• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海西部异常高温高压气藏区域产能预测技术

    王雯娟 雷霄 鲁瑞彬 陈健 何志辉

    王雯娟, 雷霄, 鲁瑞彬, 陈健, 何志辉, 2019. 南海西部异常高温高压气藏区域产能预测技术. 地球科学, 44(8): 2636-2642. doi: 10.3799/dqkx.2019.035
    引用本文: 王雯娟, 雷霄, 鲁瑞彬, 陈健, 何志辉, 2019. 南海西部异常高温高压气藏区域产能预测技术. 地球科学, 44(8): 2636-2642. doi: 10.3799/dqkx.2019.035
    Wang Wenjuan, Lei Xiao, Lu Ruibin, Chen Jian, He Zhihui, 2019. Regional Productivity Prediction Technology for Abnormal High Temperature and High Pressure Gas Reservoirs in Western South China Sea. Earth Science, 44(8): 2636-2642. doi: 10.3799/dqkx.2019.035
    Citation: Wang Wenjuan, Lei Xiao, Lu Ruibin, Chen Jian, He Zhihui, 2019. Regional Productivity Prediction Technology for Abnormal High Temperature and High Pressure Gas Reservoirs in Western South China Sea. Earth Science, 44(8): 2636-2642. doi: 10.3799/dqkx.2019.035

    南海西部异常高温高压气藏区域产能预测技术

    doi: 10.3799/dqkx.2019.035
    基金项目: 

    国家科技重大专项“莺琼盆地高温高压天然气富集规律与勘探开发关键技术(三期)” 2016ZX05024-00

    详细信息
      作者简介:

      王雯娟(1982-), 女, 高级工程师, 主要从事油气田开发方面的研究

      通讯作者:

      鲁瑞彬

    • 中图分类号: P343

    Regional Productivity Prediction Technology for Abnormal High Temperature and High Pressure Gas Reservoirs in Western South China Sea

    • 摘要: 南海西部存在大量高温高压高二氧化碳气藏,“三高”气藏气井测试费用高、产能预测难度大,设计变内压建束缚水应力敏感实验、含CO2天然气PVT实验研究应力敏感、CO2含量、表皮系数对高温高压气井产能的影响.通过大量实验,明确了高压气藏“两段式”应力敏感变化规律,得到了靶区应力敏感综合评价系数;分析不同压力下CO2含量对天然气偏差系数、黏度等参数的影响,高压下影响较低压下大,基于实验数据推导建立一种适用于高中低二氧化碳含量的全范围偏差系数校正模型.最终建立同时考虑应力敏感、二氧化碳、表皮系数影响的区域产能预测图版,提高产能预测精度,降低测试费用,在南海西部高温高压气井应用效果较好.

       

    • 图  1  部分岩心应力敏感实验结果

      Fig.  1.  Experimental results of stress-sensitivity of some cores

      图  2  靶区归一化应力敏感与实际生产井测试结果对比

      Fig.  2.  Comparison of normalized stress-sensitivity in target area with actual production wells test results

      图  3  不同CO2含量天然气的偏差系数随压力变化曲线

      Fig.  3.  Z-factor of natural gas with different CO2 content with press variation curve

      图  4  高二氧化碳(73.58%)时常规非烃校正模型计算效果

      Fig.  4.  Calculation results of conventional non hydrocarbon correction models for high carbon dioxide (73.58%)

      图  5  不同CO2含量新模型结果与实验值对比

      Fig.  5.  Comparison of new model results with experimental values for different CO2 content.

      图  6  不同CO2含量天然气黏度随压力变化曲线

      Fig.  6.  Curves of natural gas viscosity varying with pressure under different CO2 contents.

      图  7  不同应力敏感指数下的气井流入动态曲线

      Fig.  7.  Inflow performance curves of gas wells under different stress sensitive exponents

      图  8  不同CO2含量下气井流入动态曲线

      Fig.  8.  Inflow performance curves of gas wells with different CO2 contents

      图  9  不同表皮系数下气井流入动态曲线

      Fig.  9.  Inflow performance curves of gas wells with different skin factors

      图  10  南海西部区域产能预测技术研究思路

      Fig.  10.  Research ideas on prediction of regional productivity in the western South China Sea

      图  11  南海西部异常高压气井区域产能预测

      Fig.  11.  Regional productivity prediction chart for abnormal high pressure gas wells in western South China Sea

    • [1] Cheng, T., Chen, J.H., Ruan, H.J., et al., 2016. Productivity Evaluation Method for Offshore Abnormal HTHP Gas Reservoirs. Oil Drilling & Production Technology, 38(6):832-836(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syzcgy201606022
      [2] Guo, J.J., Zhang, L.H., Tu, Z., 2010. Stress Sensitivity and Its Influence on Productivity in Gas Reservoirs with Abnormally High Pressure. Special Oil and Gas Reservoirs, 17(2):79-81(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzyqc201002021
      [3] Guo, P., Zhang, J., Du, J.F., et al., 2007. Study on Core Stress Sensitivity for Gas Reservoir with Two Experiment Methods. Journal of Southwest Petroleum University(Science & Technology Edition), 29(2):7-9(in Chinese with English abstract).
      [4] Guo, P., Zhao, Z.H., Wang, Z.H., et al., 2016. Influence of Stress-Sensitivity on Development Index in Dongfang 1-1 Gas Field. Journal of Southwest Petroleum University(Science & Technology Edition), 38(4):95-100(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnsyxyxb201604012
      [5] Han, H.W., Zhang, J.G., Zhang, J.F., et al., 2010 A Study on Phase of CO2 Pools Underground, Jiyang Depression. Journal of Northwest University (Natural Science Edition), 40(3):493-496(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdxxb201003027
      [6] Hao, Y.H., 1999. Effect of Investigation Radius in a Gas Well on Deliverability Equation. Xinjiang Petroleum Geology, 20(1):53-55(in Chinese with English abstract).
      [7] Hao, Y.H., Wang, F.Y., 2000. Influence of Formation pressure Decrease on the Productivity Equation and Open-Flow Capacity of Gas Well. Natural Gas Industry, 20(1):71-73(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200001019
      [8] He, Z.X., Hao, Y.H., 2001. Analysis of Effects of Permeability on Gas Well Productivity Equation and Open Flow Capacity. Petroleum Exploration and Development, 28(5):46-49(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200105013
      [9] Li, G.F., Li, H.T., Wang, W.Q., et al., 2008. Factor Analysis on Influence of Gas Well Productivity. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 10(1):18-21(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqsygdzkxxxb200801006
      [10] Li, X.F., Zhuang, X.Q., Gang, T., et al., 2001. Comprehensive Appraisal and Selection for Gas Compressibility Factor Calculating Model. Oil Drilling & Production Technology, 23(2):42-46(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syzcgy200102013
      [11] Li. X.F., Ren, M.P., Xu, Z.Z., et al., 2010. A High-Precision and Whole Pressure Temperature Range Analytical Calculation Model of Natural Gas Z-Factor. Oil Drilling & Production Technology, 32(6):57-62(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syzcgy201006015
      [12] Liao, D.Y., Bian, F.X., Lin, P., 2006. Deliverability Analytical Approach of Gas Well. Natural Gas Industry, 26(2):100-101(in Chinese with English abstract).
      [13] Ma, Y.X., Xiao, Q.H., Mi, H.G., et al., 2017. Influence of Water-Soluble Gas Releasing on Gas-Water Interface for Yinggehai Basin High Temperature and Overpressured Gas Field. Earth Science, 42(8):1340-1347(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201708011
      [14] Tang, H.J., Xu, C.B., Tang, H., 2011. Research and Progress in Gas Well Productivity Prediction. Special Oil and Gas Reservoirs, 18(5):11-15(in Chinese with English abstract).
      [15] Tian, D.M., Jiang, T., Zhang, D.J., et al., 2017. Genesis Mechanism and Characteristics of Submarine Channel:A Case Study of the First Member of Yinggehai Formation in Ledong Area of Yinggehai Basin. Earth Science, 42(1):130-141(in Chinese with English abstract).
      [16] Xiang, Z.P., Xie, F., Zhang, J., et al., 2009. The Influence of Stress Sensitivity of Abnormal High Pressure and Low Permeability Gas Reservoir on the Deliverability of a Gas Well. Natural Gas Industry, 29(6):83-85(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200906024
      [17] Yang, B., Jiang, H.Q., Chen, M.F., et al., 2008. Deliverability Equation for Stress-Sensitive Gas Reservoir. Journal of Southwest Petroleum University(Science & Technology Edition), 30(5):158-160(in Chinese with English abstract).
      [18] Yang, S.L., Wang, X.Q., Wang, D.G., et al., 2005. Experiment and Model of Rock Stress-Sensitivity for Abnormal High Pressure Gas Reservoirs. Natural Gas Industry, 25(2):107-109(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200502034
      [19] Yang, Z.H., Li, Z.P., Chen, K., et al., 2015. New Method and Application for Deliverability Decline Analysis:Taking Daniudi Tight Area Reservoir as an Example. Fault-Block Oil &Gas Field, 22(4):484-487(in Chinese with English abstract).
      [20] Yuan, B.L., Yang, Z.Q., Wu Q., et al., 2016. Stress-Sensitivity Characteristics and Its Main Controlling Factors of the Reservoirs in DF13 Area, Yinggehai Basin. Science Technology and Engineering, 16(5):60-64(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201605011
      [21] Zhang, G.D., Li, M., Bai D.L., 2005. Practical Calculating Model of Gas Deviation Factor with High and Super-high Pressure. Natural Gas Industry, 25(8):79-81(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200508025
      [22] Zhang, H., Wang, L., Wang X.G., et al., 2017. Productivity Analysis Method for Gas-Water Wells in Abnormal Overpressure Gas Reservoirs. Petroleum Exploration and Development, 44(2):258-262(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201702010
      [23] 成涛, 陈建华, 阮洪江, 等, 2016.海上异常高温高压气藏产能评价方法.石油钻采工艺, 38(6):832-836. http://d.old.wanfangdata.com.cn/Periodical/syzcgy201606022
      [24] 郭晶晶, 张烈辉, 涂中, 2010.异常高压气藏应力敏感性及其对产能的影响.特种油气藏, 17(2):79-81. doi: 10.3969/j.issn.1006-6535.2010.02.021
      [25] 郭平, 张俊, 杜建芬, 等, 2007.采用两种实验方法进行气藏岩芯应力敏感研究.西南石油大学学报(自然科学版), 29(2):7-9. doi: 10.3863/j.issn.1674-5086.2007.02.002
      [26] 郭平, 赵梓寒, 汪周华, 等, 2016.应力敏感对东方1-1气田开发指标的影响.西南石油大学学报(自然科学版), 38(4):95-100.
      [27] 韩宏伟, 张金功, 张建锋, 等, 2010.济阳拗陷二氧化碳气藏地下相态特征研究.西北大学学报(自然科学版), 40(3):493-496. http://d.old.wanfangdata.com.cn/Periodical/xbdxxb201003027
      [28] 郝玉鸿, 1999.气井探测半径对产能方程的影响.新疆石油地质, 20(1):53-55.
      [29] 郝玉鸿, 王方元, 2000.地层压力下降对气井产能方程及无阻流量的影响分析.天然气工业, 20(1):71-73. doi: 10.3321/j.issn:1000-0976.2000.01.019
      [30] 何自新, 郝玉鸿, 2001.渗透率对气井产能方程及无阻流量的影响分析.石油勘探与开发, 28(5):46-49. doi: 10.3321/j.issn:1000-0747.2001.05.013
      [31] 李国锋, 李海涛, 王文清, 等, 2008.影响气井产能的主要因素分析.重庆科技学院学报(自然科学版), 10(1):18-21. doi: 10.3969/j.issn.1673-1980.2008.01.006
      [32] 李相方, 任美鹏, 胥珍珍, 等, 2010.高精度全压力全温度范围天然气偏差系数解析计算模型.石油钻采工艺, 32(6):57-62. doi: 10.3969/j.issn.1000-7393.2010.06.015
      [33] 李相方, 庄湘琦, 刚涛, 等, 2001.天然气偏差系数模型综合评价与选用.石油钻采工艺, 23(2):42-46. doi: 10.3969/j.issn.1000-7393.2001.02.013
      [34] 廖代勇, 边芳霞, 林平, 等, 2006.气井产能分析的发展研究.天然气工业, 26(2):100-101. doi: 10.3321/j.issn:1000-0976.2006.02.031
      [35] 马勇新, 肖前华, 米洪刚, 等, 2017.莺歌海盆地高温高压气藏水溶气释放对气水界面的影响.地球科学, 42(8):1340-1347. http://earth-science.net/WebPage/Article.aspx?id=3624
      [36] 唐洪俊, 徐春碧, 唐皓, 2011.气井产能预测方法的研究与进展.特种油气藏, 18(5):11-15. doi: 10.3969/j.issn.1006-6535.2011.05.003
      [37] 田冬梅, 姜涛, 张道军, 等, 2017.海底水道特征及其成因机制:以莺歌海盆地乐东区莺歌海组一段为例.地球科学, 42(1):130-141. http://earth-science.net/WebPage/Article.aspx?id=3420
      [38] 向祖平, 谢峰, 张剪, 等, 2009.异常高压低渗透气藏储层应力敏感对气井产能的影响.天然气工业, 29(6):83-85. doi: 10.3787/j.issn.1000-0976.2009.06.024
      [39] 杨滨, 姜汉桥, 陈民锋, 等, 2008.应力敏感气藏产能方程研究.西南石油大学学报(自然科学版), 30(5):158-160. doi: 10.3863/j.issn.1000-2634.2008.05.038
      [40] 杨胜来, 王小强, 汪德刚, 等, 2005.异常高压气藏岩石应力敏感性实验与模型研究.天然气工业, 25(2):107-109. doi: 10.3321/j.issn:1000-0976.2005.02.034
      [41] 杨志浩, 李治平, 陈奎, 等, 2015.产能递减分析新方法及应用:以大牛地致密气藏为例.断块油气田, 22(4):484-487. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201504017
      [42] 袁丙龙, 杨朝强, 吴倩, 等, 2016.莺歌海盆地DF13区储层应力敏感特征及主控因素.科学技术与工程, 16(5):60-64. doi: 10.3969/j.issn.1671-1815.2016.05.011
      [43] 张国东, 李敏, 柏冬岭, 2005.高压超高压天然气偏差系数实用计算模型-LXF高压精度天然气偏差系数解析模型的修正.天然气工业, 25(8):79-81. doi: 10.3321/j.issn:1000-0976.2005.08.025
      [44] 张辉, 王磊, 汪新光, 等, 2017.异常高压气藏气水两相流井产能分析方法.石油勘探与开发, 44(2):258-262. http://d.old.wanfangdata.com.cn/Periodical/syktykf201702010
    • 加载中
    图(11)
    计量
    • 文章访问数:  5180
    • HTML全文浏览量:  1851
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-31
    • 刊出日期:  2019-08-15

    目录

      /

      返回文章
      返回