Geological Environment Safety Evaluation
-
摘要: 地质环境安全评价是国土空间规划的基础性工作.其目的是对人类生命财产、城镇和工程建设构成威胁的地质环境问题进行评价.基于人类生命安全至上和灾害链综合风险的原则,选取区域地壳稳定性、突发地质灾害易发程度和地面沉降易发程度等制约国土空间规划的“短板”要素,以全国为例,采用基于灾害链综合评价的图形叠置法开展地质环境安全综合评价,将地质环境安全程度分为5个等级.地质环境安全程度由高到低所占面积分别为28.34%、29.36%、21.00%、4.51%和4.24%.评价结果宏观反映了地质环境条件和安全程度,揭示了区域分异特征,能够从地质环境安全角度为国土空间规划,特别是城镇和工程建设选址综合安全评价和用途管制等工作提供科学参考依据.
-
关键词:
- 地质环境安全 /
- 国土空间规划 /
- 区域地壳稳定性 /
- 地质灾害易发程度评价 /
- 环境地质学
Abstract: The geological environment safety evaluation is becoming increasingly more important in land planning since the geological environment is getting more complicated in recent years. Based on summarizing the previous comprehensive evaluation of geological environment, a comprehensive evaluation index system of geological environment safety is established and a comprehensive evaluation method thereof is developed to provide scientific basis and technical support for land planning and evaluation of resources and environment carrying capacity. The connotation of geological environment safety is put forward, and three key factors for geological environmental safety evaluation are determined as regional crust stability, susceptibility of geologic hazards, and susceptibility of chronic geologic hazards, which are evaluated respectively. Five grades and twelve classes are divided through comprehensive evaluation of geological environment safety by using a comprehensive way to evaluate the dominant factors. The evaluation results not only reflect the degree of geological environment safety, but also explain the key factors affecting the geological environment safety. The area of overlapping regions, where the regional structure is extremely unstable and unexpected geological hazards are especially easy to occur, accounts for about 4.24%, mainly distributed in the eastern margin of the Tibetan plateau, mainly involving Gansu Baiyin-Tianshui, Sichuan Deyang-Kangding-Xichang, Yunnan Dongchuan-Gejiu, southern Tibet and western Yunnan areas. The results of geological environment safety evaluation enhance the understanding on geological environment, and the degree of geological environment safety, as one of the indicators of land planning, provides technical support and scientific basis for land planning. -
表 1 全国地质环境安全评价指标
Table 1. National geological environment safety evaluation index
评价体系 评价要素 评价内容 地质环境安全评价 区域地壳稳定性 地震活动性 最大历史地震震级、地震动峰值加速度 断裂活动性 断裂切割深度、活动时代和活动速率 地块特征 地块完整性及活动性 构造应力特征 构造应力场、地表变形速率 地球物理特征 重力异常、航磁异常 突发地质灾害易发程度 崩塌滑坡泥石流易发程度 地形起伏度、工程地质岩组、活动断裂影响距离、年平均暴雨日数、年平均降雨量、土壤侵蚀强度和土地利用程度 地面塌陷易发程度 碳酸盐岩类型、第四纪岩性、地下水类型、矿山分布密度和规模、土地利用程度 缓变地质灾害易发程度 地面沉降易发程度 地貌和第四纪地质、地下水及含水层特征、地下水开采状况和地面沉降分布现状 表 2 地质环境安全综合评价分级标准
Table 2. Geological environment safety comprehensive evaluation grading standard
表 3 地质环境安全程度综合评价分类
Table 3. Geological environment safety degree comprehensive evaluation classification
等级 分类 要素特征 区域地壳稳定性 地质灾害易发程度 安全程度Ⅴ级 区域构造极不(不)稳定和地质灾害极高(高)易发重叠 极不稳定或不稳定 极高易发或高易发 安全程度Ⅳ级 区域构造极不稳定 极不稳定 中易发或低易发 地质灾害极高易发 次不稳定或次稳定 极高易发 安全程度Ⅲ级 区域构造不稳定 不稳定 中易发、低易发或不易发 地质灾害高易发 次不稳定、次稳定或稳定 高易发 区域构造次不稳定和地质灾害中易发重叠 次不稳定 中易发 安全程度Ⅱ级 区域构造次不稳定 次不稳定 低易发或不易发 地质灾害中易发 次稳定或稳定 中易发 安全程度Ⅰ级 区域构造次稳定(稳定)、突发性地质灾害低易发(不易发)、地面沉降高易发 次稳定(稳定) 突发性地质灾害低易发(不易发)、地面沉降高易发 表 4 地质环境安全程度分区特征
Table 4. Geological environment security degree partition characteristics
等级 地质环境特征 影响因素 分布地区 面积(104 km2) 比例(%) 国土空间规划建议 安全程度Ⅴ级 地貌形态多为中高山,地势十分陡峭,地形起伏度大于2 500 m.有极强活动断裂分布、地震动峰值加速度a≥0.30 g.历史上发生过8.0级以上地震及次生地质灾害,岩土体以变质岩、碎屑岩为主,岩体破碎严重,且强暴雨多发,地质灾害以大型、特大型为主 区域构造极不(不)稳定和地质灾害极高(高)易发重叠 主要分布在青藏高原东南缘的陇南中山山地、藏东南、川滇和横断山高山峡谷高易发区,涉及地区主要有甘肃南部天水和陇南地区,四川中西部和云南中西部地区,西藏南部部分地区 40.81 4.24 具有区域地壳稳定性极差和地质灾害严重的综合风险,国土空间规划时应强化工程建设选址综合安全评价和用途管制 安全程度Ⅳ级 地貌形态多为中高山,地势十分陡峭,地形起伏度大于2 500 m.有极强或强活动断裂分布、历史上发生过7.0~8.0级地震,地震动峰值加速度a=0.20 g或a≥0.30 g.岩土体以变质岩、碎屑岩为主,岩体破碎严重,暴雨多发,岩溶发育程度较高,地质灾害以中型-大型为主 区域构造极不稳定 主要分布在我国西部的天山、阿尔泰山、阿尔金山、祁连山、昆仑山、喜马拉雅山,南北地震带的甘肃天水、西海固地区,华北地区的鄂尔多斯周缘、汾渭地堑、阴山-燕山-渤海带、郯庐断裂带部分地区 19.82 2.06 需严格抗震安全设防和自然生态环境的综合治理,在城镇建设和工程建设时,应强化工程地质条件的勘查和综合评价 地质灾害极高易发 主要分布在第2级地势阶梯的川滇山地、云贵高原、秦巴山地、陇西黄土高原、太行山中山山地、黔北湘西中低山等地区,以及第1级地势阶梯的青藏高原东南部.涉及的省份主要为云南、贵州、四川、西藏、陕西、重庆、甘肃 23.67 2.46 需严格抗震安全设防和自然生态环境的综合治理,在城镇建设和工程建设时,应强化工程地质条件的勘查和综合评价 安全程度Ⅲ级 地貌形态多为中高山,地势陡峭,地形起伏度500~2 500 m.断裂带发育,有强活动断裂分布,历史上发生过7.0~7.9级地震,地震动峰值加速度a=0.20 g.岩土体以变质岩、碎屑岩和黄土为主,岩体破碎,暴雨多发,岩溶发育,地质灾害以中型-小型为主 区域构造不稳定 主要分布在青藏高原及周缘地区、新疆构造区的南北天山、华北地区不稳定区及其周边地区和秦岭大别山等地区 108.55 11.27 经抗震安全设防,基本适宜人类生存和发展 地质灾害高易发 主要分布在青海东部、西藏南部、陕西南部、重庆、贵州、云南、山西西部等地区 55.57 5.77 经地质灾害治理,基本适宜人类生存和发展 区域构造次不稳定和地质灾害中易发重叠 主要分布在青藏高原主要活动地块边界带、南北地震带、华北地区等不稳定区外缘地区 38.18 3.96 具有区域构造次不稳定和地质灾害中易发综合风险,应加强抗震安全设防和地质灾害治理 安全程度Ⅱ级 地貌形态多为中低山和丘陵区,地形起伏度小于250 m,断裂带较发育,有中等活动断裂分布,历史上发生过6.0~6.9级地震,地震动峰值加速度a=0.15 g.岩土体以变质岩、碎屑岩、火山岩和黄土为主,岩体较破碎.岩溶发育程度微弱-中等,地质灾害以小型为主 区域构造次不稳定 主要分布在我国西部大部分地区、华北平原西北部、辽宁大连和山东临沂一线、福建泉州和广东汕头沿海等地区 170.50 17.70 基本适宜人类生存和发展.部分地区需防治地面沉降 地质灾害中易发 主要分布在我国中东部低山和丘陵地区,主要涉及湖南、江西、福建、广西大部分地区,广东北部、浙江中南部、陕西中北部、山西东部和西部、河南西部、辽宁北部、吉林南部等地区 112.35 11.66 安全程度Ⅰ级 地貌形态主要为平原、盆地、丘陵、台地、河谷,基本没有晚更新世活动断裂分布,局部有弱活动断裂分布、历史上无大于5.0级地震记录,或局部发生过5.0~5.9级地震,受相邻地区地震影响,地震动峰值加速度a为0.05~ 0.10 g.岩土体类型以第四纪松散堆积物和坚硬岩为主.部分地区岩溶发育微弱.总体上看地质环境条件比较好 区域构造次稳定(稳定)突发性地质灾害低易发(不易发)、地面沉降高易发 主要发布在我国中东部地区,东北地区、东部平原及三角洲、海南岛、四川盆地、西北平原盆地等地区 273.02 28.34 适宜人类生存和发展.部分地区需防治地面沉降 注:本次评价范围不包括中国台湾、南海诸岛等地区.因为沙漠地区没有人类活动,故综合评价未包括沙漠地区. -
[1] Chai, J.F., Zhu, S.J., Wu, F.Q., et al., 2004. State of Art: Regional Crustal Stability. Journal of Engineering Geology, 12(4): 401-407 (in Chinese with English abstract). [2] Cui, Y., Kong, J.M., Wu, W.P., et al., 2012. Cause Characteristics and Prevention/Control Strategies of the Secondary Mountain Disaster Chain of the Wenchuan Earthquake. Journal of Natural Disasters, 21(1): 109-116 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZH201201015.htm [3] Delgado, O. B., Mendoza, M., Granados, E. L., et al., 2008. Analysis of Land Suitability for the Siting of Inter-Municipal Landfills in the Cuitzeo Lake Basin, Mexico. Waste Management, 28(7): 1137-1146. https://doi.org/10.1016/j.wasman.2007.07.002 [4] Duan, J., Kang, M.Y., Dai, C., et al., 2012. Integrated Spatial Assessment of Ecological Security in Dongjiang River Basin Based on Gridding. Chinese Journal of Ecology, 31(8): 2075-2081 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STXZ201208029.htm [5] Fan, J., 2010. Yushu Earthquake Recovery and Reconstruction. Science Press, Beijing (in Chinese). [6] Feng, H.J., Zhou, A.G., Yu, J.J., et al., 2016. A Comparative Study on Plum-Rain-Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province. Earth Science, 41(3): 403-415 (in Chinese with English abstract). [7] Ferretti, V., Pomarico, S., 2013. Ecological Land Suitability Analysis through Spatial Indicators: An Application of the Analytic Network Process Technique and Ordered Weighted Average Approach. EcologicalIndicators, 34: 507-519. https://doi.org/10.1016/j.ecolind.2013.06.005 [8] Gong, J. Z., Liu, Y. S., Chen, W. L., 2012. Land Suitability Evaluation for Development Using a Matter-Element Model: A Case Study in Zengcheng, Guangzhou, China. Land Use Policy, 29(2): 464-472. https://doi.org/10.1016/j.landusepol.2011.09.005 [9] Ha, S., Zhang, J.Q., Tong, S.Q., et al., 2016. Progress and Prospect of the Research on Disaster Chain. Journal of Catastrophology, 31(2): 131-138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHXU201602029.htm [10] Han, J.L., Wu, S.R., Wang, H.B., 2007. Preliminary Study on Geological Hazard Chains. Earth Science Frontiers, 14(6): 11-23 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60001-9 [11] Huang, X.J., Wu, Z.H., Huang, X.L., et al., 2018. Tectonic Geomorphology Constrains on Quaternary Activity and Segmentation along Chenghai-Binchuan Fault Zone in Northwest Yunnan, China. Earth Science, 43(12): 4651-4670 (in Chinese with English abstract). http://www.researchgate.net/publication/329798414_Tectonic_Geomorphology_Constrains_on_the_Quaternary_Activity_and_Segmentation_along_Chenghai-Binchuan_Fault_Zone_in_Northwest_Yunnan_China [12] Jin, D.S., 2007. Mountain Town Planning and Geological Environment. The Chinese Journal of Geological Hazardand Control, 18(2): 154-156 (in Chinese with English abstract). [13] Li, F., Mei, H.B., Wang, W.S., et al., 2017. Rainfall-Induced Meteorological Early Warning of Geo-Hazards Model: Application to the Monitoring Demonstration Area in Honghe Prefecture, Yunnan Province. Earth Science, 42(9): 1637-1646 (in Chinese with English abstract). http://www.researchgate.net/publication/320553209_Rainfall-Induced_Meteorological_Early_Warning_of_Geo-Hazards_Model_Application_to_the_Monitoring_Demonstration_Area_in_Honghe_Prefecture_Yunnan_Province [14] Li, W. P., Wen, D. G., Zhou, A. G., et al., 2009. Assessment of Geological Security and Integrated Assessment Geo-Environmental Suitability in Worst-Hit Areas in Wenchuan Quake. Acta Geologica Sinica, 83(4): 816-825. https://doi.org/10.1111/j.1755-6724.2009.00104.x [15] Li, W. P., Wen, D. G., Zhou, A. G., et al., 2018. Evaluation of the Carrying Capacity of Resources and Environment for Post-Wenchuan Earthquake Reconstruction: Comprehensive Evaluation of the Degree of Geological Security and Water and Soil Resources Guarantee. Geological Publishing House, Beijing (in Chinese). [16] Liang, H.C., 2010. Geological Environment Assessment and Zoning of Urban Construction Land. China University of Geosciences Press, Wuhan (in Chinese). [17] Liu, C.Z., Liu, Y.H., 2012. Some Discussion on Geohazards Control and Geoenvironment Sustainable Development. Journal of Jilin University (Earth Science Edition), 42(5): 1469-1476 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201205021.htm [18] Liu, C.Z., Zhang, M.X., Liu, Y.H., et al., 2006. A System of Geo-Environment Evaluation Based on Sustainable Land-Use. Earth Science Frontiers, 13(1): 242-245 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200601036.htm [19] Liu, F.S., Wu, Z.H., Zhang, Y.Q., et al., 2014. New Progress and Prospects of Neotectonics and Active Tectonics Synthetical Study on Eastern Edge Qinghai-Xizang Plateau. Geological Bulletin of China, 33(4): 403-418 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252281206.html [20] Peng, Z.L., Zhang, Q., Yang, S.L., et al., 2015. Overview of Comprehensive Evaluation Theory and Methodology. Chinese Journal of Management Science, 23(S1): 245-256 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGGK2015S1040.htm [21] Shi, P.J., Sun, S., Wang, M., et al., 2014. Climate Change Regionalization in China (1961-2010). Science China: Earth Sciences, 44(10): 2294-2306 (in Chinese). http://www.onacademic.com/detail/journal_1000037452472710_ae29.html [22] Shi, J.S., 2017. Towards Effective Geo-Disaster Risk Prevention in China's New Urbanization via Innovation. Science & Technology Review, 35(5): 38-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KJDB201705015.htm [23] Sun, J.Z., Chen, X., Wang, Y.Q., et al., 2004. The Estimation and Prediction of the Slide and Collapse of Soil and Rock Slope Triggered by Earthquakes with Three Steps. Journal of Seismological Research, 27(3): 256-264 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ200403009.htm [24] Tong, J., Chai, B., Zhou, A.G., et al., 2013. Geological Environment Risk Assessment for Residential Land and Public Facilities Land at Caofeidian Newly-Developed Areas. Journal of Engineering Geology, 21(4): 501-507 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201304006.htm [25] Wei, S.C., Yang, Y., Luan, Q.L., et al., 2014. The Experience and Enlightenment of Geological Disaster Prevention and Control in American-Planning Soft Measures of Disaster Prevention and Control. Journal of Catastrophology, 29(3): 156-161 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zhx201403028 [26] Wu, S.R., Chen, Q.X., Sun, Y., 1995. Recent Progress of the Study on Regional Crustal Stability in China. Journal of Geomechanics, 1(1): 31-36 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX501.005.htm [27] Wu, S.R., Shi, J.S., Zhang, C.S., et al., 2009. Preliminary Discussion on Technical Guideline for Geohazard Risk Assessment. Geological Bulletin of China, 28(8): 995-1005 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgqydz200908001 [28] Wu, X.P., Yang, X.Y., Ran, M.P., et al., 2004. Comprehensive Assessment Study of Environmental Impact on Railway Route Selection Based upon Graphic Overlay Method. China Railway Science, 25(4): 125-128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGTK200404025.htm [29] Xiong, C., Cao, J.H., Sun, J.L., et al., 2018. Variation Characteristics along the Strike of the Littoral Fault Zone in Offshore Pearl River Estuary. Earth Science, 43(10): 3682-3697 (in Chinese with English abstract). http://www.researchgate.net/publication/329983962_Variation_Characteristics_along_the_Strike_of_the_Littoral_Fault_Zone_in_Offshore_Pearl_River_Estuary [30] Yan, Y.S., Lian, Y., Yang Z.Y., et al., 2011. Discussion on the Linear Project Geological Security Risk Assessment. Hydrogeology and Engineering Geology, 38(6): 135-138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TXBM201104040.htm [31] Yi, M.C., 1997. Regional Crustal Stability Map of China. Geological Publishing House, Beijing (in Chinese). [32] Zhang, L.J., 2009. Prevention of Geological Hazard Starting from Land Use Planning. Geological Bulletin of China, 28(Z1): 343-347 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2009Z1031.htm [33] Zhang, R.L., Meng, H., Lian, J.F., 2013. Susceptibility Evaluation of Debris-Flow in China Based on GIS. Journal of Chengdu University of Technology (Science & Technology Edition), 40(4): 379-386 (in Chinese with English abstract). http://www.researchgate.net/publication/287908896_Susceptibility_evaluation_of_debris-flow_in_China_based_on_GIS [34] Zhang, R.L., Meng, H., Lian, J.F., et al., 2010. Landslide Susceptibility Assessment by Probability Ratio Model Based on GIS. Earth Science Frontiers, 17(6): 291-297 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY201006041.htm [35] Zhang, W.X., Zhou, H.J., 2013. Concetural Model of Disaster Chain Risk Assessment: Taking Wenchuan Earthquake on 12 May 2008 as a Case. Progress in Geography, 32(1): 130-138 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKJ201301015.htm [36] Zhang, Y., Peacock, W. G., 2009. Planning for Housing Recovery? Lessons Learned from Hurricane Andrew. Journal of the American Planning Association, 76(1): 5-24. https://doi.org/10.1080/01944360903294556 [37] Zhang, Y.S., Cheng, Y.L., Yao, X., et al., 2013. The Evolution Process of Wenchuan Earthquake-Landslide-Debris Flow Geohazard Chain. Geological Bulletin of China, 32(12): 1900-1910 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201312003.htm [38] Zhou, A.G., Zhou, J.W., Liang, H.C., et al., 2008. Geological Environment Assessment. China University of Geosciences Press, Wuhan (in Chinese). [39] 柴建峰, 朱时杰, 伍法权, 等, 2004. 区域地壳稳定性研究现状与趋势. 工程地质学报, 12(4): 401-407. doi: 10.3969/j.issn.1004-9665.2004.04.012 [40] 崔云, 孔纪名, 吴文平, 等, 2012. 汶川地震次生山地灾害链成灾特点与防治对策. 自然灾害学报, 21(1): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201201015.htm [41] 段锦, 康慕谊, 戴诚, 等, 2012. 基于格网的东江流域生态安全空间综合评价. 生态学杂志, 31(8): 2075-2081. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201208029.htm [42] 樊杰, 2010. 玉树地震灾后恢复重建. 北京: 科学出版社. [43] 冯杭建, 周爱国, 俞剑君, 等, 2016. 浙西梅雨滑坡易发性评价模型对比. 地球科学, 41(3): 403-415. doi: 10.3799/dqkx.2016.032 [44] 哈斯, 张继权, 佟斯琴, 等, 2016. 灾害链研究进展与展望. 灾害学, 31(2): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201602029.htm [45] 韩金良, 吴树仁, 汪华斌, 2007. 地质灾害链. 地学前缘, 14(6): 11-23. doi: 10.3321/j.issn:1005-2321.2007.06.003 [46] 黄小巾, 吴中海, 黄小龙, 等, 2018. 滇西北程海-宾川断裂带第四纪分段活动性的构造地貌表现与限定. 地球科学, 43(12): 4651-4670. doi: 10.3799/dqkx.2017.548 [47] 金德山, 2007. 山区城镇选址规划与地质环境. 中国地质灾害与防治学报, 18(2): 154-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200702029.htm [48] 李芳, 梅红波, 王伟森, 等, 2017. 降雨诱发的地质灾害气象风险预警模型: 以云南省红河州监测示范区为例. 地球科学, 42(9): 1637-1646. doi: 10.3799/dqkx.2017.112 [49] 李文鹏, 文冬光, 周爱国, 等, 2018. 汶川地震灾后重建资源环境承载能力评价: 地质安全与水土资源保障程度综合评价. 北京: 地质出版社. [50] 梁和成, 2010. 城市建设用地地质环境评价与区划. 武汉: 中国地质大学出版社. [51] 刘传正, 刘艳辉, 2012. 论地质灾害防治与地质环境利用. 吉林大学学报(地球科学版), 42(5): 1469-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205021.htm [52] 刘传正, 张明霞, 刘艳辉, 等, 2006. 区域地质环境可持续利用评价体系初步研究. 地学前缘, 13(1): 242-245. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200601036.htm [53] 刘凤山, 吴中海, 张岳桥, 等, 2014. 青藏高原东缘新构造与活动构造研究新进展及展望. 地质通报, 33(4): 403-418. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201404002.htm [54] 彭张林, 张强, 杨善林, 等, 2015. 综合评价理论与方法研究综述. 中国管理科学, 23(S1): 245-256. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK2015S1040.htm [55] 石菊松, 2017. 减缓新型城镇化进程中的地质灾害风险科技创新建议. 科技导报, 35(5): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201705015.htm [56] 史培军, 孙劭, 汪明, 等, 2014. 中国气候变化区划(1961-2010年). 中国科学: 地球科学, 44(10): 2294-2306. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201410017.htm [57] 孙进忠, 陈祥, 王余庆, 等, 2004. 岩土边坡地震崩滑的三级评判预测. 地震研究, 27(3): 256-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200403009.htm [58] 童军, 柴波, 周爱国, 等, 2013. 曹妃甸新区居住及公共设施用地地质环境风险评价. 工程地质学报, 21(4): 501-507. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201304006.htm [59] 韦仕川, 杨杨, 栾乔林, 等, 2014. 美国地质灾害防治的经验总结及启示——灾害防治的"规划软措施". 灾害学, 29(3): 156-161. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201403028.htm [60] 吴树仁, 陈庆宣, 孙叶, 1995. 我国区域地壳稳定性研究的新进展. 地质力学学报, 1(1): 31-36 https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX501.005.htm [61] 吴树仁, 石菊松, 张春山, 等, 2009. 地质灾害风险评估技术指南初论. 地质通报, 28(8): 995-1005. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200908002.htm [62] 吴小萍, 杨晓宇, 冉茂平, 等, 2004. 基于图形叠置法的铁路选线环境影响综合评价研究. 中国铁道科学, 25(4): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200404025.htm [63] 熊成, 曹敬贺, 孙金龙, 等, 2018. 珠江口外海域滨海断裂带沿构造走向的变化特征. 地球科学, 43(10): 3682-3697. doi: 10.3799/dqkx.2018.553 [64] 颜宇森, 廉勇, 杨志勇, 等, 2011. 浅议线性工程地质安全隐患评价. 水文地质工程地质, 38(6): 135-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201106024.htm [65] 易明初, 1997. 中国区域地壳稳定性图. 北京: 地质出版社. [66] 张丽君, 2009. 从土地利用规划入手提高地质灾害的防治水平——兼议地质灾害风险区划的急迫性与重要性. 地质通报, 28(Z1): 343-347. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2009Z1031.htm [67] 张若琳, 孟晖, 连建发, 2013. 基于GIS的中国泥石流易发性评价. 成都理工大学学报(自然科学版), 40(4): 379-386. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201304005.htm [68] 张若琳, 孟晖, 连建发, 等, 2010. 基于GIS的概率比率模型的滑坡易发性评价. 地学前缘, 17(6): 291-297. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006041.htm [69] 张卫星, 周洪建, 2013. 灾害链风险评估的概念模型——以汶川5.12特大地震为例. 地理科学进展, 32(1): 130-138. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201301015.htm [70] 张永双, 成余粮, 姚鑫, 等, 2013. 四川汶川地震-滑坡-泥石流灾害链形成演化过程. 地质通报, 32(12): 1900-1910. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312003.htm [71] 周爱国, 周建伟, 梁合诚, 等, 2008. 地质环境评价. 武汉: 中国地质大学出版社.