo, H.F., Xia, X.P., Wei, G.J., et al., 2014.LA-MC-ICPMS In-Situ Boron Isotope Analyses of Tourmalines from the Shangbao Granites (Southern Hunan Province) and Its Geological Significance. Geochimica, 43(1):11-19(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201401002
      [7] Hawthorne, F. C., Henrys, D. J., 1999. Classification of the Minerals of the Tourmaline Group.European Journal of Mineralogy, 11(2):201-216. https://doi.org/10.1127/ejm/11/2/0201
      [8] Henry, D. J., Dutrow, B. L., 1996. Metamorphic Tourmaline and Its Petrologic Applications. Reviews in Mineralogy and Geochemistry, 33(1):503-557. http://cn.bing.com/academic/profile?id=5624de4ea1e2d938e90727595f57af0e&encoded=0&v=paper_preview&mkt=zh-cn
      [9] Henry, D.J., Guidotti, C.V., 1985.Tourmaline as a Petrogenet-ic Indicator Mineral:An Example from the Staurolite-Grade Metapelites of NW Maine. American Mineralo-gist, 70(1-2):1-15.
      [10] Henry, D. J., Novák, M., Hawthorne, F. C., et al., 2011. No-menclature of the Tourmaline-Supergroup Minerals.American Mineralogist, 96(5-6):895-913. https://doi.org/10.2138/am.2011.3636
      [11] Hou, J. L., Wang, D. H., Li, J. K., et al., 2017. In-Situ Boron Isotopic Analysis and Its Geological Significance of Tourmalines from Zhongzuo Pegmatite Veins in Quyang Area of Hebei, China.Journal of Earth Sciences and En-vironment, 39(6):751-760(in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201706006
      [12] Hou, K.J., Li, Y.H., Xiao, Y.K., et al., 2010.In Situ Boron Iso-tope Measurements of Natural Geological Materials by LA-MC-ICP-MS. Chinese Science Bulletin, 55(29):3305-3311. doi: 10.1007/s11434-010-4064-9
      [13] Hou, Z.Q., Zheng, Y.C., Zeng, L.S., et al., 2012.Eocene-Oli-gocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himala-yan Orogen.Earth and Planetary Science Letters, 349-350:38-52. https://doi.org/10.1016/j.epsl.2012.06.030
      [14] Hu, G.Y., Zeng, L.S., Gao, L.E., et al., 2018.Diverse Magma Sources for the Himalayan Leucogranites:Evidence from B-Sr-Nd Isotopes.Lithos, 314-315:88-99. https://doi.org/10.1016/j.lithos.2018.05.022
      [15] Huang, C. M., Zhao, Z. D., Li, G. M., et al., 2017. Leucogran-ites in Lhozag, Southern Tibet:Implications for the Tec-tonic Evolution of the Eastern Himalaya. Lithos, 294-295:246-262. https://doi.org/10.1016/j.lith-os.2017.09.014
      [16] Jiang, S. Y., 2000. Boron Isotope and Its Geological Applica-tions.Geological Journal of China Universities, 6(1):1-16(in Chinese with English abstract).
      [17] Jiang, S.Y., Palmer, M.R., 1998.Boron Isotope Systematics of Tourmaline from Granites and Pegmatites:A Synthesis.European Journal of Mineralogy, 10(6):1253-1266. https://doi.org/10.1127/ejm/10/6/1253
      [18] Jiang, S.Y., Radvanec, M., Nakamura, E., et al., 2008.Chemi-cal and Boron Isotopic Variations of Tourmaline in the Hnilec Granite-Related Hydrothermal System, Slovakia:Constraints on Magmatic and Metamorphic Fluid Evolu-tion.Lithos, 106(1-2):1-11. https://doi.org/10.1016/j.lithos.2008.04.004
      [19] Jiang, S.Y., Yu, J.M., Ling, H.F., et al., 2000a.Boron Isotope as a Tracer in the Study of Crust-Mantle Evolution and Subduction Processes. Earth Science Frontiers, 7(2):391-399(in Chinese with English abstract).
      [20] Jiang, S.Y., Yu, J.M., Ni, P., et al., 2000b.Tourmaline:A Sen-sitive Tracer for Petrogenesis and Minerogenesis. Geo-logical Review, 46(6):594-604(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gncl201411017
      [21] King, J., Harris, N., Argles, T., et al., 2011. Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet. Geological Society of America Bulletin, 123(1-2):218-239. doi: 10.1130/B30085.1
      [22] Liang, W., Zhang, L. K., Xia, X. B., et al., 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Sci-ence, 43(8):2742-2754(in Chinese with English ab-stract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808015
      [23] London, D., Manning, D. A. C., 1995. Chemical Variation and Significance of Tourmaline from Southwest England.Economic Geology, 90(3):495-519. https://doi.org/10.2113/gsecongeo.90.3.495
      [24] Mao, J.W., Wang, P.A., Wang, D.H., et al., 1993.The Tracer of Tourmaline for Rock-Forming and Metallogenic Envi-ronments and Its Applied Conditions. Geological Re-view, 39(6):497-507(in Chinese with English abstract).
      [25] Marschall, H. R., Jiang, S. Y., 2011. Tourmaline Isotopes:No Element Left behind. Elements, 7(5):313-319. https://doi.org/10.2113/gselements.7.5.313
      [26] Marschall, H. R., Ludwig, T., Altherr, R., et al., 2006. Syros Metasomatic Tourmaline:Evidence for very High-δ11B Fluids in Subduction Zones.Journal of Petrology, 47(10):1915-1942. https://doi.org/10.1093/petrology/egl031
      [27] Pirajno, F., Smithies, R.H., 1992.The FeO/(FeO+MgO) Ra-tio of Tourmaline:A Useful Indicator of Spatial Varia-tions in Granite-Related Hydrothermal Mineral Deposits.Journal of Geochemical Exploration, 42(2-3):371-381. https://doi.org/10.1016/0375-6742(92)90033-5
      [28] Trumbull, R. B., Krienitz, M. S., Gottesmann, B., et al., 2008 Chemical and Boron-Isotope Variations in Tourmalines from an S-Type Granite and Its Source Rocks:The Erongo Granite and Tourmalinites in the Damara Belt, Na-mibia. Contributions to Mineralogy and Petrology, 155(1):1-18. https://doi.org/10.1007/s00410-007-0227-3
      [29] van Hinsberg, V.J., Henry, D.J., Marschall, H.R., 2011.Tour-maline:An Ideal Indicator of Its Host Environment. The Canadian Mineralogist, 49(1):1-16. https://doi.org/10.3749/canmin.49.1.1
      [30] Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leuco-granite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
      [31] Xie, J. J., Qiu, H. N., Bai, X. J., et al., 2018. Geochronological and Geochemical Constraints on the Cuonadong Leuco-granite, Eastern Himalaya.Acta Geochimica, 37(3):347-359. https://doi.org/10.1007/s11631-018-0273-8
      [32] Yang, S. Y., Jiang, S. Y., 2012. Chemical and Boron Isotopic Composition of Tourmaline in the Xiangshan Volcanic-Intrusive Complex, Southeast China:Evidence for Boron Mobilization and Infiltration during Magmatic-Hydro-thermal Processes. Chemical Geology, 312:177-189. https://doi.org/10.1016/j.chemgeo.2012.04.026
      [33] Yang, S. Y., Jiang, S. Y., Palmer, M. R., 2015. Chemical and Boron Isotopic Compositions of Tourmaline from the Nyalam Leucogranites, South Tibetan Himalaya:Implica-tion for Their Formation from B-Rich Melt to Hydrother-mal Fluids. Chemical Geology, 419:102-113. https://doi.org/10.1016/j.chemgeo.2015.10.026
      [34] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Hi-malayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [35] Zeng, L. S., Liu, J., Gao, L. E., et al., 2009. Early Oligocene Anatexis in the YardoiGneiss Dome, Southern Tibet and Geological Implications.Chinese Science Bulletin, 54(1):104-112. doi: 10.1007/s11434-008-0362-x
      [36] Zhang, L. K., Zhang, B., Zhang, B. H., et al., 2018. Chemical and Boron Isotopic Composition of Hydrothermal Tour-maline from Nanyangtian Tungsten Deposit, Yunnan:Im-plications for Ore Genesis.Mineral Deposits, 37(3):481-501(in Chinese with English abstract).
      [37] Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mecha-nism of Leucogranites. Earth Science, 43(1):82-98(in Chinese with English abstract).
      [38] Zheng, Y.C., Hou, Z.Q., Fu, Q., et al., 2016.Mantle Inputs to Himalayan Anatexis:Insights from Petrogenesis of the Miocene Langkazi Leucogranite and Its Dioritic En-claves.Lithos, 264:125-140. https://doi.org/10.1016/j.lithos.2016.08.019
      [39] 戴加祺, 黎广荣, 郭福生, 等, 2018.江西相山铀矿田含铀碎斑熔岩中电气石化学成分及硼同位素组成特征.吉林大学学报(地球科学版), 48(5):1378-1393. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201805008
      [40] 郭海锋, 夏小平, 韦刚健, 等, 2014.湘南上堡花岗岩中电气石LA-MC-ICPMS原位微区硼同位素分析及地质意义.地球化学, 43(1):11-19. http://d.old.wanfangdata.com.cn/Periodical/dqhx201401002
      [41] 侯江龙, 王登红, 李建康, 等, 2017.河北曲阳地区中佐伟晶岩脉中电气石原位硼同位素分析及其意义.地球科学与环境学报, 39(6):751-760. doi: 10.3969/j.issn.1672-6561.2017.06.006
      [42] 蒋少涌, 2000.硼同位素及其地质应用研究.高校地质学报, 6(1):1-16. doi: 10.3969/j.issn.1006-7493.2000.01.001
      [43] 蒋少涌, 于际民, 凌洪飞, 等.2000a.壳幔演化和板块俯冲作用过程中的硼同位素示踪.地学前缘, 7(2):391-399. http://d.old.wanfangdata.com.cn/Periodical/dxqy200002008
      [44] 蒋少涌, 于际民, 倪培, 等, 2000b.电气石——成矿作用的灵敏示踪剂.地质论评, 46(6):594-604. http://d.old.wanfangdata.com.cn/Periodical/dzlp200006006
      [45] 梁维, 张林奎, 夏祥标, 等, 2018.藏南地区错那洞钨锡多金属矿床地质特征及成因.地球科学, 43(8):2742-2754. http://earth-science.net/WebPage/Article.aspx?id=3909
      [46] 毛景文, 王平安, 王登红, 等, 1993.电气石对成岩成矿环境的示踪性及应用条件.地质论评, 39(6):497-507. doi: 10.3321/j.issn:0371-5736.1993.06.004
      [47] 吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
      [48] 张林奎, 张彬, 张斌辉, 等, 2018.云南南秧田钨矿床电气石的成分和硼同位素特征及成矿意义.矿床地质, 37(3):481-501. http://d.old.wanfangdata.com.cn/Periodical/kcdz201803003
      [49] 张泽明, 康东艳, 丁慧霞, 等, 2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学, 43(1):82-98. http://earth-science.net/WebPage/Article.aspx?id=3726
    • dqkx-44-6-1849-Table.pdf
    • 加载中
    图(5)
    计量
    • 文章访问数:  4218
    • HTML全文浏览量:  1532
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-07-20
    • 刊出日期:  2019-06-15

    目录

      /

      返回文章
      返回