Geochronology, Petrogenesis and Its Tectonic Setting Significance of Intrusive Rocks from Coqen to Longgeer Iron Deposit, Lhasa Subterrane, Tibet, China
-
摘要: 为深入了解中北部拉萨地块构造背景, 利用LA-ICP-MS技术对洛布勒铁矿床成矿花岗闪长岩锆石进行了U-Th-Pb同位素测定, 分析了隆格尔、洛布勒铁矿床侵入岩岩石地球化学和Sr-Nd-Pb同位素组成.获得洛布勒花岗闪长岩锆石U-Pb年龄为111.3±1.6 Ma(MSWD=0.61, n=9).隆格尔和洛布勒铁矿床侵入岩高硅(66.63%~69.02%和64.33%~64.82%)、富碱(全碱为5.91%~6.40%和5.81%~6.05%)、低A/CNK(0.91~0.97和0.94~0.95)、SiO2与P2O5含量负相关;稀土元素总量较低(∑ REE为123.11×10-6~148.83×10-6和96.17×10-6~101.92×10-6), 球粒陨石标准化配分模式图右倾, 弱Eu负异常(0.70~0.82和0.79~0.81), 富集大离子亲石元素Rb、Th、U、K、Pb等, 亏损Ba和高场强元素Nb、Ta、Sr、Ti等.隆格尔花岗岩全岩和斜长石(206Pb/204Pb)t为18.474和18.626, (207Pb/204Pb)t为15.657和15.722, (208Pb/204Pb)t为38.592和39.145, (87Sr/86Sr)i为0.704 757 6和0.707 047 3, (143Nd/144Nd)i为0.512 281和0.512 339, εNd(t)为-4.13和-2.99, tDM2为1.15 Ga和1.24 Ga;洛布勒花岗闪长岩(206Pb/204Pb)t比值为18.281, (207Pb/204Pb)t比值为15.616, (208Pb/204Pb)t比值为38.369, (87Sr/86Sr)i为0.706 551 4;(143Nd/144Nd)i为0.512 309, εNd(t)为-3.62, tDM2为1.20 Ga.结果表明, 措勤-隆格尔铁矿床成矿侵入岩为中钾-高钾钙碱性岩Ⅰ型花岗岩, 为早白垩世晚期岛弧岩浆活动产物, 岩浆源于地壳物质部分熔融, 岩浆演化过程经历了壳幔岩浆混合和围岩混染.结合前人研究成果, 通过对比白垩纪中北部拉萨地块和南部羌塘地块成矿事件的差异, 提出中北部拉萨地块113±3 Ma岩浆活动和Fe(-Cu)成矿事件与向南俯冲的班公湖-怒江洋壳发生断离有关.Abstract: In order to gain an in-depth understanding of the tectonic setting of the north and central of Lhasa block, bulk-rock elemental and Sr-Nd-Pb isotopic data for the ore-forming granodiorites of Luobule and Longgeer iron deposit are analyzed and LAICP -MS zircon U -Pb dating result (111.3±1.6 Ma; MSWD=0.61, n=9) for the granodiorite of Luobule deposit.The Luobule and Longgeer ore-forming granodiorites are characterized with high silica (SiO2 contents are 66.63%-69.02% and 64.33%-64.82%, respectively), high alkali (alkali oxides contents are 5.91%-6.40% and 5.81%-6.05%, respectively), but low A/CNK ratios (0.91-0.97 and 0.94-0.95).These intrusive rocks are enriched in LILEs (e.g., Rb、Th、U、K、Pb) while depleted in Ba and HFSEs (e.g., Nb、Ta、Sr、Ti).There have right oblique in chondrite-normalized REE patterns and similar primitive mantle normalized trace element spectrum.In addition, the intrusive granodiorites of Luobule and Longgeer have low ∑ REE (123.11×10-6-148.83×10-6 and 96.17×10-6-101.92×10-6, respectively) and negative Eu anomaly (0.70-0.82 and 0.79-0.81, respectively).The (206Pb/204Pb)t, (207Pb/204Pb)t, (208Pb/204Pb)t, (87Sr/86Sr)i and (143Nd/144Nd)i ratios of whole rock and plagioclase from Longgeer deposit are 18.474 and 18.626, 15.657 and 15.722, 38.592 and 39.145, 0.512 281 and 0.512 339, 0.704 757 6 and 0.707 047 3, respectively.The calculated εNd(t) and tDM2 of the whole rock and plagioclase from Longgeer deposit are -4.13 and -2.99, 1.15 Ga and 1.24 Ga, respectively.In contrast, the (206Pb/204Pb)t, (207Pb/204Pb)t, (208Pb/204Pb)t, (87Sr/86Sr)i, (143Nd/144Nd)i and εNd(t) values of whole rock from Luobule are 18.281, 15.616, 38.369, 0.512 309, 0.706 551 4, -3.62 and 1.20 Ga, respectively.The results above reveal that the ore-forming granodiorites were the product of arc magmatism in late stage of early Cretaceous and were medium -high -K calc-alkaline I-type granite.The primitive magma of the ore-forming plutons were mainly generated by partial melting of crustal materials with the mixing of crust-derived silicic melts and mantle-derived mafic melts and the assimilation of the corresponding wall rocks.Combined with the previous study, by force of contrast the metallogenic event of north and central Lhasa subterrane and southern Qiangtang subterrane, it is propose that there existed extensive magmatism (113±3 Ma) and Fe(-Cu) ore-forming events in north and central Lhasa subterrane are closely related to the break-off of Bangong CoNujiang subducted oceanic crust.
-
Key words:
- geochronology /
- petrogenesis /
- Sr-Nd-Pb isotope /
- iron deposit /
- Coqen /
- Longgeer /
- Lhasa subterrane /
- petrology
-
图 4 洛布勒、隆格尔、尼雄铁矿侵入岩TAS(a)和K2O-SiO2(b)图解
尼雄侵入岩据张晓倩等(2010);于玉帅等(2011);范淑芳等(2015)
Fig. 4. TAS (a) and K2O-SiO2 (b) diagrams of intrusive rocks of Luobule, Longgeer and Nixiong iron deposits
图 5 洛布勒、隆格尔、尼雄铁矿侵入岩稀土元素配分曲线和微量元素蜘蛛网图
尼雄侵入岩据张晓倩等, (2010);于玉帅等(2011);范淑芳等(2015);则弄群火山岩据刘伟等(2010a)
Fig. 5. Chondrite - normalized REE patterns and Pimitive mantle normalized traceel ement spectrum of intrusive rocks of Luobule, Longgeer and Nixiong iron deposits
图 6 洛布勒、隆格尔、尼雄铁矿侵入岩P2O5-SiO2 (a)、Th-Rb (b)、Nb/La-SiO2 (c)、εNd(t)-SiO2 (d)、Rb/Yb-Nb/Y (e)和FeOT-MgO (f)图解
尼雄侵入岩据张晓倩等(2010);于玉帅等(2011);范淑芳等(2015);图例与图 4相同
Fig. 6. P2O5-SiO2 (a), Th-Rb (b), Nb/La-SiO2 (c), εNd(t)-SiO2 (d), Rb/Yb-Nb/Y (e) and FeOT-MgO (f) diagrams of intru- sive rocks of Luobule, Longgeer and Nixiong iron deposits
图 7 洛布勒、隆格尔、尼雄铁矿侵入岩Ce/Pb-Ce (a)、Nb/Th-Nb (b)、207Pb/204Pb-206Pb/204Pb(c)和(143Nd/144Nd)i-206Pb/204Pb(d)同位素图解
尼雄侵入岩据张晓倩等(2010);于玉帅等(2011);范淑芳等(2015);图例与图 4相同
Fig. 7. Ce/Pb-Ce (a), Nb/Th-Nb (b), 207Pb/204Pb-206Pb/204Pb (c) and (143Nd/144 Nd)i-206Pb/204Pb (d) diagrams of intrusive rocks of Luobule, Longgeer, Nixiong iron deposits
图 8 洛布勒、隆格尔、尼雄铁矿侵入岩Th/La-Ce/Pb(a)、Rb/Y-Nb/Ya(b)、Th/Yb-Sr/Nd(c)、Th/Ce-Th/Sm (d)、Mg#-SiO2(e)和εNd (t)(- 87Sr/86Sr)i(f)图解
尼雄侵入岩据张晓倩等(2010);范淑芳等(2015);则弄群火山岩据刘伟等(2010a);图例与图 4相同
Fig. 8. Th/La-Ce/Pb (a), Rb/Y-Nb/Y (b), Th/Yb-Sr/Nd (c), Th/Ce-Th/Sm (d), Mg#-SiO2 (e) and εNd(t)- (87Sr/86Sr)i (f) diagrams of intrusive rock of Luobule, Longgeer, Nixiong iron deposits
表 1 隆格尔和洛布勒铁矿侵入岩铅锶钕同位素组成
Table 1. Pb, Rb and Sr isotope compositions of intrusive rocks from Longgeer and Luobule iron deposits
样号 LGR08-13-1(全岩) LGR004-4(斜长石) LBL08-l-3-l(全岩) 208Pb/204Pb 38.975 39.145 38.768 207Pb/204Pb 15.663 15.723 15.623 206Pb/204Pb 18.597 18.626 18.425 (208Pb/204Pb)t 38.584 38.964 38.369 (207Pb/204Pb)t 15.657 15.718 15.616 (206Pb/204Pb)t 18.472 18.550 18.281 Rb(10-6) 118 15.26 112 Sr(10-6) 221 334.5 209 87Rb/86Sr 1.542 22 0.132 00 1.545 53 87Sr/86Sr 0.707 243 0.707 260 0.708 996 (87Sr/86Sr)i 0.704 758 0.707 047 0.706 551 Sm(l0-6) 4.35 0.623 0 3.63 Nd(l0-6) 22.1 5.059 16.8 147Sm/144Nd 0.119 257 0.074 490 0.130 454 143Nd/144Nd 0.512 369 0.512 394 0.512 404 (143Nd/144Nd). 0.512 281 0.512 339 0.512 309 εNd(t) -4.13 -2.99 -3.62 tDM2(Ga) 1.24 1.15 1.20 注:(87Sr/86)i=87Sr/86Sr-87Rb/86Sr× (eλt-1); εNd(t) = (143Nd/144NdSample(t)/143Nd/144NdCHUR(t) -1) ×104;143Nd/144NdCHUR(t)=0.512638-0.1967×(eλt-1). -
[1] Allégre, C.J., Courtillot, V., Tapponnier, P., et al., 1984.Structure and Evolution of the Himalaya-Tibet Orogenic Belt.Nature, 307:17-22. https://doi.org/10.1038/307017a0 [2] Atherton, M.P., Petford, N., 1993.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust.Na-ture, 362:144-146. https://doi.org/10.1038/362144a0 [3] Ding, L., Kapp, P., Zhong, D.L., et al., 2003.Cenozoic Volca-nism in Tibet:Evidence for a Transition from Oceanic to Continental Subduction.Journal of Petrology, 44(10):1833-1865. https://doi.org/10.1093/petrology/egg061 [4] Edwards, C.M.H., Menzies, M.A., Thirlwall, M.F., et al., 1994.The Transition to Potassic Alkaline Volcanism in Island Arcs:The Ringgit-Beser Complex, East Java, In-donesia.Journal of Petrology, 35(6):1557-1595. https://doi.org/10.1093/petrology/35.6.1557 [5] Fan, S.F., Qu, X.M., Song, Y., et al., 2015.Petrogenesis of the Ore-Forming Granodiorite in the Nixiong Iron De-posit and Its Implications for the Metallogenic Tectonic Background.Geotectonica et Metallogenia, 39(2):286-299 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DGYK201502010.htm [6] Fang, X., Tang, J.X., Song, Y., et al., 2015.Formation Epoch of the South Tiegelong Superlarge Epithermal Cu (Au-Ag) Deposit in Tibet and Its Geological Implications.Ac-ta Geoscientica Sinica, 36(2):168-176 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201502008 [7] Fei, F., Yang, Z.S., Liu, Y.C., et al., 2015.Petrogenetic Epoch of the Rock Mass in the Lunggar Iron Deposit of Coqen County, Tibet.Acta Petrologica et Mineralogica, 34(4):568-580 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201504010 [8] Gou, Z.B., Liu, H., Li, J., et al., 2018.The Petrogenesis and Tectonic Significance of the Early Cretaceous Volcanic Rocks in Nixiong Area from the Central and Northern Lhasa Terrane.Earth Science, 43(8):2780-2794(in Chi-nese with English abstract). https://doi.org/10.3799/dqkx.2018.153 [9] Gutscher, M.A., Maury, R., Eissen, J.P., et al., 2000.Can Slab Melting be Caused by Flat Subduction? Geology, 28(6):535-538. doi: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2 [10] Hao, L.L., Wang, Q., Wyman, D.A., et al., 2016.Underplat-ing of Basaltic Magmas and Crustal Growth in a Conti-nental Arc:Evidence from Late Mesozoic Intermediate-Felsic Intrusive Rocks in Southern Qiangtang, Central Tibet.Lithos, 245:223-242. https://doi.org/10.1016/j.lithos.2015.09.015 [11] Hou, L., Tang, J.X., Lin, B., et al., 2017.Element Migration during Alteration and 40Ar-39Ar Dating of Sericite from the Dongwodong Deposit, Tibet and Its Geological Sig-nificance.Rock and Mineral Analysis, 36(4):440-449(in Chinese with English abstract). [12] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015.Lithospheric Ar-chitecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen.Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 [13] Hou, Z.Q., Zheng, Y.C., Yang, Z.M., et al., 2013.Contribu-tion of Mantle Components within Juvenile Lower-Crust to Collisional Zone Porphyry Cu Systems in Tibet.Min-eralium Deposita, 48(2):173-192. https://doi.org/10.1007/s00126-012-0415-6 [14] Huang, H.X., Li, G.M., Liu, B., et al., 2012.Zircon U-Pb Geo-chronology and Geochemistry of the Tiangongnile Skarn-Type Cu-Au Deposit in Zhongba County, Tibet:Their Genetic and Tectonic Setting Significance.Acta Geosci-entica Sinica, 33(4):424-434 (in Chinese with English abstract). [15] Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2009.Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogen-esis of the Gangdese Batholith, Southern Tibet.Chemi-cal Geology, 262(3-4):229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020 [16] Kang, Z.Q., Xu, J.F., Dong, Y.H., et al., 2008.Cretaceous Volcanic Rocks of Zenong Group in North-Middle Lhasa Block:Products of Southward Subducting of the Slainaj-ap Ocean? Acta Petrologica Sinica, 24(2):303-314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200802012.htm [17] Li, F.Q., Liu, W., Zhang, S.Z., et al., 2014.The Evidence of Earth Dynamic Background Conversion in the North-Central Gangdese and Its Adjacent Regions during Mid-dle Jurassic-Early Cretaceous.Geological Review, 60(6):1297-1308 (in Chinese with English abstract). [18] Li, S.M., Zhu, D.C., Wang, Q., et al., 2014.Northward Sub-duction of Bangong-Nujiang Tethys:Insight from Late Jurassic Intrusive Rocks from Bangong Tso in Western Tibet.Lithos, 205:284-297. https://doi.org/10.1016/j.lithos.2014.07.010 [19] Li, Y.L., He, J., Wang, C.S., et al., 2015.Cretaceous Volcanic Rocks in South Qiangtang Terrane:Products of North-ward Subduction of the Bangong-Nujiang Ocean? Jour-nal of Asian Earth Sciences, 104:69-83. https://doi.org/10.1016/j.jseaes.2014.09.033 [20] Liu, H., Zhang, H., Li, G.M., et al., 2016.Petrogenesis of the Early Cretaceous Qingcaoshan Strongly Peraluminous S-Type Granitic Pluton, Southern Qiangtang, Northern Ti-bet:Constraints from Whole-Rock Geochemistry and Zir-con U-Pb Geochronology.Acta Scientiarum Naturalium Universitatis Pekinensis, 52(5):848-860 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-BJDZ201605010.htm [21] Liu, W., Li, F.Q., Yuan, S.H., et al., 2010a.Volcanic Rock Provenance of Zenong Group in Coqen Area of Tibet:Geochemistry and Sr-Nd Isotopic Constraint.Acta Petro-logica et Mineralogica, 29(4):367-376 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201004002.htm [22] Liu, W., Li, F.Q., Yuan, S.H., et al., 2010b.Zircon LA-ICP-MS U-Pb Age of Ignimbrite from Zenong Group in Co-qen Area of the Central Gangdese Belt, Tibet, China.Ge-ologcal Bulletin of China, 29(7):1009-1016 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201007008.htm [23] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution.Geological Journal of China Uni-versities, 11(3):281-290 (in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503001 [24] Qu, X.M., Xin, H.B., Du, D.D., et al., 2012.Ages of Post-Col-lisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Ban-gonghu-Nujiang Suture, the Tibetan Plateau.Geochimi-ca, 41(1):1-14 (in Chinese with English abstract). [25] She, H.Q., Li, J.W., Ma, D.F., et al., 2009.Molybdenite Re-Os and SHRIMP Zircon U-Pb Dating of Duobuza Por-phyry Copper Deposit in Tibet and Its Geological Implications.Mineral Deposits, 28(6):737-746 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200906002.htm [26] van Hunen, J., Allen, M.B., 2011.Continental Collision and Slab Break-Off:A Comparison of 3-D Numerical Models with Observations.Earth and Planetary Science Letters, 302(1-2):27-37. https://doi.org/10.1016/j.epsl.2010.11.035 [27] Wang, L.Y., Zheng, Y.Y., Gao, S.B., et al., 2016.The Discov-ery of the Early Cretaceous Zenong Group Volcanic Rocks and Geological Significance in Jiwa Area in South of the Central Lhasa Subterrane.Acta Petrologica Sini-ca, 32(5):1543-1555 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201605019.htm [28] Wei, S.G., Song, Y., Tang, J.X., et al., 2016.Geochronology, Geochemistry and Petrogenesis of Quartz Diorite Por-phyrite from the Sena Copper (Gold) Deposit, Tibet.Ge-ology in China, 43(6):1894-1912(in Chinese with Eng-lish abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201606005.htm [29] Wei, S.G., Tang, J.X., Song, Y., et al., 2017.Early Cretaceous Bimodal Volcanism in the Duolong Cu Mining District, Western Tibet:Record of Slab Breakoff That Triggered ca.108-113 Ma Magmatism in the Western Qiangtang Terrane.Journal of Asian Earth Sciences, 138:588-607. https://doi.org/10.1016/j.jseaes.2016.12.010 [30] Yu, Y.S., Gao, Y., Yang, Z.S., et al., 2011.Zircon LA-ICP-MS U-Pb Dating and Geochemistry of Intrusive Rocks from Gunjiu Iron Deposit in the Nixiong Ore Field, Co-qen, Tibet.Acta Petrologica Sinica, 27(7):1949-1960(in Chinese with English abstract). [31] Yu, Y.S., Gao, Y., Yang, Z.S., et al., 2018.Geochronology and Genesis of Quartz Diorite-Porphyrites of the Deneng Copper Polymetallic Deposit, Coqen, Tibet, China:Evi-dence from LA-ICP-MS Zircon U-Pb Dating, Geochem-istry and Sr-Nd-Pb Isotopes.Acta Geologica Sinica, 92(7):1458-1473 (in Chinese with English abstract). [32] Yu, Y.S., Yang, Z.S., Liu, Y.C., et al., 2012.Mineralogical Characteristics and 40Ar-39Ar Dating of Phlogopite from the Gunjiu Iron Deposit in the Nixiong Ore Field, Co-qen, Tibet.Acta Petrologica et Mineralogica, 31(5):681-690 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201205007.htm [33] Zhang, X.Q., Zhu, D.C., Zhao, Z.D., et al., 2010.Petrogenesis of the Nixiong Pluton in Coqen, Tibet and Its Potential Significance for the Nixiong Fe-Rich Mineralization.Ac-ta Petrologica Sinica, 26(6):1793-1804(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006014 [34] Zhang, Z., Geng, Q.R., Peng, Z.M., et al., 2015.Petrogenesis of Fuye Pluton in Rutog, Tibet:Zircon U-Pb Dating and Hf Isotopic Constraints.Geological Bulletin of China, 34(2):262-273 (in Chinese with English abstract). [35] Zhao, Y.Y., Song, L., Fan, X.T., et al., 2009.Re-Os Dating of Molybdenite from the Shesuo Copper Polymetallic Ore in Shenzha County, Tibet and Its Geological Signifi-cance.Acta Geologica Sinica, 83(8):1150-1158 (in Chi-nese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200908015.htm [36] Zhou, H., Qiu, J.S., Yu, S.B., et al., 2016.Geochronology and Geochemistry of Volcanic Rocks from Coqen District of Tibet and Their Implications for Petrogenesis.Acta Geo-logica Sinica, 90(11):3173-3191 (in Chinese with Eng-lish abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201611013 [37] Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023 [38] Zhu, D.C., Mo, X.X., Niu, Y.L., et al., 2009.Geochemical In-vestigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Ter-rane, Tibet.Chemical Geology, 268(3-4):298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008 [39] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2009.Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution:New Perspective.Earth Science Frontiers, 16(2):1-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200902002.htm [40] Zhu, X.P., Chen, H.A., Liu, H.F., et al., 2015.Zircon U-Pb Ages, Geochemistry of the Porphyries from the Duobuza Porphyry Cu-Au Deposit, Tibet and Their Metallogenic Significance.Acta Geologica Sinica, 89(3):534-548 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201503007 [41] Zhu, X.P., Chen, H.A., Ma, D.F., et al., 2013.40Ar/39Ar Dat-ing of Hydrothermal K-Feldspar and Hydrothermal Ser-icite from Bolong Porphyry Cu-Au Deposit in Tibet.Min-eral Deposits, 32(5):954-962 (in Chinese with English abstract). [42] 范淑芳, 曲晓明, 宋扬, 等, 2015.西藏尼雄铁矿成矿花岗岩成因及其对成矿构造背景的启示.大地构造与成矿学, 39(2):286-299. doi: 10.3969/j.issn.1001-1552.2015.02.009 [43] 方向, 唐菊兴, 宋杨, 等, 2015.西藏铁格隆南超大型浅成低温热液铜(金、银)矿床的形成时代及其地质意义.地球学报, 36(2):168-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201502008 [44] 费凡, 杨竹森, 刘英超, 等, 2015.西藏措勤隆格尔铁矿岩体成岩时代及其地质意义.岩石矿物学杂志, 34(4):568-580. doi: 10.3969/j.issn.1000-6524.2015.04.010 [45] 苟正彬, 刘函, 李俊, 等, 2018.拉萨地块中北部尼雄地区早白垩世火山岩的成因及构造意义.地球科学, 43(8):2780-2794. https://doi.org/10.3799/dqkx.2018.153 [46] 侯淋, 唐菊兴, 林彬, 等, 2017.西藏东窝东矿床矿化蚀变过程元素迁移及绢云母40Ar-39Ar年代学及其地质意义.岩矿测试, 36(4):440-449. http://d.old.wanfangdata.com.cn/Periodical/ykcs201704014 [47] 黄瀚霄, 李光明, 刘波, 等, 2012.西藏仲巴县天宫尼勒矽卡岩型铜金矿床锆石U-Pb年代学和岩石地球化学特征:对成因及其成矿构造背景的指示.地球学报, 33(4):424-434. doi: 10.3975/cagsb.2012.04.04 [48] 康志强, 许继峰, 董彦辉, 等, 2008.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物?岩石学报, 24(2):303-314. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200802010 [49] 李奋其, 刘伟, 张士贞, 等, 2014.冈底斯中北部及邻区中侏罗世-早白垩世地球动力背景转换的证据.地质论评, 60(6):1297-1308. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201406012.htm [50] 刘洪, 张晖, 李光明, 等, 2016.藏北羌塘南缘早白垩世青草山强过铝质S型花岗岩的成因:来自地球化学和锆石U-Pb年代学的约束.北京大学学报(自然科学版), 52(5):848-860. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201605010 [51] 刘伟, 李奋其, 袁四化, 等, 2010a.西藏措勤地区则弄群火山岩源区:地球化学及Sr-Nd同位素制约.岩石矿物学杂志, 29(4):367-376. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201004003 [52] 刘伟, 李奋其, 袁四化, 等, 2010b.西藏中冈底斯带措勤地区则弄群熔结凝灰岩锆石LA-ICP-MS U-Pb年龄.地质通报, 29(7):1009-1016. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201007006 [53] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001 [54] 曲晓明, 辛洪波, 杜德道, 等, 2012.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束.地球化学, 41(1):1-14. http://d.old.wanfangdata.com.cn/Periodical/dqhx201201001 [55] 佘宏全, 李进文, 马东方, 等, 2009.西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义.矿床地质, 28(6):737-746. doi: 10.3969/j.issn.0258-7106.2009.06.003 [56] 王力圆, 郑有业, 高顺宝, 等, 2016.中部拉萨地体南侧吉瓦地区早白垩世则弄群火山岩的发现及意义.岩石学报, 32(5):1543-1555. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605019 [57] 韦少港, 宋扬, 唐菊兴, 等, 2016.西藏色那铜(金)矿床石英闪长玢岩年代学、地球化学与岩石成因.中国地质, 43(6):1894-1912. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201606005 [58] 于玉帅, 高原, 杨竹森, 等, 2011.西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征.岩石学报, 27(7):1949-1960. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107004 [59] 于玉帅, 高原, 杨竹森, 等, 2018.西藏措勤县德能铜多金属矿床石英闪长玢岩时代与成因:LA-ICP-MS锆石U-Pb年代学、地球化学和Sr-Nd-Pb同位素证据.地质学报, 92(7):1458-1473. doi: 10.3969/j.issn.0001-5717.2018.07.009 [60] 于玉帅, 杨竹森, 刘英超, 等, 2012.西藏措勤尼雄矿田滚纠铁矿金云母矿物学特征及40Ar-39Ar年代学.岩石矿物学杂志, 31(5):681-690. doi: 10.3969/j.issn.1000-6524.2012.05.006 [61] 张晓倩, 朱弟成, 赵志丹, 等, 2010.西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义.岩石学报, 26(6):1793-1804. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006014 [62] 张璋, 耿全如, 彭智敏, 等, 2015.西藏日土地区弗野岩体的成因:锆石U-Pb年龄及Hf同位素约束.地质通报, 34(2):262-273. doi: 10.3969/j.issn.1671-2552.2015.02.004 [63] 赵元艺, 宋亮, 樊兴涛, 等, 2009.西藏申扎县舍索铜多金属矿床辉钼矿Re-Os年代学及地质意义.地质学报, 83(8):1150-1158. doi: 10.3321/j.issn:0001-5717.2009.08.013 [64] 周华, 邱检生, 喻思斌, 等, 2016.西藏措勤地区火山岩的年代学与地球化学及其对岩石成因的制约.地质学报, 90(11):3173-3191. doi: 10.3969/j.issn.0001-5717.2016.11.013 [65] 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2):1-20. doi: 10.3321/j.issn:1005-2321.2009.02.001 [66] 祝向平, 陈华安, 刘鸿飞, 等, 2015.西藏多不杂斑岩铜矿斑岩锆石U-Pb年龄、岩石地球化学特征及其成矿意义.地质学报, 89(3):534-548. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201503007 [67] 祝向平, 陈华安, 马东方, 等, 2013.西藏波龙斑岩铜金矿床钾长石和绢云母40Ar/39Ar年龄及其地质意义.矿床地质, 32(5):954-962. doi: 10.3969/j.issn.0258-7106.2013.05.007 -
dqkx-44-6-1888-Table.pdf