• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏南部错那洞矽卡岩型铍钨锡多金属矿体成矿母岩成岩时代及其地球化学特征

    夏祥标 李光明 曹华文 梁维 付建刚

    夏祥标, 李光明, 曹华文, 梁维, 付建刚, 2019. 西藏南部错那洞矽卡岩型铍钨锡多金属矿体成矿母岩成岩时代及其地球化学特征. 地球科学, 44(7): 2207-2223. doi: 10.3799/dqkx.2019.038
    引用本文: 夏祥标, 李光明, 曹华文, 梁维, 付建刚, 2019. 西藏南部错那洞矽卡岩型铍钨锡多金属矿体成矿母岩成岩时代及其地球化学特征. 地球科学, 44(7): 2207-2223. doi: 10.3799/dqkx.2019.038
    Xia Xiangbiao, Li Guangming, Cao Huawen, Liang Wei, Fu Jiangang, 2019. Petrogenic Age and Geochemical Characteristics of the Mother Rock of Skarn Type Ore Body in the Cuonadong Be-W-Sn Polymetallic Deposit, Southern Tibet. Earth Science, 44(7): 2207-2223. doi: 10.3799/dqkx.2019.038
    Citation: Xia Xiangbiao, Li Guangming, Cao Huawen, Liang Wei, Fu Jiangang, 2019. Petrogenic Age and Geochemical Characteristics of the Mother Rock of Skarn Type Ore Body in the Cuonadong Be-W-Sn Polymetallic Deposit, Southern Tibet. Earth Science, 44(7): 2207-2223. doi: 10.3799/dqkx.2019.038

    西藏南部错那洞矽卡岩型铍钨锡多金属矿体成矿母岩成岩时代及其地球化学特征

    doi: 10.3799/dqkx.2019.038
    基金项目: 

    中国地质调查局项目 DD20160015

    中国地质调查局项目 DD20190147

    国家重点研发计划项目 2018YFC0604103

    详细信息
      作者简介:

      夏祥标(1982-), 男, 高级工程师, 长期从事青藏高原地质研究工作

    • 中图分类号: P597

    Petrogenic Age and Geochemical Characteristics of the Mother Rock of Skarn Type Ore Body in the Cuonadong Be-W-Sn Polymetallic Deposit, Southern Tibet

    • 摘要: 错那洞穹窿是北喜马拉雅片麻岩穹窿带(NHGD)中发现的新成员,并发育有超大型铍钨锡多金属成矿作用.错那洞矿床铍钨锡多金属矿体赋存于矽卡岩、断裂构造及(伟晶状)花岗岩中,以矽卡岩型矿体为主,形成矽卡岩型矿体的成矿母岩则为一套弱定向二云母花岗岩.针对弱定向二云母花岗岩开展了年代学及地球化学特征研究工作.年代学结果表明,弱定向二云母花岗岩锆石U-Pb年龄为16.5±0.3 Ma,为中新世淡色花岗岩浆活动,表明错那洞超大型铍钨锡多金属矿床形成于中新世,为喜马拉雅碰撞造山过程中伸展阶段的产物.地球化学结果表明,该套成矿弱定向二云母花岗岩具有富硅(73.36%~73.89%)、贫铁(0.96%~1.58%)、强过铝质的钙碱性花岗岩地球化学特征.其稀土元素总量较低,相对富集轻稀土元素,而相对亏损重稀土元素,具有明显负Eu异常,相对富集Rb、Th等大离子亲石元素,相对亏损Zr、Ti等高场强元素,地球化学特征综合显示其为一套高分异淡色花岗岩,可能为变泥质岩重融的产物,与藏南拆离系(STDS)的活动密切相关.

       

    • 图  1  喜马拉雅片麻岩穹窿分布图(a)及扎西康整装勘查区地质简图(b)

      张林奎等(2018)修改

      Fig.  1.  Simplified geological map of the Himalayan gneiss domes (a) and generalized geological map of the Zhaxikang integrated exploration area (b)

      图  2  错那洞穹窿地质简图

      张林奎等(2018)修改

      Fig.  2.  Simplified geological map of the Cuonadong dome

      图  3  矿石宏观及微观特征特征

      a.裂隙中的锡石呈自形状集合体产出;b.钨灯下,矽卡岩中白钨矿发出天蓝色荧光;c.伟晶岩中绿柱石;d.锡石与石英共生,且锡石具有结晶环带(正交偏光);e.白钨矿与石英共生,显示出强内反射特征(反射光);f.硅铍石和羟硅铍石是矽卡岩中重要的富Be矿物(BSD图像);Cst.锡石;Sch.白钨矿;Qz.石英;Brl.绿柱石;Be.硅铍石;Ber.羟硅铍石;Di.透辉石;Ep.绿帘石;Tri.透闪石

      Fig.  3.  Macro-and micro-feature of ores in the rare metals mineral occurrence

      图  4  错那洞弱定向二云母花岗岩野外照片和镜下照片

      a.弱定向二云母花岗岩野外露头;b.弱定向二云母花岗岩与矽卡岩直接接触;c.弱定向二云母花岗岩镜下照片(+)可见云母具定向性;d.弱定向二云母花岗岩镜下照片(+);sk.矽卡岩矿体;γ1.弱定向二云母花岗岩;sch.十字石石榴石云母片岩;Q.石英;Kf.钾长石;Pl.斜长石;Bi.黑云母;Ms.白云母

      Fig.  4.  Macro-and micro-feature of weakly oriented two-mica granite in the Cuonadong dome

      图  5  错那洞弱定向二云母花岗岩锆石CL图像

      Fig.  5.  CL images of zircons from weakly oriented two-mica granite in the Cuonadong dome

      图  6  错那洞弱定向二云母花岗岩锆石U-Pb年龄图解

      Fig.  6.  U-Pb concordia diagrams of zircons from weakly oriented two-mica granite in the Cuonadong dome

      图  7  错那洞弱定向二云母花岗岩SiO2-K2O(a)和A/CNK-A/NK (b)关系

      Fig.  7.  Classifications diagrams for weakly oriented two-mica granite in the Cuonadong deposit of Tibet: (a) SiO2-K2O plot; and (b) A/NCK-A/NK plot

      图  8  错那洞弱定向二云母花岗岩稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)

      Fig.  8.  Chondrite-normalized REE pattern (a) and primitive mantle-normalized spider diagram (b) for weakly oriented two-mica granite in the Cuonadong, Tibet

      图  9  错那洞弱定向二云母花岗岩TLREE-TZr图解

      Fig.  9.  TLREE vs. TZr plot for weakly oriented two-mica granite in the Cuonadong, Tibet

      图  10  错那洞弱定向二云母花岗岩Rb/Ba-Rb/Sr和A/MF-C/MF图解

      Fig.  10.  Rb/Ba-Rb/Sr diagram and A/MF-C/MF diagram for weakly oriented two-mica granite in the Cuonadong, Tibet

      图  11  错那洞弱定向二云母花岗岩(Zr+Nb+Ce+Y)-(FeO/MgO)和(Zr+Nb+Ce+Y)-((K2O+Na2O)/CaO)图解

      Fig.  11.  Zr+Nb+Ce+Y versus FeO/MgO and(K2O+Na2O)/CaO plots showing A-type granites and fields of fractionated felsic granites

      图  12  错那弱定向二云母花岗岩构造环境判别图

      Fig.  12.  Discrimination diagrams of tectonic environments for weakly oriented two-mica granite in the Cuonadong, Tibet

      表  1  错那洞弱定向二云母花岗岩LA-ICP-MS锆石测试数据表

      Table  1.   Zircon LA-ICP-MS U-Pb isotopic data for weakly oriented two-mica granite in the Cuonadong dome

      分析点 含量(10-6 Th/U 同位素比值 年龄(Ma)
      Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      D1037-16 112.29 4 218.86 0.026 6 0.050 21 0.003 20 0.016 9 0.001 0.002 5 0.000 04 205.6 145.4 17.1 1.0 15.8 0.3
      D1037-6 405.54 7 788.89 0.052 1 0.042 29 0.002 12 0.014 5 0.000 7 0.002 5 0.000 03 198.6 87.5 14.6 0.7 16 0.2
      D1037-19 293.18 15 666.18 0.018 7 0.050 79 0.002 58 0.018 0.000 8 0.002 6 0.000 03 231.6 118.5 18.1 0.8 16.4 0.2
      D1037-22 3 633.26 54 512.08 0.066 7 0.050 33 0.002 14 0.018 0.000 7 0.002 6 0.000 03 209.3 98.1 18.1 0.7 16.5 0.2
      D1037-9 223.41 12 440.31 0.018 0.046 94 0.002 19 0.016 7 0.000 7 0.002 6 0.000 03 55.7 98.1 16.8 0.7 16.6 0.2
      D1037-24 246.47 12 903.66 0.019 1 0.048 93 0.002 31 0.017 7 0.000 9 0.002 6 0.000 04 146.4 109.2 17.9 0.9 16.7 0.3
      D1037-15 313.11 14 938.97 0.021 0.048 19 0.001 84 0.017 6 0.000 7 0.002 6 0.000 04 109.4 88.9 17.7 0.7 16.9 0.2
      D1037-23 244.95 10 696.1 0.022 9 0.046 88 0.002 70 0.017 2 0.001 0.002 7 0.000 1 42.7 133.3 17.3 1.0 17.1 0.3
      D1037-14 312.52 10 350.64 0.030 2 0.047 67 0.002 33 0.017 9 0.001 0.002 7 0.000 1 83.4 111.1 18.0 1.0 17.3 0.3
      D1037-11 590.92 674.23 0.876 4 0.057 13 0.002 04 0.660 1 0.024 9 0.082 8 0.001 2 498.2 77.8 514.7 15.2 512.6 7.1
      D1037-25 10 926.07 7 369.65 1.482 6 0.073 44 0.001 82 0.992 8 0.123 7 0.095 7 0.010 9 1 027.8 50.0 700.1 63.0 589 64
      D1037-2 1 140.65 1 015.24 1.123 5 0.065 20 0.001 60 1.205 1 0.029 4 0.132 4 0.001 2 788.9 51.8 802.9 13.6 801.8 7.1
      D1037-4 1 219.61 1 036.98 1.176 1 0.062 45 0.001 57 1.170 7 0.029 7 0.134 5 0.001 3 700.0 53.7 787.0 13.9 813.7 7.3
      下载: 导出CSV

      表  2  错那洞弱定向二云母花岗岩主量元素分析数据(%)

      Table  2.   Major elements (%) composition of weakly oriented two-mica granite in the Cuonadong Be-Rb-W-Sn deposit, Tibet

      样号 D1037-1 D1037-2 D1037-3 D1037-4 D1037-5 D1037-6 D1037-7 D1037-8
      SiO2 73.62 73.36 73.42 73.89 73.56 73.43 73.44 73.74
      Al2O3 14.71 14.64 14.61 14.70 14.73 14.75 14.66 14.74
      Fe2O3 0.06 0.14 0.06 0.09 0.15 0.17 0.14 0.12
      FeO 1.17 1.36 1.43 1.12 1.07 1.58 1.20 0.96
      MgO 0.096 0.093 0.097 0.094 0.095 0.101 0.092 0.094
      CaO 0.72 0.71 0.76 0.75 0.73 0.72 0.71 0.73
      Na2O 3.74 3.66 3.78 3.78 3.73 3.80 3.79 3.79
      K2O 4.51 4.57 4.45 4.45 4.49 4.55 4.51 4.49
      TiO2 0.062 0.068 0.063 0.067 0.063 0.062 0.062 0.064
      MnO 0.042 0.04 0.043 0.040 0.038 0.039 0.037 0.034
      P2O5 0.112 0.112 0.109 0.111 0.11 0.11 0.109 0.112
      LOI 0.56 0.57 0.52 0.55 0.57 0.55 0.55 0.50
      TOTAL 99.40 99.32 99.34 99.64 99.33 99.86 99.30 99.37
      A/NK 1.33 1.34 1.32 1.33 1.34 1.32 1.32 1.33
      A/CNK 1.19 1.19 1.18 1.19 1.20 1.18 1.18 1.19
      Na2O+K2O 8.25 8.22 8.23 8.23 8.22 8.35 8.30 8.28
      Na2O/K2O 0.83 0.80 0.85 0.85 0.83 0.83 0.84 0.84
      下载: 导出CSV

      表  3  错那洞弱定向二云母花岗岩微量元素(10-6)和稀土元素(10-6)分析数据

      Table  3.   Trace elements (10-6) and rare earthe lements (10-6) results of weakly oriented two-mica granite at the Cuonadong, Tibet

      D1037-1 D1037-2 D1037-3 D1037-4 D1037-5 D1037-6 D1037-7 D1037-8
      La 9.66 9.33 7.93 10.06 9.59 9.33 9.22 6.76
      Ce 19.37 19.66 16.84 21.49 20.33 19.50 19.59 14.38
      Pr 2.35 2.45 2.04 2.56 2.41 2.30 2.32 1.71
      Nd 9.46 9.35 8.20 10.32 9.56 9.21 9.28 6.88
      Sm 3.00 3.11 2.71 3.26 3.10 2.98 3.03 2.33
      Eu 0.36 0.44 0.29 0.33 0.32 0.33 0.33 0.28
      Gd 2.53 2.62 2.34 2.77 2.66 2.64 2.63 2.09
      Tb 0.43 0.53 0.40 0.46 0.45 0.44 0.44 0.37
      Dy 2.14 2.12 2.03 2.23 2.23 2.21 2.28 1.82
      Ho 0.38 0.48 0.35 0.39 0.39 0.38 0.40 0.32
      Er 1.01 1.03 0.97 1.02 1.07 1.03 1.07 0.84
      Tm 0.16 0.27 0.14 0.14 0.16 0.15 0.15 0.12
      Yb 0.85 0.86 0.81 0.83 0.93 0.89 0.89 0.69
      Lu 0.14 0.23 0.11 0.11 0.13 0.12 0.13 0.10
      ΣREE 51.85 52.48 45.16 55.97 53.32 51.52 51.77 38.69
      LREE 44.20 44.33 38.02 48.02 45.31 43.65 43.77 32.34
      HREE 7.65 8.14 7.14 7.95 8.01 7.87 8.00 6.35
      LREE/HREE 5.78 5.45 5.33 6.04 5.65 5.55 5.47 5.09
      LaN/YbN 8.15 7.79 7.05 8.73 7.39 7.52 7.40 6.99
      δEu 0.40 0.47 0.36 0.34 0.34 0.36 0.35 0.39
      δCe 1.00 1.01 1.03 1.04 1.04 1.03 1.04 1.04
      Bi 4.45 3.58 3.47 5.22 5.14 4.91 4.38 3.27
      Sc 2.15 2.05 1.98 1.94 1.97 1.95 1.94 1.93
      Cr 6.32 8.24 10.16 10.17 12.88 9.89 7.32 7.06
      Co 1.68 2.72 1.93 2.59 2.88 2.80 4.14 2.31
      Ni 1.74 1.94 1.68 0.98 3.21 2.26 1.84 1.18
      Ga 34.25 33.29 32.13 32.03 32.64 33.79 34.86 32.12
      Rb 504.55 505.63 492.98 494.71 499.94 506.09 506.93 498.19
      Sr 29.31 29.51 29.63 29.39 28.94 30.40 29.43 30.68
      Y 9.76 8.76 9.39 10.01 10.35 9.99 10.10 8.11
      Nb 10.99 10.85 10.25 10.69 10.45 10.87 10.64 10.19
      Sn 23.67 23.75 22.69 23.12 22.54 23.06 23.36 21.86
      W 2.29 2.14 2.22 2.20 2.25 2.27 2.26 2.17
      Ba 61.28 61.57 63.62 61.14 64.10 63.14 57.69 60.29
      Hf 2.15 2.17 2.14 2.12 2.11 2.15 2.10 2.01
      Ta 2.42 2.24 1.95 2.03 2.34 2.06 2.29 2.02
      Th 10.60 9.37 9.47 9.64 9.48 9.65 9.65 8.31
      Zr 29.28 31.29 27.36 29.02 28.03 29.62 29.77 27.53
      Nb/Ta 4.54 4.84 5.26 5.28 4.46 5.27 4.65 5.04
      Rb/Sr 17.21 17.13 16.64 16.83 17.28 16.65 17.22 16.24
      Ti/Y 38.19 46.58 40.21 39.98 36.24 37.46 36.76 47.13
      Ti/Zr 12.73 13.04 13.79 13.79 13.38 12.64 12.48 13.88
      下载: 导出CSV
    • [1] Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems:Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contributions to Mineralogy and Petrology, 123(3):323-333. https://doi.org/10.1007/s004100050159
      [2] Chen, Y. X., Pei, X. Z., Li, Z. C., et al., 2015. Geochronology, Geochemical Features and Geological Significance of the Granitic Gneiss in Balong Area, East Section of East Kunlun. Acta Petrologica Sinica, 31(8):2230-2244 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201508008
      [3] Chen, Z., Liu, Y., Hodges, K. V., et al., 1990. The Kangmar Dome:A Metamorphic Core Complex in Southern Xizang (Tibet). Science, 250(4987):1552-1556. https://doi.org/10.1126/science.250.4987.1552
      [4] Cuney, M., Marignac, C., Weisbrod, A., 1992. The Beauvoir Topaz-Lepidolite Albite Granite (Massif Central, France); The Disseminated Magmatic Sn-Li-Ta-Nb-Be Mineralization. Economic Geology, 87(7):1766-1794. https://doi.org/10.2113/gsecongeo.87.7.1766
      [5] Dong, H. W., Xu, Z. Q., Meng, Y. K., et al., 2017. Geochronology of Leucogranites in the Cuonadong Dome, Southern Tibet and Limitation of the Timing of the Southern Tibet Detachment System (STDS). Acta Petrologica Sinica, 33(12):3741-3752 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201712004
      [6] Fu, J. G., Li, G. M., Wang, G. H., et al., 2017. First Field Identification of the Cuonadong Dome in Southern Tibet:Implications for EW Extension of the North Himalayan Gneiss Dome. International Journal of Earth Sciences, 106(5):1581-1596. https://doi.org/10.1007/s00531-016-1368-2
      [7] Fu, J. G., Li, G. M., Wang, G. H., et al., 2018. Synchronous Granite Intrusion and E-W Extension in the Cuonadong Dome, Southern Tibet, China:Evidence from Field Observations and Thermochronologic Results. International Journal of Earth Sciences, 107(6):2023-2041. https://doi.org/10.1007/s00531-018-1585-y
      [8] Gao, L. E., Gao, J. H., Zhao, L. H., et al., 2017. The Miocene Leucogranite in the Nariyongcuo Gneiss Dome, Southern Tibet:Products from Melting Metapelite and Fractional Crystallization. Acta Petrologica Sinica, 33(8):2395-2411 (in Chinese with English abstract).
      [9] Gao, L. E., Zeng, L. S., 2014. Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet. Geochimica et Cosmochimica Acta, 130:136-155. https://doi.org/10.1016/j.gca.2014.01.003
      [10] Gao, L. E., Zeng, L. S., Asimow, P. D., 2017. Contrasting Geochemical Signatures of Fluid-Absent Versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites. Geology, 45(1):39-42. https://doi.org/10.1130/g38336.1
      [11] Gao, L. E., Zeng, L. S., Xie, K. J., 2011. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 56(36):3078-3090 (in Chinese).
      [12] Gu, P. Y., He, S. P., Li, R. S., et al., 2013. Geochemical Features and Tectonic Significance of Granitic Gneiss of Laguigangri Metamorphic Core Complexes in Southern Tibet. Acta Petrologica Sinica, 29(3):756-768 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002
      [13] Harris, N. B. W., Inger, S., 1992. Trace Element Modelling of Pelite-Derived Granites. Contributions to Mineralogy and Petrology, 110(1):46-56. https://doi.org/10.1007/bf00310881
      [14] Harris, N., Massey, J., 1994. Decompression and Anatexis of Himalayan Metapelites. Tectonics, 13(6):1537-1546. https://doi.org/10.1029/94tc01611
      [15] Harrison, M. T., Grove, M., Mckeegan, K. D., et al., 1999. Origin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya. Journal of Petrology, 40(1):3-19. https://doi.org/10.1093/petroj/40.1.3
      [16] Hofmann, A. W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/ 0012-821x(88)90132-x doi: 10.1016/0012-821x(88)90132-x
      [17] Hou, K. J., Li, Y. H., Tian, Y. R., 2009. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28(4):481-492 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200904010
      [18] Hu, G. Y., Zeng, L. S., Gao, L. E., et al., 2011. Lanthanide Kinked Shape, similar to Tetrad Effect, Observed in Sub-Volcanic Rocks from Qiaga, Southern Tibet, China. Geological Bulletin of China, 30(1):82-94 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201101008
      [19] Huang, C. M., Li, G. M., Zhang, Z., et al., 2018. Petrogenesis of the Cuonadong Leucogranite in South Tibet:Constraints from Bulk-Rock Geochemistry and Zircon U-Pb Dating. Earth Science Frontiers, 25(6):182-195 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201806015
      [20] Kellett, D. A., Grujic, D., Erdmann, S., 2009. Miocene Structural Reorganization of the South Tibetan Detachment, Eastern Himalaya:Implications for Continental Collision. Lithosphere, 1(5):259-281. https://doi.org/10.1130/l56.1
      [21] Kellett, D. A., Grujic, D., Warren, C., et al., 2010. Metamorphic History of a Syn-Convergent Orogen-Parallel Detachment:The South Tibetan Detachment System, Bhutan Himalaya. Journal of Metamorphic Geology, 28(8):785-808. https://doi.org/10.1111/j.1525-1314.2010.00893.x
      [22] Lee, J., Hacker, B. R., Dinklage, W. S., et al., 2000. Evolution of the Kangmar Dome, Southern Tibet:Structural, Petrologic, and Thermochronologic Constraints. Tectonics, 19(5):872-895. https://doi.org/10.1029/1999tc001147
      [23] Lee, J., Hacker, B., Wang, Y., 2004. Evolution of North Himalayan Gneiss Domes:Structural and Metamorphic Studies in Mabja Dome, Southern Tibet. Journal of Structural Geology, 26(12):2297-2316. https://doi.org/10.1016/j.jsg.2004.02.013
      [24] Lee, J., McClelland, W., Wang, Y., et al., 2006. Oligocene-Miocene Middle Crustal Flow in Southern Tibet:Geochronology of Mabja Dome. Geological Society, London, Special Publications, 268(1):445-469. https://doi.org/10.1144/gsl.sp.2006.268.01.21
      [25] Li, D. W., Liu, D. M., Liao, Q. A., et al., 2003. Definition and Significance of the Lhagoi Kangri Metamorphic Core Complexes in Sa'gya, Southern Tibet. Geological Bulletin of China, 22(5):303-307 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200305002
      [26] Li, G. M., Zhang, L. K., Jiao, Y. J., et al., 2017. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014
      [27] Liang, W., Zhang, L. K., Xia, X. B., et al., 2018. Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit, Southern Tibet, China. Earth Science, 43(8):2742-2754 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.154
      [28] Lin, B., Tang, J. X., Zheng, W. B., et al., 2016. Geochemical Characteristics, Age and Genesis of Cuonadong Leucogranite, Tibet. Acta Petrologica et Mineralogica, 35(3):391-406 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201603002
      [29] Lin, Y., Pollard, P. J., Hu, S.X., et al., 1995. Geologic and Geochemical Characteristics of the Yichun Ta-Nb-Li Deposit, Jiangxi Province, South China. Economic Geology, 90(3):577-585. https://doi.org/10.2113/gsecongeo.90.3.577
      [30] Liu, Z. C., Wu, F. Y., Ding, L., et al., 2016. Highly Fractionated Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243:337-354. https://doi.org/10.1016/j.lithos.2015.11.026
      [31] Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208-209:118-136. https://doi.org/10.1016/j.lithos.2014.08.022
      [32] Marignac, C., Cuney, M., 1999. Ore Deposits of the French Massif Central:Insight into the Metallogenesis of the Variscan Collision Belt. Mineralium Deposita, 34(5-6):472-504. https://doi.org/10.1007/s001260050216
      [33] Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution. Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048
      [34] Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6):529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2 doi: 10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2
      [35] Montel, J. M., 1993. A Model for Monazite/Melt Equilibrium and Application to the Generation of Granitic Magmas. Chemical Geology, 110(1-3):127-146. https://doi.org/10.1016/0009-2541(93)90250-m
      [36] Patino Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4):689-710. https://doi.org/10.1093/petroj/39.4.689
      [37] Peng, J. T., Hu, R. Z., Burnard, P. G., 2003. Samarium-neodymium Isotope Systematics of Hydrothermal Calcites from the Xikuangshan Antimony Deposit (Hunan, China):The Potential of Calcite as a Geochronometer. Chemical Geology, 200(1-2):129-136. https://doi.org/10.1016/s0009-2541(03)00187-6
      [38] Qi, X. X., Li, T. F., Meng, X. J., et al., 2008. Cenozoic Tectonic Evolution of the Tethyan Himalayan Foreland Fault-Fold Belt in Southern Tibet, and Its Constraint on Antimony-Gold Polymetallic Minerogenesis. Acta Petrologica Sinica, 24(7):1638-1648 (in Chinese with English abstract).
      [39] Raimbault, L., Cuney, M., Azencott, C., et al., 1995. Geochemical Evidence for a Multistage Magmatic Genesis of Ta-Sn-Li Mineralization in the Granite at Beauvoir, French Massif Central. Economic Geology, 90(3):548-576. https://doi.org/10.2113/gsecongeo.90.3.548
      [40] Smit, M. A., Hacker, B. R., Lee, J., 2014. Tibetan Garnet Records Early Eocene Initiation of Thickening in the Himalaya. Geology, 42(7):591-594. https://doi.org/10.1130/g35524.1
      [41] Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
      [42] Tuttle, O. F., Bowen, N. L., 1958. Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geological Society of America Memoirs, 74:1-146. https://doi.org/10.1130/MEM74-p1
      [43] Wang, X., Chen, J., Ren, M. H., 2016. Hydrothermal Zircon Geochronology:Age Constraint on Nanling Range Tungsten Mineralization (Southeast China). Ore Geology Reviews, 74:63-75. https://doi.org/10.1016/j.oregeorev.2015.10.034
      [44] Warren, C. J., Grujic, D., Kellett, D. A., et al., 2011. Probing the Depths of the India-Asia Collision:U-Th-Pb Monazite Chronology of Granulites from NW Bhutan. Tectonics, 30(2):1-24. https://doi.org/10.1029/2010tc002738
      [45] Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      [46] Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Identification and Study of Highly Differentiated Granite. Science in China (Series D), 47(7):745-765 (in Chinese).
      [47] Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
      [48] Zeng, L. S., Gao, L. E., Tang, S. H., et al., 2014. Eocene Magmatism in the Tethyan Himalaya, Southern Tibet. Geological Society, London, Special Publications, 412(1):287-316. https://doi.org/10.1144/sp412.8
      [49] Zeng, L. S., Liu, J., Gao, L. E., et al., 2009. Early Oligocene Anatexis in the YardoiGneiss Dome, Southern Tibet and Geological Implications. Chinese Science Bulletin, 54(3):373-381 (in Chinese with English abstract). doi: 10.1007-s11434-008-0362-x/
      [50] Zhang, J. J., Guo, L., Zhang, B., 2007. Structure and Kinematics of the Yalashangbo Dome in the Northern Himalayan Dome Belt, China. Chinese Journal of Geology, 42(1):16-30 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701003
      [51] Zhang, J. J., Yang, X. Y., Qi, G. W., et al., 2011. Geochronology of the Malashan Dome and Its Application in Formation of the Southern Tibet Detachment System (STDS) and Northern Himalayan Gneiss Domes (NHGD). Acta Petrologica Sinica, 27(12):3535-3544 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201112003
      [52] Zhang, L. K., Zhang, Z., Li, G. M., et al., 2018.Rock Assemblage, Structural Characteristics and Genesis Mechanism of the Cuonadong Dome, Tethys Himalaya. Earth Science, 43(8):2664-2683 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.141
      [53] Zhang, Z., Zhang, L. K., Li, G. M., et al., 2017. The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Controlling Role of North Himalaya Gneiss Domes. Acta Geoscientica Sinica, 38(5):754-766 (in Chinese with English abstract).
      [54] Zhu, D. C., Xia, Y., Qiu, B. B., et al., 2013. Why do we Need to Propose the Early Cretaceous Comei Large Igneous Province in Southeastern Tibet?. Acta Petrologica Sinica, 29(11):3659-3670 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311001
      [55] Zhu, J. C., Li, R. K., Li, F. C., et al., 2001. Topaz-Albite Granites and Rare-Metal Mineralization in the Limu District, Guangxi Province, Southeast China. Mineralium Deposita, 36(5):393-405. https://doi.org/10.1007/s001260100160
      [56] Zhu, J. C., Rao, B., Xiong, X. L., et al., 2002. Comparison and Genetic Interpretation of Li-F Rich, Rare-Metal Bearing Granitic Rocks. Geochimica, 31(2):141-152 (in Chinese with English abstract).
      [57] 陈有炘, 裴先治, 李佐臣, 等, 2015.东昆仑东段巴窿花岗质片麻岩年代学、地球化学特征及地质意义.岩石学报, 31(8):2230-2244. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201508008.htm
      [58] 董汉文, 许志琴, 孟元库, 等, 2017.藏南错那洞淡色花岗岩年代学研究及其对藏南拆离系活动时间的限定.岩石学报, 33(12):3741-3752. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201712004
      [59] 高利娥, 高家昊, 赵令浩, 等, 2017.藏南拿日雍错片麻岩穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用.岩石学报, 33(8):2395-2411. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201708005
      [60] 高利娥, 曾令森, 谢克家, 2011.北喜马拉雅片麻岩穹窿始新世高级变质和深熔作用的厘定.科学通报, 56(36):3078-3090. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201136008
      [61] 辜平阳, 何世平, 李荣社, 等, 2013.藏南拉轨岗日变质核杂岩核部花岗质片麻岩的地球化学特征及构造意义.岩石学报, 29(3):756-768. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201303002
      [62] 侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010
      [63] 胡古月, 曾令森, 高利娥, 等, 2011.藏南窿子地区恰嘎流纹质次火山岩稀土元素类似四分组效应.地质通报, 30(1):82-94. doi: 10.3969/j.issn.1671-2552.2011.01.008
      [64] 黄春梅, 李光明, 张志, 等, 2018.藏南错那洞淡色花岗岩成因:来自全岩地球化学和锆石U-Pb年龄的约束.地学前缘, 25(6):182-195. http://d.old.wanfangdata.com.cn/Periodical/dxqy201806015
      [65] 李德威, 刘德民, 廖群安, 等, 2003.藏南萨迦拉轨岗日变质核杂岩的厘定及其成因.地质通报, 22(5):303-307. doi: 10.3969/j.issn.1671-2552.2003.05.002
      [66] 李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014
      [67] 梁维, 张林奎, 夏祥标, 等, 2018.藏南地区错那洞钨锡多金属矿床地质特征及成因分析.地球科学, 43(8): 2742-2754. http://earth-science.net/WebPage/Article.aspx?id=3909
      [68] 林彬, 唐菊兴, 郑文宝, 等, 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002
      [69] 戚学祥, 李天福, 孟祥金, 等, 2008.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用.岩石学报, 24(7):1638-1648. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200807020
      [70] 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201707001
      [71] 吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003
      [72] 曾令森, 刘静, 高利娥, 等, 2009.藏南也拉香波穹窿早渐新世地壳深熔作用及其地质意义.科学通报, 54(3):373-381. http://www.cnki.com.cn/Article/CJFDTotal-KXTB200903019.htm
      [73] 张进江, 郭磊, 张波, 2007.北喜马拉雅穹窿带雅拉香波穹窿的构造组成和运动学特征.地质科学, 42(1):16-30. doi: 10.3321/j.issn:0563-5020.2007.01.003
      [74] 张进江, 杨雄英, 戚国伟, 等, 2011.马拉山穹窿的活动时限及其在藏南拆离系-北喜马拉雅片麻岩穹窿形成机制的应用.岩石学报, 27(12):3535-3544. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201112004.htm
      [75] 张林奎, 张志, 李光明, 等, 2018.特提斯喜马拉雅错那洞穹窿的岩石组合、构造特征与成因.地球科学, 43(8):2664-2683. http://earth-science.net/WebPage/Article.aspx?id=3904
      [76] 张志, 张林奎, 李光明, 等, 2017.北喜马拉雅错那洞穹窿:片麻岩穹窿新成员与穹窿控矿新命题.地质学报, 38(5):754-766.
      [77] 朱弟成, 夏瑛, 裘碧波, 等, 2013.为什么要提出西藏东南部早白垩世措美大火成岩省.岩石学报, 29 (11): 3659-3670. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311001
      [78] 朱金初, 饶冰, 熊小林, 等, 2002.富锂氟含稀有矿化花岗质岩石的对比和成因思考.地球化学, 31(2):141-152. doi: 10.3321/j.issn:0379-1726.2002.02.005
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  3654
    • HTML全文浏览量:  1536
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-31
    • 刊出日期:  2019-07-15

    目录

      /

      返回文章
      返回