Critical Tectonic Periods and the Response of Gas Accumulation in Non-Marine Tight Sandstone Reservoir in Yuanba-Tongnanba Area, Sichuan Basin
-
摘要: 中国多旋回叠合盆地陆相致密碎屑岩层系油气资源丰富,多期、多属性构造作用使其具有复杂而特殊的油气地质特征,四川盆地元坝-通南巴地区位于多旋回、多属性构造作用交接部位,是揭示叠合盆地内多期复杂构造作用与陆相致密碎屑岩油气成藏作用关系和油气富集规律的典型地区.基于地震资料、磷灰石裂变径迹年代学和成藏特征对比,厘定元坝-通南巴地区陆相层系存在燕山晚期(晚白垩世100~70 Ma)和喜山早期(始新世-渐新世40~25 Ma)两个关键构造期.陆相致密砂岩天然气富集主要受这两次关键构造作用的控制,燕山晚期形成NE向主体构造,是NE向弱变形区、NW-SN向过渡变形带(通南巴西部)和NW向密集变形带的关键成藏期,构造-成藏响应模式为早期成藏、陆源充注、背斜控藏、褶皱控缝.喜山早期形成NW向构造和局限在早期NE向构造之间的近SN向构造,是SN向过渡变形带和NW-SN向过渡变形带(元坝东部)的关键成藏期,也是NW-SN向过渡变形带(通南巴西部)和NW向密集变形带的关键改造期,构造-成藏响应模式为晚期成藏、海相混源、断裂控藏、断裂控缝.Abstract: Most of the non-marine tight sandstone strata in the polycyclic superimposed basins in China is rich in hydrocarbon resources and exhibits complicated and specific hydrocarbon geological characteristics.Yuanba-Tongnanba area is located in a polycyclic and multi-attribute tectonic intersection.It is a typical region which could reveal the respond relationship between multiphase tectonization and non-marine tight gas accumulation in the polycyclic superimposed basin.Based on the seismic data, apatite fission track (AFT) geochronology and hydrocarbon accumulation characterizes analysis, two critical tectonic periods have been identified which are the Late Yanshan epoch (Late Cretaceous about 100-70 Ma) and the Early Himalayan epoch (Eocene to Olgocene about 40-25 Ma).The gas accumulation in the non-marine tight sandstone reservoirs was controlled by the tectonization of two critical tectonic periods.NE-trending structures were built in the Late Yanshan epoch which is the critical hydrocarbon accumulation period of NE-trending weak deformation zone, NW-SN trending transitional deformation belt (the west area of Tongnanba block) and NW-trending concentrated deformation belt.The respond pattern of Late Yanshan epoch could be expressed as earlier accumulation, terrestrial source, anticline control response on gas trap and fold control response on fractures.NW-trending and nearly SN-trending structures were built in the Early Himalayan epoch which is not only the critical hydrocarbon accumulation period of SN-trending transitional deformation belt and NW-SN trending transitional deformation belt (the east area of Yuanba block), but also the critical hydrocarbon reconstruction period of NW-SN trending transitional deformation belt (the west area of Tongnanba block) and NW-trending concentrated deformation belt.The respond pattern of Himalayan epoch could be expressed as late accumulation, marine-terrestrial mixed source, fault control response on gas trap and fault control response on fractures.
-
图 2 四川盆地元坝-通南巴及周边地区磷灰石裂变径迹数据分布
图中数据为中值年龄,部分数据来源:何登发等①(2012);Lei et al.(2012); Tian et al. (2012)和Yang et al.(2013, 2017)
Fig. 2. Apatite fission track ages plotted on geologic map of Micang Shan Uplift, South Dabashan Fold and Thrust Belt and Yuanba-Tongnanba area in Sichuan Basin
图 3 四川盆地元坝-通南巴及周边地区磷灰石裂变径迹模拟结果
(9)~(14)、(18)、(20)~(21)、(27)样品为实测数据,(1)~(2)、(8)、(24)~(26)来自Yang et al.(2013); (3)~(7)、(15)~(17)、(19)来自Tian et al. (2012);(22)~(23)、(28)来自何登发等①(2012)
Fig. 3. Apatite fission track (AFT) thermal history modeling results of the Micang Shan Uplift, South Dabashan Fold and Thrust Belt and Yuanba-Tongnanba area in Sichuan Basin
图 11 元坝-通南巴地区陆相致密砂岩层系烃类赋存类型及特征
图a、b、d、e据盘昌林和王威②(2013);图c、f据张枝焕③(2015).a.沥青包裹体(元坝204井须二段);b.油包裹体(马201井须二段);c.油包裹体(元坝204井须二段石英颗粒加大边);d.气态烃包裹体(元坝6井须四段方解石脉);e.气态烃包裹体(元陆6井须二段石英颗粒裂纹);f.气态烃包裹体(马2须二段、马102须四段石英颗粒裂纹)
Fig. 11. Three kinds of hydrocarbon type in non-marine tight sandstone reservoirs in Yuanba-Tongnanba area
表 1 元坝-通南巴地区各构造带断裂特征对比
Table 1. Comparison of fracture characteristics of each structural belt in Yuanba-Tongnanba area
构造区 NE向弱变形区 NW-SN向叠加变形区 构造带 NE向弱变形带 SN向过渡变形带 NW-SN向过渡变形带 NW向密集变形带 地理位置 元坝西部 元坝中部 元坝东部 通南巴西部 通南巴东部 断层
特征走向 NE向 近SN向 SN、NW向 SN、NW向 NW向 平面延伸长度 短 长 长 短 长 纵向切层层位 少, T2l-J1z 多, 膏岩-J2s 多, 膏岩-J1z 多, 膏岩-J2s 多, 海相地层-J2s 发育密度 小 大 NW>SN NW>SN 大 形成时间 燕山晚期 喜山早期 喜山早期 喜山早期 喜山早期 表 2 元坝-通南巴地区构造-成藏响应特征
Table 2. Tectonic-accumulation response characteristics in Yuanba-Tongnanba area
构造分带 关键成藏期 关键改造期及程度 控缝要素 层系差异 烃源差异 NE向弱变形区 燕山晚期 弱改造 褶皱控缝 浅层少成藏 陆源 近源 SN向过渡变形带 喜山早期 弱改造 断裂控缝 浅层多成藏 陆源 近源 NW-SN向过渡变形带(元坝东部) 喜山早期 弱改造 断裂控缝 浅层少成藏 陆源 近源 NW-SN向过渡变形带(通南巴西部) 燕山晚期 喜山早期强改造 褶皱-断裂联控 浅层少成藏 海陆混源,以陆为主 近源为主,局部远源 NW向密集变形带 燕山晚期 喜山早期强改造 褶皱-断裂联控 浅层多成藏 海陆混源,以海为主 近源+远源 -
[1] Chen, L.B., He, D.F., Wang, B., et al., 2017.Dating the Tectonic Deformation since the Middle Triassic for the Tongnanba Anticline in the Northeastern Sichuan Basin and Its Geological Implications.Geotectonica et Metallogenia, 41(3):433-445 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DGYK201703001.htm [2] Cheng, L.X., Wang, W., Wang, T., et al., 2017.Reasons for the Productivity Difference of Quartz Sandstone Gas Reservoirs of Upper Triassic Xu 2 Member between Yuanba and Malubei Areas in NE Sichuan Basin.Natural Gas Industry, 37(8):14-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG201708004.htm [3] Dai, J.X., Ni, Y.Y., Wu, X.Q., et al., 2012.Tight Gas in China and Its Significance in Exploration and Exploitation.Petroleum Exploration and Development, 39(3):257-264 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380412600433 [4] Dai, J.X., Liao, F.R., Ni, Y.Y., et al., ,2013.Discussions on the Gas Source of the Triassic Xujiahe Formation Tight Sandstone Gas Reservoirs in Yuanba and Tongnanba, Sichuan Basin:An Answer to Yinfeng et al.Petroleum Exploration and Development, 40(2):250-256 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380413600336 [5] Fan, C.H., Tao, J.L., Zhou, K., et al., 2017.Fractal Characteristics of Fracture of Xujiahe Formation in Fault-Fold Belt of Central Yuanba Area.Journal of Southwest Petroleum University (Science & Technology Edition), 39(1):35-42 (in Chinese with English abstract). [6] Fan, J.Y., Qin, Q.R., Su, P.D., et al., 2009.Fracture Genesis in Tongnanba Structural Belt.Special Oil & Gas Reservoirs, 16(1):38-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ200901014.htm [7] Guo, T.L., 2013.Key Controls on Accumulation and High Production of Large Non-Marine Gas Fields in Northern Sichuan Basin.Petroleum Exploration and Development, 40(2):139-149 (in Chinese with English abstract). doi: 10.1016/S1876-3804(13)60017-8 [8] Jin, W.Z., Wan, G.M., Cui, Z.H., et al., 2012.Key Tectonic Change Epoch and Hydrocarbon Accumulation Periods of Continental Clastic Reservoir in Sichuan Basin. Fault-Block Oil and Gas Field, 19(3):273-277 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT201203003.htm [9] Jiang, L., Deng, B., Liu, S.G., et al., 2018.Differential Uplift and Fragmentation of Upper Yangtze Basin in Cenozoic.Earth Science, 43(6):1872-1886 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.597 [10] Lei, Y.L., Jia, C.Z., Li, B.L., et al., 2012.Meso-Cenozoic Tectonic Events Recorded by Apatite Fission Track in the Northern Longmen-Micang Mountains Region.Acta Geologica Sinica (English Edition), 86(1):153-165. https://doi.org/10.1111/j.1755-6724.2012.00618.x [11] Li, H., Fan, C.H., Qin, Q.R., et al., 2018.Fracture Characteristics and Its Genesis of Tight Reservoir in Xujiahe Formation of Central Yuanba Area in Sichuan Basin. Reservoir Evaluation and Development, 8(2):1-6 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yqzpjykf201802001 [12] Li, H.T., 2016.Accumulation Process and Pattern of Oolitic Shoal Gas Pools in the Platform:A Case from Member 3 of Lower Triassic Feixianguan Formation in the Heba Area, Northeastern Sichuan Basin.Petroleum Exploration and Development, 43(5):723-732 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK201605008.htm [13] Li, J., Hu, D.F., Zou, H.Y., et al., 2016.Coupling Relationship between Reservoir Diagenesis and Gas Accumulation in Xujiahe Formation of Yuanba-Tongnanba Area, Sichuan Basin, China.Natural Gas Geoscience, 27(7):1164-1178 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2468256X16300657 [14] Li, J.R., Zhu, H., Fen, X.M., et al., 2016.Differences of Fracture Characteristics and the Influence on Productivity in the Northeastern Sichuan Continental Basin.Petroleum Geology & Experiment, 38(6):742-747 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201606007.htm [15] Li, P.P., Hao, F., Guo, X.S., et al., 2016.Origin and Distribution of Hydrogen Sulfide in the Yuanba Gas Field, Sichuan Basin, Southwest China.Marine and Petroleum Geology, 75:220-239. https://doi.org/10.1016/j.marpetgeo.2016.04.021 [16] Liu, Z.Q., 2011.Hydrocarbon Accumulation in Marine Strata at Critical Tectonic Moment in Southern Middle and Upper Yangtze Intra-Continental Structural Belt, South China (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). [17] Long, S.X., Xiao, K.H., Li, X.P., et al., 2012.Gas Accumulation Conditions and Exploration Strategies of Mesozoic Terrestrial Strata in the Sichuan Basin.Natural Gas Industry, 32(11):10-17 (in Chinese with English abstract). [18] Luo, L., Qi, J.F., Zhang, M.Z., et al., 2015.Difference Study on Evolution and Deformation of the Fold-Thrust Belts Surrounding Sichuan Basin.Geological Review, 61(3):525-535 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201503006.htm [19] Magoon, L.B., Dow, W.G., 1994.The Petroleum System——From Source to Trap.AAPG Memoir 60.American Association of Petroleum Geologists, Tulsa. [20] Qin, S.F., Zhang, Y.H., Zhao, C.Y., et al., 2018.Geochemical Evidence for in Situ Accumulation of Tight Gas in the Xujiahe Formation Coal Measures in the Central Sichuan Basin, China.International Journal of Coal Geology, 196:173-184. https://doi.org/10.1016/j.coal.2018.07.009 [21] Tang, L.J., Jin, W.Z., He, C.B., et al., 2009.Key Tectonic Changes and Staging Differential Structural Deformation in Superimposed Basins.Xinjiang Petroleum Geology, 30(2):163-167 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-xjsd200902008.htm [22] Tang, L.J., Jin, Z.J., Jia, C.Z., et al., 2001.Tectonic Analysis of Superimposed Basins.Experimental Petroleum Geology, 23(3):251-255 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201202024 [23] Tian, Y.T., Kohn, B.P., Zhu, C.Q., et al., 2012.Post-Orogenic Evolution of the Mesozoic Micang Shan Foreland Basin System, Central China.Basin Research, 24(1):70-90. https://doi.org/10.1111/j.1365-2117.2011.00516.x [24] Wang, H., Zhou, W., Zhang, C., et al., 2016.Reservoir Characteristics and Main Controlling Factor of the Third Member of Xujiahe Formation in Yuanba Gas Reservoir.Journal of Southwest Petroleum University (Science & Technology Edition), 38(4):19-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XNSY201604003.htm [25] Wu, X.Q., Chen, Y.B., Liu, Q.Y., et al., 2019.Molecular Geochemical Characteristics of Source Rocks in the 5th Member of the Upper Triassic Xujiahe Formation, Xinchang Gas Field, Western Sichuan Depression.Earth Science, 44(3):859-871 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.000 [26] Wu, Z.T., Liu, X.W., Li, X.F., et al., 2017.The Application of Noble Gas Isotope in Gas-Source Correlation of Yuanba Reservoir, Sichuan Basin.Natural Gas Geoscience, 28(7):1072-1077 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201707010.htm [27] Xie, X.Q., Guan, P., Han, D.K., et al., 2014.Geochemical Characteristics and Source of Terrestrial Reservoir Gas in Northeast Sichuan.Natural Gas Geoscience, 25(S1):131-140 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-TDKX2014S1024.htm [28] Xiao, K.H., Li, H.T., Jia, S., et al., 2014.Characteristics of Calcarenaceous Sandstone Reservoirs and Gas Accumulation Control Factors of the 3rd Member of Xujiahe Formation in Yuanba Area, Northeast Sichuan Basin.Oil & Gas Geology, 35(5):654-660 (in Chinese with English abstract). [29] Yang, R., He, S., Li, T.Y., et al., 2016.Origin of Over-Pressure in Clastic Rocks in Yuanba Area, Northeast Sichuan Basin, China.Journal of Natural Gas Science and Engineering, 30:90-105. https://doi.org/10.1016/j.jngse.2016.01.043 [30] Yang, Z., Ratschbacher, L., Jonckheere, R., et al., 2013.Late-Stage Foreland Growth of China's Largest Orogens (Qinling, Tibet):Evidence from the Hannan-Micang Crystalline Massifs and the Northern Sichuan Basin, Central China.Lithosphere, 5(4):420-437. https://doi.org/10.1130/l260.1 [31] Yang, Z., Shen, C.B., Ratschbacher, L., et al., 2017.Sichuan Basin and beyond:Eastward Foreland Growth of the Tibetan Plateau from an Integration of Late Cretaceous-Cenozoic Fission Track and (U-Th)/He Ages of the Eastern Tibetan Plateau, Qinling, and Daba Shan.Journal of Geophysical Research:Solid Earth, 122(6):4712-4740. https://doi.org/10.1002/2016jb013751 [32] Yu, D.D., Tang, L.J., Yu, Y.X., et al., 2016.Differential Structural Evolution and Its Influence on the Natural Gas Accumulation of Continental Strata in the Western and Northeastern Sichuan Basin.Geoscience, 30(5):1085-1095 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201605013.htm [33] Zhang, L., Zou, H.Y., Hao, F., et al., 2017.Characteristics and Densification Causes and of Highly-Tight Sandstone of the Xujiahe Formation(T3x2)in the Yuanba Area, Northeastern Sichuan Basin. Acta Geologica Sinica, 91(9):2105-2118 (in Chinese with English abstract). [34] Zhang, Q.F., Chen, Z.Q., Zhao, Y.Q., et al., 2013.Relationship between Tectonic Evolution and Hydrocarbon Accumulation in the Changxing and Feixianguan Fms in the Frontal Concealed Structural Zone of Micangshan Mountain, Northeastern Sichuan Basin.Natural Gas Industry, 33(5):24-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201305007.htm [35] 陈龙博, 何登发, 王贝, 等, 2017.川东北地区通南巴背斜中三叠世以来构造变形时间厘定及其地质意义.大地构造与成矿学, 41(3):433-445. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201703001 [36] 程立雪, 王威, 王涛, 等, 2017.川东北元坝、马路背地区上三叠统须二段石英砂岩储层天然气产能差异的原因.天然气工业, 37(8):14-21. http://d.old.wanfangdata.com.cn/Periodical/trqgy201708002 [37] 戴金星, 倪云燕, 吴小奇, 等, 2012.中国致密砂岩气及在勘探开发上的重要意义.石油勘探与开发, 39(3):257-264. http://d.old.wanfangdata.com.cn/Periodical/syktykf201203001 [38] 戴金星, 廖凤蓉, 倪云燕, 等, 2013.四川盆地元坝和通南巴地区须家河组致密砂岩气藏气源探讨——兼答印峰等.石油勘探与开发, 40(2):250-256. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201302020.htm [39] 范存辉, 陶佳丽, 周坤, 等, 2017.元坝中部断褶带须家河组裂缝分形特征.西南石油大学学报(自然科学版), 39(1):35-42. http://d.old.wanfangdata.com.cn/Periodical/xnsyxyxb201701004 [40] 樊靖宇, 秦启荣, 苏培东, 等, 2009.通南巴构造带裂缝成因研究.特种油气藏, 16(1):38-41. doi: 10.3969/j.issn.1006-6535.2009.01.010 [41] 郭彤楼, 2013.四川盆地北部陆相大气田形成与高产主控因素.石油勘探与开发, 40(2):139-149. http://d.old.wanfangdata.com.cn/Periodical/syktykf201302004 [42] 金文正, 万桂梅, 崔泽宏, 等, 2012.四川盆地关键构造变革期与陆相油气成藏期次.断块油气田, 19(3):273-277. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201203001 [43] 姜磊, 邓宾, 刘树根, 等, 2018.上扬子盆地新生代差异抬升剥蚀与分异过程.地球科学, 43(6):1872-1886. https://doi.org/10.3799/dqkx.2018.597 [44] 李虎, 范存辉, 秦启荣, 等, 2018.川东北元坝中部地区须家河组致密储层裂缝特征及成因探讨.油气藏评价与开发, 8(2):1-6. doi: 10.3969/j.issn.2095-1426.2018.02.001 [45] 李宏涛, 2016.台内鲕粒滩气藏成藏过程与模式——以川东北河坝地区下三叠统飞仙关组三段为例.石油勘探与开发, 43(5):723-732. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605008.htm [46] 李军, 胡东风, 邹华耀, 等, 2016.四川盆地元坝-通南巴地区须家河组致密砂岩储层成岩-成藏耦合关系.天然气地球科学, 27(7):1164-1178. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201607004 [47] 黎静容, 朱桦, 冯晓明, 等, 2016.川东北陆相储层裂缝特征差异性及对产能的影响.石油实验地质, 38(6):742-747. http://d.old.wanfangdata.com.cn/Periodical/sysydz201606005 [48] 刘昭茜, 2011.中、上扬子区南部陆内构造带关键构造期海相油气成藏作用研究(博士学位论文).武汉: 中国地质大学. [49] 龙胜祥, 肖开华, 李秀鹏, 等, 2012.四川盆地陆相层系天然气成藏条件与勘探思路.天然气工业, 32(11):10-17. doi: 10.3787/j.issn.1000-0976.2012.11.003 [50] 罗良, 漆家福, 张明正, 等, 2015.四川盆地周缘冲断带构造演化及变形差异性研究.地质论评, 61(3):525-535. http://d.old.wanfangdata.com.cn/Periodical/dzlp201503006 [51] 汤良杰, 金文正, 何春波, 等, 2009.叠合盆地关键构造变革期与分期差异构造变形.新疆石油地质, 30(2):163-167. http://d.old.wanfangdata.com.cn/Periodical/xjsydz200902004 [52] 汤良杰, 金之钧, 贾承造, 等, 2001.叠合盆地构造解析几点思考.石油实验地质, 23(3):251-255. doi: 10.3969/j.issn.1001-6112.2001.03.001 [53] 王浩, 周文, 张冲, 等, 2016.元坝气藏须家河组三段储层特征与主控因素.西南石油大学学报(自然科学版), 38(4):19-26. http://d.old.wanfangdata.com.cn/Periodical/xnsyxyxb201604003 [54] 吴小奇, 陈迎宾, 刘全有, 等, 2019.川西坳陷新场气田须家河组烃源岩分子地球化学特征.地球科学, 44(3):859-871. https://doi.org/10.3799/dqkx.2019.000 [55] 仵宗涛, 刘兴旺, 李孝甫, 等, 2017.稀有气体同位素在四川盆地元坝气藏气源对比中的应用.天然气地球科学, 28(7):1072-1077. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201707010 [56] 谢小琴, 关平, 韩定坤, 等, 2014.川东北陆相储层天然气地球化学特征及来源分析.天然气地球科学, 25(S1):131-140. http://www.cqvip.com/QK/97226X/2014S1/84687588504849528349485052.html [57] 肖开华, 李宏涛, 贾爽, 等, 2014.川东北元坝地区须三段钙屑砂岩储层特征及控气因素.石油与天然气地质, 35(5):654-660. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201405011 [58] 于冬冬, 汤良杰, 余一欣, 等, 2016.川西和川东北地区差异构造演化及其对陆相层系天然气成藏的影响.现代地质, 30(5):1085-1095. doi: 10.3969/j.issn.1000-8527.2016.05.013 [59] 张莉, 邹华耀, 郝芳, 等, 2017.川东北元坝地区须家河组储层特征与超致密成因探讨.地质学报, 91(9):2105-2118. doi: 10.3969/j.issn.0001-5717.2017.09.013 [60] 张庆峰, 陈祖庆, 赵永庆, 等, 2013.米仓山前缘隐伏构造带构造演化与长兴-飞仙关组油气成藏的关系.天然气工业, 33(5):24-29. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201305007.htm