Characteristics of Ore-Forming Fluids of Lietinggang-Leqingla Pb-Zn-Fe-CuMo Polymetallic Deposit in Tibetan: Evidence from Fluid Inclusions and Stable Isotope Compositions
-
摘要: 列廷冈-勒青拉矿床位于西藏冈底斯北缘多金属成矿带东侧,是该成矿带内一个独特的同时发育Pb、Zn、Fe、Cu、Mo五种元素矿化的典型矽卡岩型矿床.对该矿床成矿流体性质研究有助于解决这种具有不同来源属性的多金属共生矿床的成矿机制等科学问题.基于此,选取与Fe-Cu-Mo矿化和Pb-Zn-Cu矿化密切相关的矽卡岩矿物和脉石矿物,系统开展了流体包裹体和碳氢氧同位素研究,结果显示二者的成矿流体来源相同并经历了相似的演化过程.矽卡岩阶段主要发育富液相包裹体,成矿流体具有高温中高盐度特征.成矿期石英硫化物阶段和成矿后期碳酸盐阶段主要发育富液相包裹体和含子晶的多相包裹体,前者成矿流体温度属于中高温范畴,而盐度分为高盐度和低盐度两类;后者成矿流体温度属于中低温范畴,而盐度同样分为高盐度和低盐度两类,研究表明出现两种盐度截然不同的流体是由于沸腾作用造成的.稳定同位素研究结果显示矽卡岩阶段成矿流体主要源于发生过脱水去气作用的残余岩浆水,石英硫化物阶段和碳酸盐阶段均有大气降水的参与.灰岩地层与正常海相碳酸盐岩相比δ18O明显亏损,表明成矿流体在矿区灰岩地层中大规模运移并发生水岩反应,从而在远端矽卡岩带形成铅锌铜矿化.结合前人及本次研究结果,列廷冈-勒青拉矿床Fe-Cu矿化与Pb-Zn矿化为同一时期岩浆活动的产物,但分别与不同属性的岩浆有关.降温冷却、流体混合作用以及pH值的变化是控制列廷冈-勒青拉矿床金属沉淀的重要因素,而成矿温度和岩浆属性的差异是造成成矿元素在空间上分带的主要原因.Abstract: The Lietinggang-Leqingla deposit developed Pb-Zn-Fe-Cu-Mo five kinds of metals in the same ore district, which is the most typical skarn-type deposit in the north Gangdese polymetallic belt.Studying on the ore fluid property is helpful for us to solve the ore-forming mechanism of this deposit, which is considered to be polymetallic symbiosis deposit with different source attributes. In this study, skarn minerals and gangue minerals closely related to Fe-Cu-Mo and Pb-Zn-Cu mineralization were sampled and a detailed study with regard to fluid inclusion and C-H-O isotopes was conducted, the results show that the fluid source and evolution process of the ore blocks are similar. There are mainly liquid-rich fluid inclusions in the sakrn alteration stage, and fluid in this stage has high temperatures and medium -high salinities.There are mainly liquid -rich fluid inclusion and daughter mineral-bearing fluid inclusions in the quartz-sulfide stage and carbonate stage, fluid in the quartz-sulfide stage has medium-high temperature, and salinity can be divided into high salinity and low salinity.Fluid in the carbonate stage has medium-low temperature, and salinity also can be devided into high salinity and low salinity. Studies show that the presence of two fluids with very different salinity results from boiling of the ore-forming fluid. Stable isotope compositions indicate that the ore-forming fluids were derived from magmatic hydrothermal fluid which had undergone degasification in skarn alteration stage and was mixed with meteoric water in quartz sulfide stage and carbonate stage. The δ18O is obviously depleted in the limestone strata compare with the normal marine limestone, which indicate that the ore-forming fluid had large-scale migration and water-rock interaction in the whole limestone strata of ore district, thus the Pb-Zn-Cu mineralization is formed in the distal skarn belt. This study, combined with previously published data, Fe-Cu and Pb-Zn mineralization of the Lietinggang-Leqingla deposit are the products of magmatic activities in the same period, but they are related to magma of different attributes. Cooling, fluid mixing and variation of pH of ore-forming fluid resulted in the precipitation of metal of the Lietinggang-Leqingla deposit, the mineralization zoning from the Lietinggang-Leqingla deposit was mostly like controlled by the difference of metallogenic temperature and magmatic attribute.
-
图 1 冈底斯带岩浆作用相关成矿作用地质背景简图
a.冈底斯带构造分区,据Zhu et al.(2011) 修改;b.矿带区域构造、岩浆岩、地层及矿床分布特征,据侯增谦等(2006c)、孟祥金等(2007)修改;JSS.金沙江缝合带;BNS.班公湖-怒江缝合带;SNMZ.狮泉河-纳木错蛇绿混杂岩带;LMF.落巴堆-米拉山断裂带;IYZS.印度河-雅鲁藏布江缝合带
Fig. 1. Geological setting of the Gangdese region for the igneous related metallogenesis
图 4 列廷冈−勒青拉Pb-Zn-Fe-Cu-Mo矿床典型矿物共生组合手标本及镜下照片
G-Grt.绿色石榴子石;R-Grt.红色石榴子石;Di.透辉石;Hd.钙铁辉石;Chl.绿泥石;Act.阳起石;Ep.绿帘石;Phl.金云母;Cal.方解石,Qtz.石英;Fl.萤石;Mag.磁铁矿;Ccp.黄铜矿;Mo.辉钼矿;Py.黄铁矿;Po.磁黄铁矿;Sp.闪锌矿;Gn.方铅矿
Fig. 4. Hand specimen and microscope photographs of typical mineral combinations in the Lietinggang-Leqingla Pb-Zn-Fe- Cu-Mo deposit
图 8 列廷冈-勒青拉Pb-Zn-Fe-Cu-Mo矿床成矿流体δD-δ18Ofluid及δ13CV-PDB-δ18OV-SMOW图解
原生岩浆水、变质水及西藏大气水端员分别引自Giggenbach(1992)、Taylor(1974)和Wang et al.(2000);δ13CV-PDB-δ18OV-SMOW底图据刘家军等(2004)
Fig. 8. Diagrams of δD-δ18Ofluid and δ13CV-PDB-δ18OV-SMOW for ore-forming fluids from the Lietinggang-Leqingla Pb-Zn-Fe-Cu-Mo deposit
-
[1] André-Mayer, A.S., Leroy, J., Bailly, L., et al., 2002.Boiling and Vertical Mineralization Zoning:A Case Study from the Apacheta Low-Sulfidation Epithermal Gold-Silver Deposit, Southern Peru. Mineralium Deposita, 37(5):452-464. doi: 10.1007/s00126-001-0247-2. [2] Bodnar, R. J., 1983. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and P-V-T-X Properties of Inclusion Fluids. Economic Geology, 78(3):535-542. doi: 10.2113/gsecon-geo.78.3.535 [3] Bodnar, R. J., 1995. Fluid-Inclusion Evidence for a Magmatic Source for Metals in Porphyry Copper Deposits.Mineral-ogical Association of Canada Short Course Series, 23:139-152. doi: 10.1109-MAES.2011.5936180/ [4] Chen, J., Wang, H. N., 2004. Chemical Geology. Science Press, Beijing(in Chinese). [5] Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism.Earth-Science Reviews, 68(3-4):173-196.doi: 10.1016/j.earscirev.2004.05.001 [6] Du, X., 2013. The Study of Lead-Zinc Polymetallic Minera-Tipical Deposite and Lized Regularity Area Nyainqen-tanglha Tibet(Dissertation). China University of Geosci-ences, Beijing(in Chinese with English abstract). [7] Drummond, S.E., Ohmoto, H., 1985.Chemical Evolution and Mineral Deposition in Boiling Hydrothermal Systems.Economic Geology, 80(1):126-147. doi: 10.2113/gsecongeo.80.1.126 [8] Fu, Q., Huang, K.X., Zheng, Y.C., et al., 2015.Ar-Ar Age of Muscovite from Skarn Orebody of the Mengya'a Lead-Zinc Deposit in Tibet and Its Geodynamic Significance.Acta Geologica Sinica, 89(3):569-582(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201503010 [9] Fu, Q., Yang, Z.S., Zheng, Y.C., et al., 2013.Zircon U-Pb Ag-es, Hf Isotope and Geochemistry of Granodiorite in Jiala-pu Fe Deposit, Tibet. Mineral Deposits, 32(3):564-578(in Chinese with English abstract). [10] Fu, Q., Yang, Z. S., Zheng, Y. C., et al., 2014. Ar-Ar Age of Phlogopite from the Longmala Copper-Iron-Lead-Zinc Deposit in Tibet and Its Geodynamic Significance. Acta Petrologica et Mineralogica, 33(2):283-293(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201402007 [11] Giggenbach, W.F., 1992.Isotopic Shifts in Waters from Geo-thermal and Volcanic Systems along Convergent Plate Boundaries and Their Origin. Earth and Planetary Sci-ence Letters, 113(4):495-510.doi: 10.1016/0012-821x(92)90127-h [12] Harrison, T.M., Grove, M., McKeegan, K.D., et al., 1999.Ori-gin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya.Journal of Petrology, 40(1):3-19. doi: 10.1093/petroj/40.1.3 [13] Hedenquist, J. W., Henley, R. W., 1985. Hydrothermal Erup-tions in the Waiotapu Geothermal System, New Zealand; Their Origin, Associated Breccias, and Relation to Pre-cious Metal Mineralization. Economic Geology, 80(6):1640-1668. doi: 10.2113/gsecon-geo.80.6.1640 [14] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. doi: 10.2113/econgeo.110.6.1541 [15] Hou, Z.Q., Pan, G.T., Wang, A.J., et al., 2006b.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅱ.Mineralization in Late-CollisionalTransformation Setting. Mineral De-posits, 25(5):521-543(in Chinese with English abstract). [16] Hou, Z.Q., Qu, X.M., Yang, Z.S., et al., 2006c.Metallogene-sis in Tibetan Collisional Orogenic Belt:Ⅲ. Mineraliza-tion in Post-Collisional Extension Setting. Mineral De-posits, 25(6):629-651(in Chinese with English abstract). [17] Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006a.Metallogene-sis in Tibetan Collisional Orogenic Belt:I.Mineralization in Main Collisional Orogenic Setting. Mineral Deposits, 25(4):337-358(in Chinese with English abstract). [18] Huang, K. X., Zheng, Y. C., Zhang, S., et al., 2012. LA-ICP-MS Zircon U-Pb Dating of Two Types of Porphyry in the Yaguila Mining Area, Tibet.Acta Petrologica et Mineral-ogica, 31(3):348-360(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201203005 [19] Ji, X.H., Meng, X.J., Yang, Z.S., et al., 2014.The Ar-Ar Geo-chronology of Sericite from the Cryptoexplosive Breccia Type Pb-Zn Deposit in Narusongduo, Tibet and Its Geo-logical Significance. Geology and Exploration, 50(2):281-290(in Chinese with English abstract). [20] Landtwing, M., Pettke, T., Halter, W., et al., 2005. Copper Deposition during Quartz Dissolution by Cooling Mag-matic-Hydrothermal Fluids:The Bingham Porphyry. Earth and Planetary Science Letters, 235(1-2):229-243.doi: 10.1016/j.epsl.2005.02.046 [21] Li, X.F., Wang, C.Z., Mao, W., et al., 2014.The Fault-Con-trolled Skarn W-Mo Polymetallic Mineralization during the Main India-Eurasia Collision:Example from Hahai-gang Deposit of Gangdese Metallogenic Belt of Tibet.Ore Geology Reviews, 58:27-40. doi: 10.1016/j.oregeorev.2013.10.006 [22] Li, Y.X., Li, G.M., Xie, Y.L., et al., 2018.Properties and Evo-lution Path of Ore-Forming Fluid in Qiagong Polymetal-lic Deposit of Middle Gangdese in Tibet, China.Earth Sci-ence, 43(8):2684-2700(in Chinese with English abstract). [23] Liu, J.J., He, M.Q., Li, Z.M., 2004.Oxygen and Carbon Isoto-pic Geochemistry of Baiyangping Silver-Copper Polyme-tallic Ore Concentration Area in Lanping Basin of Yun-nan Province and Its Significance. Mineral Deposits, 23(1):1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200401000.htm [24] Lu, H.Z., Fan, H.R., Ni, P., et al., 2004.Fluid Inclusion.Sci-ence Press, Beijing(in Chinese). [25] Ma, W., Liu, Y.C., Yang, Z.S., et al., 2017.Alteration, Miner-alization, and Genesis of the Lietinggang-Leqingla Pb-Zn-Fe-Cu-Mo Skarn Deposit, Tibet, China.Ore Geology Re-views, 90:897-912.doi: 10.1016/j.oregeor-ev.2017.04.034 [26] Meng, X.J., Hou, Z.Q., Ye, P.S., et al., 2007.Characteristics and Ore Potentiality of Gangdese Silver-Polymetallic Mineralization Belt in Tibet. Mineral Deposits, 26(2):153-162(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200702002 [27] Mo, X.X., Niu, Y.L., Dong, G.C., et al., 2008.Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volca-nic Succession in Southern Tibet.Chemical Geology, 250(1-4):49-67. doi: 10.1016/j.chem-geo.2008.02.003 [28] Mo, X. X., Zhao, Z. D., Deng, J. F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3):135-148(in Chinese with English ab-stract). [29] Ohmoto, H., 1972.Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits.Economic Geology, 67(5):551-578.doi: 10.2113/gsecongeo.67.5.551 [30] Pearce, J.A., Deng, W.M., 1988.The Ophiolites of the Tibet-an Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society A:Mathematical, Physicaland Engineer-ing Sciences, 327(1594):215-238. doi: 10.1098/rsta.1988.0127 [31] Schwinn, G., Wagner, T., Baatartsogt, B., et al., 2006.Quanti-fication of Mixing Processes in Ore-Forming Hydrother-mal Systems by Combination of Stable Isotope and Fluid Inclusion Analyses. Geochimica et Cosmochimica Acta, 70(4):965-982. doi: 10.1016/j.gca.2005.10.022 [32] Seward, T.M., Barnes, H.L., 1997.Metal Transport by Hydro-thermal Ore Fluids. Geochemistry of Hydrothermal Ore Deposits, 3:435-486. [33] Shimizu, M., Iiyama, J.T., 1982.Zinc-Lead Skarn Deposits of the Nakatatsu Mine, Central Japan. Economic Geology, 77(4):1000-1012. doi: 10.2113/gsecon-geo.77.4.1000 [34] Shmulovich, K.I., Landwehr, D., Simon, K., et al., 1999.Sta-ble Isotope Fractionation between Liquid and Vapour in Water-Salt Systems up to 600℃.Chemical Geology, 157(3-4):343-354. doi: 10.1016/S0009-2541(98)00202-2 [35] Soloviev, S.G., 2011.Geology, Mineralization, and Fluid Inclu-sion Characteristics of the Kensu W-Mo Skarn and Mo-W-Cu-Au Alkalic Porphyry Deposit, Tien Shan, Kyrgyz-stan. Economic Geology, 106(2):193-222. doi: 10.2113/econgeo.106.2.193 [36] Tang, J.X., Duo, J., Liu, H.F., et al., 2012.Minerogenetic Se-ries of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica, 33(4):393-410(in Chinese with English abstract). [37] Taylor, H.P., 1974.The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition.Economic Geology, 69(6):843-883.doi: 10.2113/gsecongeo.69.6.843 [38] Taylor, B. E., 1986. Magmatic Volatiles; Isotopic Variation of C, H, and S.Reviews in Mineralogy and Geochemistry, 16(1):185-225. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsrmg&resid=16/1/185 [39] Veizer, J., Holser, W. T., Wilgus, C. K., 1980. Correlation of 13C/12C and 34S/32S Secular Variation. Geochim. Cosmo-chim. Acta, 44:579-588. doi: 10.1016/0016-7037(80)90250-1 [40] Wang, J., Liu, T. C., Yin, G., 2000. Characteristics of Isotope Distribution in Precipitation in the Middle-Lower Reach-es of Yarlung Zangbo Rivers.Geology-Geochemistry, 28(1):63-67. [41] Williams-Jones, A.E., Samson, I.M., Ault, K.M., et al., 2010.The Genesis of Distal Zinc Skarns:Evidence from the Mochito Deposit, Honduras. Economic Geology, 105(8):1411-1440. doi: 10.2113/econgeo.105.8.1411 [42] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Hi-malayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211 [43] Yu, Y.S., Yang, Z.S., Duo, J., et al., 2011.Age and Petrogen-esis of Magmatic Rocks from Jiaduobule Skarn Fe-Cu Deposit in Tibet:From Zircon SHRIMP U-Pb Dating, Hf Isotope and REE.Mineral Deposits, 30(3):420-434(in Chinese with English abstract). [44] Zhang, A.P., Zheng, Y.C., Xu, B., et al., 2019.Metallogeny of the Lietinggang-Leqingla Fe-Cu-(Mo)-Pb-Zn Polymetal-lic Deposit, Evidence from Geochronology, Petrogene-sis, and Magmatic Oxidation State, Lhasa Terrane. Ore Geology Reviews, 106:318-339. doi: 10.1016/j.oregeorev.2019.02.004 [45] Zhao, J.X., Qin, K.Z., Li, G.M., et al., 2014.Collision-Related Genesis of the Sharang Porphyry Molybdenum Deposit, Tibet:Evidence from Zircon U-Pb Ages, Re-Os Ages and Lu-Hf Isotopes.Ore Geology Reviews, 56:312-326.doi: 10.1016/j.oregeorev.2013.06.005 [46] Zheng, Y. C., Fu, Q., Hou, Z. Q., et al., 2015. Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Polymetallic Belt in the Lhasa Terrane, Southern Tibet.Ore Geology Reviews, 70:510-532. doi: 10.1016/j.oregeorev.2015.04.004 [47] Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongma Porphyry Mo Deposit in the Banggong-Nujiang Metallogenic Belt, Tibet. Earth Sci-ence, 42(9):1141-1453 (in Chinese with English ab-stract). [48] Zhu, D. C., Mo, X. X., Zhao, Z. D., et al., 2010. Presence of Permian Extension-and Arc-Type Magmatism in South-ern Tibet:Paleogeographic Implications.Geological Soci-ety of America Bulletin, 122(7-8):979-993. doi: 10.1130/b30062.1 [49] Zhu, D.C., Wang, Q., Cawood, P.A., et al., 2017.Raising the Gangdese Mountains in Southern Tibet.Journal of Geo-physical Research:Solid Earth, 122(1):214-223. doi: 10.1002/2016JB013508 [50] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Ter-rane, Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. doi: 10.1016/j.epsl.2010.11.005 [51] 陈骏, 王鹤年, 2004.地球化学.北京:科学出版社. [52] 杜欣, 2013.西藏念青唐古拉地区铅锌多金属矿成因类型与成矿规律研究(博士学位论文).北京: 中国地质大学. [53] 付强, 黄克贤, 郑远川, 等, 2015.西藏蒙亚啊铅锌矿床矽卡岩型矿体白云母Ar-Ar年代学研究及其地球动力学意义.地质学报, 89(3):569-582. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503010 [54] 付强, 杨竹森, 郑远川, 等, 2013.加拉普铁矿区花岗闪长岩锆石U-Pb年龄、Hf同位素及地球化学研究.矿床地质, 32(3):564-578. doi: 10.3969/j.issn.0258-7106.2013.03.008 [55] 付强, 杨竹森, 郑远川, 等, 2014.西藏龙马拉Cu-Fe-Pb-Zn多金属矿床金云母Ar-Ar定年及其地球动力学意义.岩石矿物学杂志, 33(2):283-293. doi: 10.3969/j.issn.1000-6524.2014.02.007 [56] 侯增谦, 潘桂棠, 王安建, 等, 2006b.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用.矿床地质, 25(5):521-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [57] 侯增谦, 曲晓明, 杨竹森, 等, 2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质, 25(6):629-651. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [58] 侯增谦, 杨竹森, 徐文艺, 等, 2006a.青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质, 25(4):337-358. http://d.old.wanfangdata.com.cn/Periodical/kcdz200604001 [59] 黄克贤, 郑远川, 张松, 等, 2012.西藏亚贵拉矿区两期岩体LA-ICP-MS锆石U-Pb定年及地质意义.岩石矿物学杂志, 31(3):348-360. doi: 10.3969/j.issn.1000-6524.2012.03.005 [60] 纪现华, 孟祥金, 杨竹森, 等, 2014.西藏纳如松多隐爆角砾岩型铅锌矿床绢云母Ar-Ar定年及其地质意义.地质与勘探, 50(2):281-290. http://d.old.wanfangdata.com.cn/Periodical/dzykt201402008 [61] 李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8):2684-2700. http://earth-science.net/WebPage/Article.aspx?id=3905 [62] 刘家军, 何明勤, 李志明, 等, 2004.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质, 23(1):1-10. doi: 10.3969/j.issn.0258-7106.2004.01.001 [63] 卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社. [64] 孟祥金, 侯增谦, 叶培盛, 等, 2007.西藏冈底斯银多金属矿化带的基本特征与成矿远景分析.矿床地质, 26(2):153-162. doi: 10.3969/j.issn.0258-7106.2007.02.002 [65] 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013 [66] 唐菊兴, 多吉, 刘鸿飞, 等, 2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报, 33(4):393-410. doi: 10.3975/cagsb.2012.04.02 [67] 于玉帅, 杨竹森, 多吉, 等, 2011.西藏加多捕勒铁铜矿成矿岩体时代与成因:锆石U-Pb年龄、Hf同位素与稀土元素证据.矿床地质, 30(3):420-434. doi: 10.3969/j.issn.0258-7106.2011.03.004 [68] 郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. http://earth-science.net/WebPage/Article.aspx?id=3652 -
dqkx-44-6-1957-Table.pdf