• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏班公湖-怒江结合带中段去申拉组火山岩年代学及勘查找矿方向

    邓世林 林彬 张海潮 阿旺仁增 王腾 胡志中 邹兵 张忠坤 杨征坤 刘振宇

    邓世林, 林彬, 张海潮, 阿旺仁增, 王腾, 胡志中, 邹兵, 张忠坤, 杨征坤, 刘振宇, 2020. 西藏班公湖-怒江结合带中段去申拉组火山岩年代学及勘查找矿方向. 地球科学, 45(3): 776-788. doi: 10.3799/dqkx.2019.039
    引用本文: 邓世林, 林彬, 张海潮, 阿旺仁增, 王腾, 胡志中, 邹兵, 张忠坤, 杨征坤, 刘振宇, 2020. 西藏班公湖-怒江结合带中段去申拉组火山岩年代学及勘查找矿方向. 地球科学, 45(3): 776-788. doi: 10.3799/dqkx.2019.039
    Deng Shilin, Lin Bin, Zhang Haichao, Awang Renzeng, Wang Teng, Hu Zhizhong, Zou Bin, Zhang Zhongkun, Yang Zhengkun, Liu Zhenyu, 2020. Geochronology and Ore Prospecting Potential of Qushenla Formation in Middle Segment of Bangong Co-Nujiang Suture Zone, Tibet. Earth Science, 45(3): 776-788. doi: 10.3799/dqkx.2019.039
    Citation: Deng Shilin, Lin Bin, Zhang Haichao, Awang Renzeng, Wang Teng, Hu Zhizhong, Zou Bin, Zhang Zhongkun, Yang Zhengkun, Liu Zhenyu, 2020. Geochronology and Ore Prospecting Potential of Qushenla Formation in Middle Segment of Bangong Co-Nujiang Suture Zone, Tibet. Earth Science, 45(3): 776-788. doi: 10.3799/dqkx.2019.039

    西藏班公湖-怒江结合带中段去申拉组火山岩年代学及勘查找矿方向

    doi: 10.3799/dqkx.2019.039
    基金项目: 

    中国地质调查局二级项目 DD20160026

    中国地质调查局二级项目 DD20160026

    国家重点研发-深地专项 2018YFC064101

    中国地质科学院基本科研业务费 SYSCR2019-02

    西藏自治区科技计划项目 XZ201901-GB-24

    国家自然科学基金项目 41902097

    详细信息
      作者简介:

      邓世林(1985-), 男, 高级工程师, 主要从事青藏高原矿产地质调查研究

      通讯作者:

      林彬

    • 中图分类号: P597

    Geochronology and Ore Prospecting Potential of Qushenla Formation in Middle Segment of Bangong Co-Nujiang Suture Zone, Tibet

    • 摘要: 作为班公湖-怒江结合带最为重要的火山岩沉积地层之一,去申拉组一直缺乏精细的年代学研究和找矿潜力的分析.基于班-怒结合带中段尼玛县北部长期的矿产地质调查工作,对热过勒、饿蒙勒、阿俄作登等地区的去申拉组进行了详细解剖,并利用锆石U-Pb定年精细厘定区内去申拉组中英安岩、安山岩的结晶时限分别为106.2±1.3 Ma、107.7±1.4 Ma,属于早白垩世火山活动的产物.同时,区内1:5万水系沉积物异常以及实地调查揭示,阿俄作登和饿蒙勒地区存在良好铜、金、银组合异常,初步揭露1条高品位的矿化体.结合区域成矿作用背景分析,认为该区存在良好的斑岩-浅成低温热液型铜多金属成矿系统的找矿潜力.班公湖-怒江结合带去申拉火山沉积地层的形成时限的精确厘定,为区域基础地质格架的构建提供了直接证据;而其矿化信息的首次揭露,为该带早白垩世大面积覆盖的火山岩地区的勘查找矿工作指明了新方向.

       

    • 图  1  班-怒结合带去申拉组分布情况(a)和尼玛地区去申拉组地质简图(b、c、d)

      年龄数据引自西藏自治区地质调查院, 2002, 中华人民共和国1︰25万区域地质调查报告班戈县幅;四川省地质调查院, 2006, 中华人民共和国1︰25万区域地质调查报告物玛幅;河南省地质调查院, 2002, 中华人民共和国1︰25万区域地质调查报告尼玛幅;四川省地质调查院, 2003, 中华人民共和国1︰25万区域地质调查报告革吉县幅;吉林省地质调查院, 2006, 中华人民共和国1︰25万区域地质调查报告帕度错幅;李伟(2012)吴浩等(2013).1.第四系;2.新近纪康托组;3.晚白垩世竟柱山组;4.早白垩世去申拉组;5.晚侏罗世沙木罗组;6.早中侏罗世木嘎岗日岩群;7.石英闪长岩;8.铜矿化体;9.采样位置;10.地层界线;11.角度不整合界线;12.逆断层;13.剖面位置

      Fig.  1.  Distribution of Qushenla Formation in Ban-Nu suture zone(a) and geological map of Nima area(b, c, d)

      图  2  去申拉组剖面测量及分层岩性

      图中1~9层的岩性见文中描述

      Fig.  2.  Section of Qushenla Formation and its lithology

      图  3  去申拉组火山岩露头及镜下(正交)照片

      a.英安岩;b.安山岩;c.玄武岩. Aug.辉石;Pl.斜长石;Q.石英

      Fig.  3.  The outcrops and microscopic pictures (crossed) of Qushenla Formation

      图  4  部分锆石阴极发光图像及测年结果

      a.阿俄作登英安岩;b.饿蒙勒安山岩

      Fig.  4.  CL images and U-Pb ages of partial zircons

      图  5  锆石LA-ICP-MS U-Pb谐和图与206Pb/238U加权平均值

      Fig.  5.  U-Pb concordia diagrams and 206Pb/238U weight average ages of zircons

      图  6  班-怒结合带去申拉组年代学测试结果

      Fig.  6.  Chronological results of Qushenla Formation in Ban-Nu suture zone

      图  7  饿蒙勒-阿俄作登地区水系沉积物异常

      Fig.  7.  Anomaly of stream sedimentary deposits from Emengle-Aezuodeng area

      图  8  饿蒙勒-阿俄作登地区矿化露头

      Fig.  8.  Outcrops of mineralization from Emengle-Aezuodeng area

      表  1  去申拉组火山岩中锆石U-Pb测年结果

      Table  1.   U-Pb dating results of zircons from Qushenla Formation

      测点号 含量(10-6) Th/
      U
      比值 年龄(Ma) 谐和度
      (%)
      Th U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      AE-b1-2 349 366 1.0 0.110 7 0.010 1 0.016 9 0.000 5 106.6 9.2 108.1 3.1 98
      AE-b1-3 190 236 0.8 0.111 0 0.016 2 0.016 1 0.000 6 106.9 14.8 103.0 3.6 96
      AE-b1-4 243 282 0.9 0.120 4 0.014 2 0.017 4 0.000 5 115.4 12.8 111.0 3.4 96
      AE-b1-5 228 259 0.9 0.124 3 0.015 5 0.017 1 0.000 6 118.9 14.0 109.2 3.7 91
      AE-b1-6 300 332 0.9 0.114 2 0.013 2 0.016 3 0.000 5 109.8 12.0 104.5 3.3 95
      AE-b1-7 207 250 0.8 0.108 5 0.014 1 0.016 4 0.000 6 104.6 13.0 104.8 3.5 99
      AE-b1-8 222 266 0.8 0.110 8 0.013 6 0.015 9 0.000 5 106.7 12.4 101.8 3.1 95
      AE-b1-10 219 271 0.8 0.108 8 0.013 9 0.016 3 0.000 6 104.9 12.7 104.4 3.5 99
      AE-b1-11 220 255 0.9 0.119 1 0.014 2 0.016 9 0.000 6 114.2 12.9 108.0 3.7 94
      AE-b1-12 231 245 0.9 0.107 2 0.010 1 0.016 6 0.000 6 103.4 9.3 106.0 3.6 97
      AE-b1-14 341 337 1.0 0.109 0 0.015 3 0.017 1 0.000 5 105.1 14.1 109.1 2.9 96
      AE-b1-15 377 389 1.0 0.112 9 0.011 5 0.016 7 0.000 4 108.6 10.5 106.7 2.7 98
      AE-b1-16 142 196 0.7 0.104 2 0.018 5 0.016 5 0.000 6 100.7 17.0 105.5 3.7 95
      AE-b1-18 229 260 0.9 0.094 6 0.011 1 0.015 3 0.000 5 91.8 10.3 97.9 3.0 93
      AE-b1-19 330 350 0.9 0.109 9 0.012 0 0.016 1 0.000 4 105.9 10.9 102.8 2.6 97
      AE-b1-20 301 304 1.0 0.106 4 0.012 2 0.017 2 0.000 5 102.7 11.2 110.2 3.3 92
      AE-b1-22 170 205 0.8 0.122 3 0.011 5 0.016 6 0.000 6 117.2 10.4 106.4 3.7 90
      AE-b1-23 239 271 0.9 0.113 0 0.011 2 0.017 1 0.000 5 108.7 10.2 109.1 3.4 99
      AE-b1-24 193 210 0.9 0.114 7 0.013 3 0.017 4 0.000 6 110.3 12.1 111.4 3.9 99
      AE-b1-26 232 262 0.9 0.118 4 0.013 2 0.016 3 0.000 5 113.6 12.0 104.0 3.2 91
      AE-b1-27 166 203 0.8 0.120 2 0.012 3 0.016 8 0.000 7 115.2 11.1 107.6 4.3 93
      AE-b1-29 303 333 0.9 0.122 3 0.010 3 0.016 6 0.000 5 117.2 9.3 106.4 3.4 90
      AE-b1-30 180 197 0.9 0.126 8 0.020 5 0.017 4 0.000 6 121.2 18.4 111.2 4.1 91
      AE-b1-31 236 278 0.9 0.112 3 0.010 8 0.016 3 0.000 5 108.1 9.8 104.5 3.1 96
      AE-b1-32 293 281 1.0 0.110 2 0.012 0 0.017 1 0.000 5 106.2 11.0 109.1 3.1 97
      EM-b3-1 281 398 0.7 0.113 3 0.012 0 0.016 8 0.000 4 109.0 10.9 107.5 2.5 98
      EM-b3-5 456 528 0.9 0.104 9 0.012 3 0.016 3 0.000 4 101.3 11.3 104.0 2.5 97
      EM-b3-8 333 474 0.7 0.104 9 0.010 6 0.016 9 0.000 4 101.3 9.8 107.7 2.7 93
      EM-b3-9 314 417 0.8 0.107 8 0.012 5 0.017 2 0.000 5 103.9 11.5 110.1 3.2 94
      EM-b3-10 358 451 0.8 0.119 3 0.010 7 0.016 4 0.000 4 114.4 9.7 104.8 2.8 91
      EM-b3-12 239 375 0.6 0.109 9 0.012 2 0.017 1 0.000 5 105.9 11.1 109.5 3.0 96
      EM-b3-14 176 251 0.7 0.116 6 0.016 1 0.016 5 0.000 5 112.0 14.6 105.7 3.0 94
      EM-b3-15 276 437 0.6 0.122 8 0.011 7 0.017 4 0.000 5 117.6 10.6 111.1 2.9 94
      EM-b3-16 490 555 0.9 0.111 9 0.011 4 0.016 8 0.000 5 107.7 10.4 107.7 3.0 99
      EM-b3-17 176 238 0.7 0.108 6 0.017 2 0.017 1 0.000 7 104.7 15.7 109.5 4.6 95
      EM-b3-18 247 359 0.7 0.114 2 0.011 8 0.017 0 0.000 5 109.8 10.7 108.7 3.1 98
      EM-b3-19 410 502 0.8 0.109 7 0.011 7 0.016 8 0.000 4 105.7 10.7 107.5 2.8 98
      EM-b3-20 209 267 0.8 0.116 5 0.013 0 0.017 1 0.000 6 111.9 11.9 109.3 4.0 97
      EM-b3-25 241 341 0.7 0.108 0 0.014 7 0.016 8 0.000 5 104.2 13.5 107.2 3.1 97
      EM-b3-26 259 245 1.1 0.106 4 0.015 4 0.016 6 0.000 5 102.7 14.1 106.1 3.4 96
      EM-b3-27 234 314 0.7 0.111 3 0.010 8 0.017 0 0.000 5 107.2 9.9 108.8 3.4 98
      EM-b3-31 318 413 0.8 0.116 0 0.009 9 0.017 2 0.000 5 111.4 9.0 110.2 3.1 98
      注:AE-b1编号为阿俄作登地区英安岩,EM-b3编号为饿蒙勒地区安山岩.
      下载: 导出CSV
    • [1] Belousova, E.A., Griffin, W.L., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      [2] Chiaradia, M., Schaltegger, U., Spikings, R., et al., 2013. How Accurately can We Date the Duration of Magmatic-Hydrothermal Events in Porphyry Systems?-An Invited Paper. Economic Geology, 108(4): 565-584. https://doi.org/10.2113/econgeo.108.4.565
      [3] Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet: 39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance. Earth and Planetary Science Letters, 79(3-4): 281-302. https://doi.org/10.1016/0012-821x(86)90186-x
      [4] Cooke, D. R., Hollings, P., Walshe, J. L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801-818. https://doi.org/10.2113/gsecongeo.100.5.801
      [5] Cooke, D. R., Hollings, P., Walshe, J. L., 2006. Tectonic Triggers for Giant Porphyry and Epithermal Deposits of the Circum-Pacific Region. Geochimica et Cosmochimica Acta, 70(18): A110. https://doi.org/10.1016/j.gca.2006.06.133
      [6] Deng, S.L., Tang, J.X., Li, Z.J., et al., 2011. Geochemical Characteristics of Rock Mass in the Gaerqiong Cu-Au Deposit, Tibet. Journal of Chengdu University of Technology (Science & Technology Edition), 38(1):85-91 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201101013
      [7] Gao, K., Song, Y., Liu, Z. B., et al., 2018. Petrogenesis and Tectonic Significance of the Three-Period Porphyries from the Daruoluolong Cu (Au) Deposit, Tibet, China. Acta Geologica Sinica (English Edition), 92(3): 1267-1269. https://doi.org/10.1111/1755-6724.13610
      [8] He, W., Lin, B., Yang, H.H., et al., 2018. Studies of Metallic and Trace Minerals of the Tiegelongnan Cu-Au Deposit, Central Tibet, China. Acta Geologica Sinica (English Edition), 92(3): 1123-1138. https://doi.org/10.1111/1755-6724.13595
      [9] Hedenquist, J. W., Arribas, R.A., Aoki, M., et al., 2017. Zonation of Sulfate and Sulfide Minerals and Isotopic Composition in the far Southeast Porphyry and Lepanto Epithermal Cu-Au Deposits, Philippines. Resource Geology, 67(2): 174-196. https://doi.org/10.1111/rge.12127
      [10] Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      [11] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4):481-492 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200904010
      [12] Huang, H.X., Li, G.M., Liu, B., et al., 2014. Discovery of Shangxu Orogenic Type Gold Deposit in Northern Tibet and Its Significance. Mineral Deposits, 33(3):486-496 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201403003
      [13] Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block:Products of Bangong Co-Nujiang Tethy's Southward Subduction. Acta Petrologica Sinica, 26(10):3106-3116 (in Chinese with English abstract).
      [14] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016. Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet. Earth Science, 41(6): 999-1015 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201606007
      [15] Li, F.Q., Liu, Z.B., Tang, J.X., et al., 2018. Petrogenesis of Granite Porphyry in Mariaicuo Area, Shuanghu County, Tibet, and Constraints on the Evolution in the Middle Section of Bangonghu-Nujiang Suture Zone. Earth Science, 43(4): 1051-1069 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201804009
      [16] Li, H.L., 2014. Signs and Time of Continent-Ocean Transform of the Western Part of Bangong-Nujiang Suture Zone (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [17] Li, H.L., Gao, C., Li, Z.H., et al., 2016. Age and Tectonic Significance of Jingzhushan Formation in Bangong Lake Area, Tibet. Geotectonica et Metallogenia, 40(4):663-673 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201604004
      [18] Li, W., 2012. Geochemistry and Zircon U-Pb Chronology of Qushenla Group Volcanic Rocks in Gerze, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [19] Lin, B., Chen, Y.C., Tang, J.X., et al., 2016. Ziron U-Pb Ages and Hf Isotopic Composition of the Ore-Bearing Porphyry in Dibao Cu (Au) Deposit, Duolong Ore Concentration Area, Xizang (Tibet), and Its Geological Significance. Geological Review, 62(6): 1565-1578 (in Chinese with English abstract).
      [20] Lin, B., Chen, Y. C., Tang, J.X., et al., 2017. 40Ar/39Ar and Rb-Sr Ages of the Tiegelongnan Porphyry Cu-(Au) Deposit in the Bangong Co-Nujiang Metallogenic Belt of Tibet, China: Implication for Generation of Super-Large Deposit. Acta Geologica Sinica (English Edition), 91(2): 602-616. https://doi.org/10.1111/1755-6724.13120
      [21] Lin, B., Chen, Y.C., Tang, J.X., et al., 2017a. Geochronology and Sr-Nd-Pb Isotopic Geochemistry of Ore-bearing Porphyry in the Dongwodong Copper Polymetallic Deposit, North Tibet and Their Implications for Exploration Direction. Acta Geologica Sinica, 91(9):1942-1958 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201709003
      [22] Lin, B., Wang, L.Q., Tang, J.X., et al., 2017b. Zircon U-Pb Geochronology of Ore-Bearing Porphyries in Baomai Deposit, Yulong Copper Belt, Tibet. Earth Science, 42(9):1454-1471 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201709002
      [23] Lin, B., Chen, Y.C., Tang, J.X., et al., 2018. Geology, Alteration and Mineralization of Tiegelongnan Giant Cu(Au, Ag) Deposit, Tibet. Mineral Deposits, 37(5): 917-937 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kcdz201805002
      [24] Lin, B., Tang, J. X., Chen, Y. C., et al., 2016. Geochronology and Genesis of the Tiegelongnan Porphyry Cu(Au) Deposit in Tibet: Evidence from U-Pb, Re-Os Dating and Hf, S, and H-O Isotopes. Resource Geology, 67(1): 1-21. https://doi.org/10.1111/rge.12113
      [25] Lin, B., Wang, L. Q., Tang, J. X., et al., 2018a. Geology, Geochronology, Geochemical Characteristics and Origin of Baomai Porphyry Cu (Mo) Deposit, Yulong Belt, Tibet. Ore Geology Reviews, 92: 186-204. https://doi.org/10.1016/j.oregeorev.2017.10.025
      [26] Lin, B., Song, Y., Liu, Z.B., et al., 2018b. New Zircon U-Pb Age of the Ore-Bearing Porphyry from the Kuga Copper Deposit in the Eastern Bangongco-Nujiang Matallogenic Belt, Tibet. Acta Geologica Sinica (English Edition), 92(2): 859-861. https://doi.org/10.1111/1755-6724.13561
      [27] Lin, B., Tang, J. X., Chen, Y. C., et al., 2019. Geology and Geochronology of Naruo Large Porphyry-Breccia Cu Deposit in the Duolong District, Tibet. Gondwana Research, 66: 168-182. https://doi.org/10.1016/j.gr.2018.07.009
      [28] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      [29] Liu, Z.B., Wang, W.L., Song, Y., et al., 2017.Geo-Information Extraction and Integration of Ore-Controlling Structure in the Duolong Ore Concentration Area of Tibet. Acta Geoscientica Sinica, 38(5):803-812 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705019
      [30] Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      [31] Mai, Y.J., Yang, W.G., Zhu, L.D., et al., 2018. Zircon U-Pb Age and Geochemistry of Volcanic Rocks from the Qushenla Formation in the Chagelong Area of Southern Margin of Qiangtang, Tibet—Restriction on the Evolution Tine Limit of the Ban Gong Lake Nu River Ocean Basin. Journal of Mineralogy and Petrology, 38(2): 70-79 (in Chinese with English abstract).
      [32] Mao, J.W., Luo, M.C., Xie, G.Q., et al., 2014. Basic Characteristics and New Advances in Research and Exploration on Porphyry Copper Deposits. Acta Geologica Sinica, 88(12): 2153-2175 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201412002
      [33] Mao, J.W., Zhang, J.D., Guo, C.L., et al., 2010. Porphyry Cu, Epithermal Ag-Pb-Zn, Distal Hydrothermal Au Deposits:A New Model of Mineral Deposit—Taking the Dexing Area as an Example. Journal of Earth Sciences and Environment, 32(1): 1-14 (in Chinese with English abstract).
      [34] Richards, J. P., 2009. Postsubduction Porphyry Cu-Au and Epithermal Au Deposits: Products of Remelting of Subduction-Modified Lithosphere. Geology, 37(3): 247-250. https://doi.org/10.1130/g25451a.1
      [35] Richards, J. P., 2014. Porphyry and Related Deposits in Subduction and Post-Subduction Settings. Acta Geologica Sinica (English Edition), 88(S2): 535-537. https://doi.org/10.1111/1755-6724.12374_19
      [36] Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
      [37] Song, Y., Tang, J.X., Qu, X.M., et al., 2014. Progress in the Study of Mineralization in the Bangongco-Nujiang Metallogenic Belt and Some New Recognition. Advances in Earth Science, 29(7): 795-809 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201407004
      [38] Song, Y., Yang, H.H., Lin, B., et al., 2017. The Preservation System of Epithermal Deposits in South Qiangtang Terrane of Central Tibetan Plateau and Its Significance: A Case Study of the Tiegelongnan Superlarge Deposit. Acta Geoscientica Sinica, 38(5): 659-669 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQXB201705007.htm
      [39] Tang, J. X., Song, Y., Wang, Q., et al., 2016. Geological Characteristics and Exploration Model of the Tiegelongnan Cu (Au-Ag) Deposit: The First Ten Million Tons Metal Resources of a Porphyry-Epithermal Deposit in Tibet. Acta Geoscientica Sinica, 37(6): 663-690 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQXB201606003.htm
      [40] Tang, J.X., Sun, X.G., Ding, S., et al., 2014a. Discovery of the Epithermal Deposit of Cu(Au-Ag) in the Duolong Ore Concentrating Area, Tibet. Acta Geoscientica Sinica, 35(1):6-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201401002.htm
      [41] Tang, J.X., Wang, Q., Yang, C., et al., 2014b. Two Porphyry Epithermal Deposit Metallogenic Subseries in Tibetan Plateau: Practice of "Absence Prospecting" Deposit Metallogenic Series. Mineral Deposits, 33(6): 1151-1170 (in Chinese with English abstract).
      [42] Tang, J.X., Wang, Q., Yang, H.H., et al., 2017. Mineralization, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Tibet. Acta Geoscientica Sinica, 38(5):571-613 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705002
      [43] Wang, W. L., Cheng, Q. M., Tang, J. X., et al., 2017. Fractal/multifractal Analysis in Support of Mineral Exploration in the Duolong Mineral District, Tibet, China. Geochemistry: Exploration, Environment, Analysis, 17(3): 261-276. https://doi.org/10.1144/geochem2016-449
      [44] Wang, Q., Tang, J.X., Fang, X., et al., 2015. Petrogenetic Setting of Andsites in Rongna Ore Block, Tiegelong Cu(Au-Ag)deposit, Duolong Ore Concentration Area, Tibet: Evidence from Zircon U-Pb LA-ICP-MS Dating and Petrogeochemistry of Andsites. Geology in China, 42(5):1324-1336 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DIZI201505011.htm
      [45] Wu, H., Li, C., Hu, P.Y., et al., 2013. The Discovery of Qushenla Volcanic Rocks in Tasepule Area of Nyima Country, Tibet, and Its Geological Significance. Geological Bulletin of China, 32(7):1014-1026 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201307007
      [46] Wu, H., Li, C., Hu, P.Y., et al., 2014. The Discovery of Early Cretaceous Bimodal Volcanic Rocks in the Dachagou Area of Tibet and Its Significance. Geological Bulletin of China, 33(11):1804-1814 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201411016
      [47] Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008.Qulong Superlarge Porphyry Cu Deposit in Tibet: Geology, Alteration and Mineralization. Mineral Deposits, 27(3):279-318 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200803003.htm
      [48] Zeng, M., Chen, J.P., Wei, C.C., et al., 2017. The Mugagangri Group is an Accretionary Complex Accreted Onto the South Margin of Qiangtang. Earth Science Frontiers, 24(5):207-217 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201705020
      [49] Zeng, Y.R., Huang, J.G., Ma, D.S., et al., 2016.The New Evidence for the Upper Limit of Mugakangri Group-Complex from Bangong-Nujing Junction Zone, Tibet: Reports from Early Early Cretaceous Palynoflora in Kongnongla Area, Bangor County, Tibet. Geological Bulletin of China, 35(12):2027-2032 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201612010.htm
      [50] Zhang, Z., Chen, Y.C., Tang, J.X., et al., 2015. Zircon U-Pb Age and Geochemical Characteristics of Volcanic Rocks in Gaerqiong-Galale Cu-Au Ore District, Tibet. Earth Science, 40(1):77-97 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201501006
      [51] Zhang, Z., Yao, X. F., Tang, J.X., et al., 2015. Lithogeochemical, Re-Os and U-Pb Geochronological, Hf-Lu and S-Pb Isotope Data of the Ga'erqiong-Galale Cu-Au Ore-Concentrated Area: Evidence for the Late Cretaceous Magmatism and Metallogenic Event in the Bangong-Nujiang Suture Zone, Northwestern Tibet. Resource Geology, 65(2): 76-102. https://doi.org/10.1111/rge.12064
      [52] Zhao, W.J., Liu, K., Jiang, Z.T., et al., 2004. Bangong Co-Nujiang Suture Zone, Tibet—A Suggestion Given by Deep Geophysical Structure. Regional Geology of China, 23(7):623-635 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200407000.htm
      [53] Zhao, Z., Lu, L., Wu, Z.H., et al., 2018. Characteristics of the Late Triassic Granite Mass and the Slab Break-Off in Central Qiangtang, Tibet. Earth Science, 43(Suppl.1): 225-242 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1021.htm
      [54] Zheng, H.T., Zheng, Y.Y., Xu, J., et al., 2018. Zircon U-Pb Ages and Petrogenesis of Ore-Bearing Porphyry for Qingcaoshan Porphyry Cu-Au Deposit, Tibet. Earth Science, 43(8): 2858-2874 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201808023
      [55] Zheng, W. B., Tang, J. X., Zhong, K. H., et al., 2016. Geology of the Jiama Porphyry Copper-Polymetallic System, Lhasa Region, China. Ore Geology Reviews, 74: 151-169. https://doi.org/10.1016/j.oregeorev.2015.11.024
      [56] Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245: 7-17. https://doi.org/10.1016/j.lithos.2015.06.023
      [57] 邓世林, 唐菊兴, 李志军, 等, 2011.西藏尕尔穷铜金矿床岩体地球化学特征.成都理工大学学报(自然科学版), 38(1):85-91. doi: 10.3969/j.issn.1671-9727.2011.01.013
      [58] 侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      [59] 黄瀚霄, 李光明, 刘波, 等, 2014.藏北商旭造山型金矿床的发现及意义.矿床地质, 33(3):486-496. doi: 10.3969/j.issn.0258-7106.2014.03.003
      [60] 康志强, 许继峰, 王保弟, 等, 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?岩石学报, 26(10):3106-3116. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010022
      [61] 冷秋锋, 唐菊兴, 郑文宝, 等. 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6): 999-1015. doi: 10.3799/dqkx.2016.083
      [62] 李发桥, 刘治博, 唐菊兴, 等, 2018.西藏玛日埃错地区花岗斑岩岩石成因及其对班公湖-怒江缝合带中段演化的制约.地球科学, 43(4): 1051-1069. doi: 10.3799/dqkx.2018.709
      [63] 李华亮, 2014.班公湖-怒江缝合带西段洋陆转换的标志及时间(博士学位论文).武汉: 中国地质大学.
      [64] 李华亮, 高成, 李正汉, 等, 2016.西藏班公湖地区竟柱山组时代及其构造意义.大地构造与成矿学, 40(4):663-673. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201604004
      [65] 李伟, 2012.西藏改则地区去申拉组火山岩地球化学特征及锆石年代学制约(硕士学位论文).北京: 中国地质大学.
      [66] 林彬, 陈毓川, 唐菊兴, 等, 2017a.藏北东窝东铜多金属矿床含矿斑岩年代学、Sr-Nd-Pb同位素及成矿预测.地质学报, 91(9):1942 -1958. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201709003
      [67] 林彬, 王立强, 唐菊兴, 等, 2017b.西藏玉龙铜矿带包买矿床含矿斑岩锆石U-Pb年代学.地球科学, 42(9): 1454-1471. doi: 10.3799/dqkx.2017.517
      [68] 林彬, 陈毓川, 唐菊兴, 等, 2016.西藏多龙矿集区地堡Cu(Au)矿床含矿斑岩锆石U-Pb测年、Hf同位素组成及其地质意义.地质论评, 62(6): 1565-1578. http://d.old.wanfangdata.com.cn/Periodical/dzlp201606017
      [69] 林彬, 陈毓川, 唐菊兴, 等, 2018.西藏铁格隆南超大型铜(金、银)矿床地质、蚀变与矿化.矿床地质, 37(5): 917-937. http://d.old.wanfangdata.com.cn/Periodical/kcdz201805002
      [70] 刘治博, 王文磊, 宋扬, 等, 2017.多龙矿集区控矿构造信息提取、识别与融合.地球学报, 38(5):803-812. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705019
      [71] 麦源君, 杨文光, 朱利东, 等, 2018.西藏羌塘南缘查格隆去申拉组火山岩锆石U-Pb年龄、地球化学特征——对班公湖-怒江洋盆演化时限的制约.矿物岩石, 38(2):70-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys201802009
      [72] 毛景文, 罗茂澄, 谢桂青, 等, 2014.斑岩铜矿床的基本特征和研究勘查新进展.地质学报, 88(12):2153-2175. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412002
      [73] 毛景文, 张建东, 郭春丽, 等, 2010.斑岩铜矿-浅成低温热液银铅锌-远接触带热液金矿矿床模型:一个新的矿床模型——以德兴地区为例.地球科学与环境学报, 32(1):1-14. doi: 10.3969/j.issn.1672-6561.2010.01.001
      [74] 宋扬, 唐菊兴, 曲晓明, 等, 2014.西藏班公湖-怒江成矿带研究进展及一些新认识.地球科学进展, 29(7):795-809. http://www.cnki.com.cn/Article/CJFDTotal-DXJZ201407006.htm
      [75] 宋扬, 杨欢欢, 林彬, 等, 2017.青藏高原羌塘地体南缘浅成低温热液成矿系统的保存机制及其重要意义——以铁格隆南超大型矿床为例.地球学报, 38(5):659-669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201705007
      [76] 唐菊兴, 宋扬, 王勤, 等, 2016.西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩-浅成低温热液型矿床.地球学报, 37(6):663-690. doi: 10.3975/cagsb.2016.06.03
      [77] 唐菊兴, 孙兴国, 丁帅, 等, 2014a.西藏多龙矿集区发现浅成低温热液型铜(金银)矿床.地球学报, 35(1):6-10. http://d.old.wanfangdata.com.cn/Periodical/dqxb201401002
      [78] 唐菊兴, 王勤, 杨超, 等, 2014b.青藏高原两个斑岩-浅成低温热液矿床成矿亚系列及其"缺位找矿"之实践.矿床地质, 33(6):1151-1170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201406002
      [79] 唐菊兴, 王勤, 杨欢欢, 等, 2017.西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力.地球学报, 38(5):571-613. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705002
      [80] 王勤, 唐菊兴, 方向, 等, 2015.西藏多龙矿集区铁格隆南铜(金银)矿床荣那矿段安山岩成岩背景:来自锆石U-Pb年代学、岩石地球化学的证据.中国地质, 42(5): 1324-1336. doi: 10.3969/j.issn.1000-3657.2015.05.011
      [81] 吴浩, 李才, 胡培远, 等, 2013.西藏尼玛县塔色普勒地区去申拉组火山岩的发现及其地质意义.地质通报, 32(7):1014-1026. doi: 10.3969/j.issn.1671-2552.2013.07.007
      [82] 吴浩, 李才, 胡培远, 等, 2014.藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义.地质通报, 33(11):1804-1814. doi: 10.3969/j.issn.1671-2552.2014.11.016
      [83] 杨志明, 侯增谦, 宋玉财, 等, 2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质, 27(3):279-318. doi: 10.3969/j.issn.0258-7106.2008.03.002
      [84] 曾敏, 陈建平, 位冲冲, 等, 2017.木嘎岗日岩群是羌塘南缘的增生楔杂岩.地学前缘, 24(5):207-217. http://d.old.wanfangdata.com.cn/Periodical/dxqy201705020
      [85] 曾禹人, 黄建国, 马德胜, 等, 2016.西藏班公湖-怒江结合带木嘎岗日岩群时代上限的新证据——来自恐弄拉地区早白垩世早期孢粉化石的报道.地质通报, 35(12):2027-2032. doi: 10.3969/j.issn.1671-2552.2016.12.010
      [86] 张志, 陈毓川, 唐菊兴, 等, 2015.西藏尕尔穷-嘎拉勒铜金矿集区火山岩年代学及地球化学.地球科学, 40(1):77-97. doi: 10.3799/dqkx.2015.006
      [87] 赵珍, 陆露, 吴珍汉, 等, 2018.羌塘中部晚三叠世江爱岩体特征与板片断离作用.地球科学, 43(增刊1): 225-242. http://d.old.wanfangdata.com.cn/Periodical/dqkx2018z1021
      [88] 赵文津, 刘葵, 蒋忠惕, 等, 2004.西藏班公湖-怒江缝合带——深部地球物理结构给出的启示.地质通报, 23(7):623-635. doi: 10.3969/j.issn.1671-2552.2004.07.001
      [89] 郑海涛, 郑有业, 徐净, 等, 2018.西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因.地球科学, 43(8): 2858-2874. doi: 10.3799/dqkx.2018.111
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  3085
    • HTML全文浏览量:  860
    • PDF下载量:  56
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-11-19
    • 刊出日期:  2020-03-15

    目录

      /

      返回文章
      返回