Laser Fusion 40Ar-39Ar Dating Method Using Multi-Collector Noble Gas Mass Spectrometer Argus Ⅵ and Its Geological Application
-
摘要: 单接收稀有气体质谱仪由于效率、测试精度相对较低,制约了高精度40Ar-39Ar测年的进一步发展.近年来,新一代多接收稀有气体质谱仪在高精度40Ar-39Ar测年中显示出巨大的优势和潜力,并得到了日益广泛的应用.简要介绍了基于多接收稀有气体质谱仪Argus Ⅵ的激光全熔/阶段加热40Ar-39Ar测年实验技术,并对空气氩同位素、标准样品FCs和YBCs以及东昆仑开木其花岗岩体钾长石样品开展了测试研究.结果显示,连续4个月326次循环测试得到的空气氩同位素比值及对应的质量歧视因子(MDF)十分一致,显示了仪器系统良好的稳定性;FCs与YBCs单颗粒全熔“模式年龄”结果表明,仪器在单颗粒、微量样品测试中具有良好的测试精度,“模式年龄”精度可以达到1‰以下(不含衰变常数及标准样品年龄误差);FCs的单颗粒全熔测试获得的J值及F值(40Ar*/39ArK)与萨尔茨堡大学ARGONAUT实验室结果具有相同的变化趋势,均反映了捷克LVR-15反应堆中子通量的梯度变化;对YBCs单颗粒全熔测试获得YBCs与FCs之间的内部校正系数RFCsYBCs=1.045 304±0.000 752(1σ),YBCs单颗粒全熔年龄为29.280±0.086(1σ),与前人结果在误差范围内一致.对东昆仑开木其花岗岩钾长石激光阶段加热测试,得到其坪年龄为229.9±0.2 Ma(1σ,MSWD=1.59),反等时线年龄为229.8±0.4 Ma(1σ,MSWD=1.71).综合区域内已有锆石U-Pb年代学及黑云母、钾长石40Ar-39Ar年代学研究成果,认为开木其岩体钾长石40Ar-39Ar年龄反映了东昆仑晚三叠世的一次快速冷却-剥露过程.
-
关键词:
- Argus Ⅵ质谱仪 /
- YBCs /
- FCs /
- 40Ar-39Ar测年 /
- 东昆仑 /
- 地质年代学
Abstract: The single-collector noble gas mass spectrometer has constrained the further development of the high-precision 40Ar-39Ar dating, owing to its relatively low efficiency and precision of measurement. However, the multi-collector noble gas mass spectrometer has been increasingly widely applied in the high-precision 40Ar-39Ar dating in recent years, showing great advantage and potentiality. The method of 40Ar-39Ar dating by laser total fusion/stepwise heating using the multi-collector noble gas mass spectrometer Argus Ⅵ is reported briefly, and the measurements of air, standard mineral FCs and YBCs, and the K-feldspar from the Kaimuqi granitic pluton in the East Kunlun were performed. Concordant atmospheric 40Ar/36Ar ratio and the corresponding mass discrimination factor (MDF) were obtained from 326 air argon analyses during four successive months, indicative of the stability of the machine system. The "model ages" calculated from the laser fusion 40Ar-39Ar results of FCs and YBCs suggest that, the level of precision achievable using the Argus Ⅵ for single-grain or minor sample analysis is significantly high and is better than 1‰ (excluding the errors associated with the age of monitors and decay constants). J value and F value (40Ar*/39ArK) calculated from the total fusion results of the FCs show similar trend with those from ARGONAUT lab at the University of Salzburg, both suggesting a distinct gradient of the neutron flux of the LVR-15 reactor. The intercalibration factor between YBCs and FCs based on our total fusion analysis of YCs are calculated as: RFCsYBCs=1.045 304±0.000 752 (1σ), and the single-grain total fusion age of 29.280±0.086 (1σ) for YBCs is obtained as well. The results are in good agreement with those of previous studies within the range of uncertainty. Stepwise heating analyses of the K-feldspar from the Kaimuqi granitic pluton in the East Kunlun yield a plateau age of 229.9±0.2 Ma (1σ, MSWD=1.59), and an inverse isochron age of 229.8±0.4 Ma, MSWD=1.71). In combination with published geochronology data of zircon U-Pb, and biotite and K-feldspar 40Ar-39Ar in this area, it is suggested that the 40Ar-39Ar age of the K-feldspar from the Kaimuqi granitic pluton represents a rapid cooling-exhumation event in the East Kunlun during Late Triassic.-
Key words:
- Argus Ⅵ mass spectrometer /
- YBCs /
- FCs /
- 40Ar-39Ar dating /
- East Kunlun /
- geochronology
-
图 3 FCs、YBCs单颗粒激光全熔40Ar-39Ar“模式年龄”及其精度
“模式年龄”的计算方法同Phillips and Matchan (2013),用以说明测试精度,年龄误差水平为1σ.图a中年龄误差包含测试F值误差及年龄推荐值误差;图b中年龄误差仅包含测试F值误差
Fig. 3. The single-grain laser fusion 40Ar-39Ar "model ages" of the FCs, YBCs and their precision
图 5 YBCs单颗粒全熔40Ar-39Ar年龄结果
图中空心数据点为前人YBCs年龄测试结果,均已进行内部校正(据Wang et al., 2014a);括号内为年龄测试中所采用的标准样品,虚线为YBCs推荐值,误差水平为1σ
Fig. 5. The single-grain total fusion 40Ar-39Ar age of YBCs
表 1 多接收稀有气体质谱仪及其配套系统主要参数
Table 1. Key parameters of the multi-collector noble gas mass spectrometer and its peripheral apparatus
系统 物理量 参数 多接收稀有气体质谱仪 加速电压 4.5 kV 捕获电压 15.14 V 捕获电流 200 μA 推斥电压 -3.43 V 电离电压 80 eV 分辨率 200 灵敏度 0.001 A/Torr(对于Ar,捕获电流为200 μA时) 背景值 36Ar < 500 cps 静态真空上升率 小于1.5 fA/min 积分时间 4.19 s 磁静置时间 5 000 ms 气体前处理系统 总容积 328 mL 分子泵组型号 PreifferHiCube 80 ECO 离子泵型号 Varian StarCell 20 L/s Zr-Al纯化泵型号 SAES NP10 储气罐容积 2.1 L 取气管容积 0.1 mL 二氧化碳激光加热系统 激光型号 ESIMIR10-30 输出波长 10.6 μm 最大功率 30 W 光斑直径 180 μm~3 mm 样品池 ZnS窗口,直径48 mm 样品盘 铜制,直径40 mm,厚8 mm;116孔,孔径1.5 mm,深4 mm 表 2 FCs和YBCs单颗粒激光全熔“模式年龄”
Table 2. The single-grain laser fusion 40Ar-39Ar "model ages" of the FCs and YBCs
实验室编号 样品编号 模式年龄 %1σa %1σb 模式年龄加权平均值(Ma) %1σa %1σb 18NW0330M3 F1 27.992 0.591 0.154 28.017 0.34 0.09 18NW0331M2 F1 28.041 0.587 0.134 18NW0331M5 F1 28.018 0.593 0.161 18NW0331M1 F2 28.010 0.591 0.153 28.025 0.42 0.12 18NW0331M7 F2 28.040 0.604 0.196 18NW0331M6 F3 27.997 0.585 0.128 28.019 0.34 0.07 18NW0331M3 F3 28.029 0.585 0.129 18NW0331M4 F3 28.030 0.582 0.115 18NW0408M1 F4 28.008 0.587 0.135 28.020 0.42 0.10 18NW0408M2 F4 28.033 0.588 0.138 18NW0329L F5 27.917 0.586 0.133 28.024 0.27 0.07 18NW0330L F5 28.028 0.597 0.174 18NW0330M2 F5 28.047 0.642 0.294 18NW0402M5 F5 28.045 0.586 0.130 18NW0402M6 F5 28.086 0.586 0.131 18NW0402M1 F6 27.991 0.585 0.129 28.022 0.26 0.06 18NW0402M2 F6 28.031 0.585 0.127 18NW0402M3 F6 28.012 0.585 0.128 18NW0402M4 F6 28.045 0.585 0.128 18NW0331M8 F8 28.031 0.586 0.131 28.014 0.29 0.07 18NW0402M7 F8 27.958 0.594 0.164 18NW0402M8 F8 28.031 0.585 0.127 18NW0402M9 F8 28.033 0.586 0.129 18NW0402M10 F7 — — — — — — 18NW0402M11 YBCs 29.276 0.171 0.152 29.286 0.09 0.08 18NW0403M1 YBCs 29.254 0.184 0.167 18NW0403M2 YBCs 29.338 0.181 0.164 18NW0403M3 YBCs 29.280 0.151 0.130 注:a误差计算中包含标准样品年龄误差、样品F值分析误差,不包含衰变常数误差;b误差计算中仅包含样品F值分析误差. -
[1] Bai, X. J., Qiu, H. N., Liu, W. G., et al., 2018. Automatic 40Ar/39Ar Dating Techniques Using Multicollector ARGUS Ⅵ Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus. Journal of Earth Science, 29(2): 408-415. https://doi.org/10.1007/s12583-017-0948-9 [2] Bi, L.S., Liang, X., Wang, G.H., et al., 2018. Metamorphism-Deformation Phases and Ar-Ar Chronological Constraints of the Lancang Group in the Middle and Southern Sections of the Lancangjiang Tectonic Belt, Western Yunnan. Earth Science, 43(9): 3252-3266 (in Chinese with English abstract). [3] Chen, J., Xie, Z.Y., Li, B., et al., 2013. Geological and Gechemical Characteristics of the Ore-Bearing Intrusions from the Lalingzaohuo Mo Polymetallic Deposit and Its Metallogenic Significance. Geology and Exploration, 49(5):813-824 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201305002 [4] Dong, H. W., Meng, Y. K., Xu, Z. Q., et al., 2019. Timing of Displacement along the YardoiDetachment Fault, Southern Tibet: Insights from Zircon U-Pb and Mica 40Ar-39Ar Geochronology. Journal of Earth Science, 30(3): 535-548. https://doi.org/10.1007/s12583-019-1223-z [5] Dong, Y. P., Genser, J., Neubauer, F., et al., 2011. U-Pb and 40Ar/39Ar Geochronological Constraints on the Exhumation History of the North Qinling Terrane, China. Gondwana Research, 19(4): 881-893. https://doi.org/10.1016/j.gr.2010.09.007 [6] Hall, C. M., 2014. Direct Measurement of Recoil Effects on 40Ar/39Ar Standards. Geological Society, London, Special Publications, 378(1): 53-62. https://doi.org/10.1144/sp378.7 [7] Handler, R., Neubauer, F., Velichkova, S.H., et al., 2004. 40Ar/39Ar Age Constraints on the Timing of Magmatism and Postmagmatic Cooling in the Panagyurishte Region, Bulgaria. Schweizerische Mineralogische und Petrographische Mitteilungen, 84, 119-132. http://www.researchgate.net/publication/233702750_40Ar39Ar_age_constraints_on_the_timing_of_magmatism_and_post-magmatic_cooling_in_the_Panagyurishte_region_Bulgaria [8] Hicks, A., Barclay, J., Mark, D. F., et al., 2012. Tristan da Cunha: Constraining Eruptive Behavior Using the 40Ar/39Ar Dating Technique. Geology, 40(8): 723-726. https://doi.org/10.1130/g33059.1 [9] Hodges, K. V., 2005.40Ar/39Ar Thermochronology of Detrital Minerals. Reviews in Mineralogy and Geochemistry, 58(1): 239-257. https://doi.org/10.2138/rmg.2005.58.9 [10] Hu, R. G., Bai, X. J., Wijbrans, J., et al., 2018. Occurrence of Excess 40Ar in Amphibole: Implications of 40Ar/39Ar Dating by Laser Stepwise Heating and in Vacuo Crushing. Journal of Earth Science, 29(2): 416-426. https://doi.org/10.1007/s12583-017-0947-x [11] Jiang, Y. D., Qiu, H. N., Xu, Y. G., 2012. Hydrothermal Fluids, Argon Isotopes and Mineralization Ages of the Fankou Pb-Zn Deposit in South China: Insights from Sphalerite 40Ar/39Ar Progressive Crushing. Geochimica et Cosmochimica Acta, 84: 369-379. https://doi.org/10.1016/j.gca.2012.01.044 [12] Jicha, B. R., Singer, B. S., Sobol, P., 2016. Re-Evaluation of the Ages of 40Ar/39Ar Sanidine Standards and Supereruptions in the Western U.S. Using a Noblesse Multi-Collector Mass Spectrometer. Chemical Geology, 431: 54-66. https://doi.org/10.1016/j.chemgeo.2016.03.024 [13] Jourdan, F., Mark, D. F., Verati, C., 2014. Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences-Introduction. Geological Society, London, Special Publications, 378(1): 1-8. https://doi.org/10.1144/sp378.24 [14] Jourdan, F., Renne, P. R., 2007. Age Calibration of the Fish Canyon Sanidine 40Ar/39Ar Dating Standard Using Primary K-Ar Standards. Geochimica et Cosmochimica Acta, 71(2): 387-402. https://doi.org/10.1016/j.gca.2006.09.002 [15] Jourdan, F., Verati, C., Féraud, G., 2006. Intercalibration of the Hb3gr 40Ar/39Ar Dating Standard. Chemical Geology, 231(3): 177-189. https://doi.org/10.1016/j.chemgeo.2006.01.027 [16] Koppers, A. A. P., 2002. ArArCALC: Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605-619. https://doi.org/10.1016/s0098-3004(01)00095-4 [17] Krummen, M., Burgess, D.G., Wapelhorst, E., et al., 2009. Argon Isotope Ratio Measurements Using Different Detector Strategies. Geochimica et Cosmochimica Acta, 73(13): A700. http://www.researchgate.net/publication/252490149_Argon_isotope_ratio_measurements_using_different_detector_strategies [18] Kuiper, K. F., Deino, A., Hilgen, F. J., et al., 2008. Synchronizing Rock Clocks of Earth History. Science, 320(5875): 500-504. https://doi.org/10.1126/science.1154339 [19] Lovera, O. M., Richter, F. M., Harrison, T. M., 1989. The 40Ar/39Ar Thermochronometry for Slowly Cooled Samples Having a Distribution of Diffusion Domain Sizes. Journal of Geophysical Research, 94(B12): 17917-17935. https://doi.org/10.1029/jb094ib12p17917 [20] Lovera, O. M., Richter, F. M., Harrison, T. M., 1991. Diffusion Domains Determined by 39Ar Released during Step Heating. Journal of Geophysical Research, 96(B2): 2057. https://doi.org/10.1029/90jb02217 [21] Mark, D. F., Barfod, D., Stuart, F. M., et al., 2009. The ARGUS Multicollector Noble Gas Mass Spectrometer: Performance for 40Ar/39Ar Geochronology. Geochemistry, Geophysics, Geosystems, 10(10): Q0AA02. https://doi.org/10.1029/2009gc002643 [22] Mock, C., Arnaud, N. O., Cantagrel, J. M., 1999. An Early Unroofing in Northeastern Tibet? Constraints from 40Ar/39Ar Thermochronology on Granitoids from the Eastern Kunlun Range (Qianghai, NW China). Earth and Planetary Science Letters, 171(1): 107-122. https://doi.org/10.1016/s0012-821x(99)00133-8 [23] Phillips, D., Matchan, E. L., 2013. Ultra-High Precision 40Ar/39Ar Ages for Fish Canyon Tuff and Alder Creek Rhyolite Sanidine: New Dating Standards Required? Geochimica et Cosmochimica Acta, 121: 229-239. https://doi.org/10.1016/j.gca.2013.07.003 [24] Phillips, D., Matchan, E. L., Honda, M., et al., 2017. Astronomical Calibration of 40Ar/39Ar Reference Minerals Using High-Precision, Multi-Collector (ARGUSVI) Mass Spectrometry. Geochimica et Cosmochimica Acta, 196: 351-369. https://doi.org/10.1016/j.gca.2016.09.027 [25] Qiu, H.N., Bai, X.J., 2019. 40Ar/39Ar Dating Technique of Fluid Inclusions and Its Application. Earth Science, 44(3):685-697 (in Chinese with English abstract). [26] Qiu, H.N., Bai, X.J., Liu, W.G., et al., 2015. Automatic 40Ar/39Ar Dating Technique Using Multicollector ArgusVI MS with Home-Made Apparatus. Geochimia, 44(5): 477-484 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201505007 [27] Renne, P. R., Balco, G., Ludwig, K. R., et al., 2011. Response to the Comment by W.H. Schwarz et al. on "Joint Determination of 40K Decay Constants and 40Ar /40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology" by P.R. Renne et al. 2010. Geochimica et Cosmochimica Acta, 75(17): 5097-5100. https://doi.org/10.1016/j.gca.2011.06.021 [28] Renne, P. R., Mundil, R., Balco, G., et al., 2010. Joint Determination of 40K Decay Constants and 40Ar /40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology. Geochimica et Cosmochimica Acta, 74(18): 5349-5367. https://doi.org/10.1016/j.gca.2010.06.017 [29] Renne, P. R., Sharp, W. D., Deino, A. L., et al., 1997. 40Ar/39Ar Dating into the Historical Realm: Calibration against Pliny the Younger. Science, 277(5330): 1279-1280. https://doi.org/10.1126/science.277.5330.1279 [30] Renne, P. R., Swisher, C.C., Deino, A.L., et al., 1998. Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating. Chemical Geology, 145(1-2):117-152. https://doi.org/10.1016/s0009-2541(97)00159-9 [31] Rieser, A. B., Liu, Y., Genser, J., et al., 2006. 40Ar/39Ar Ages of Detrital White Mica Constrain the Cenozoic Development of the Intracontinental Qaidam Basin, China. Geological Society of America Bulletin, 118(11-12): 1522-1534. https://doi.org/10.1130/b25962.1 [32] Spell, T. L., McDougall, I., 2003. Characterization and Calibration of 40Ar/39Ar Dating Standards. Chemical Geology, 198(3-4): 189-211. https://doi.org/10.1016/s0009-2541(03)00005-6 [33] Steiger, R. H., Jäger, E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362. https://doi.org/10.1016/0012-821x(77)90060-7 [34] Verati, C., Jourdan, F., 2014. Modelling Effect of Sericitization of Plagioclase on the 40K/40Ar and 40Ar/39Ar Chronometers: Implication for Dating Basaltic Rocks and Mineral Deposits. Geological Society, London, Special Publications, 378(1): 155-174. https://doi.org/10.1144/sp378.14 [35] Wang, B.Z., Chen, J., Luo, Z.H., et al., 2014.Spatial and Temporal Distribution of Late Permian-Early Jurassic Intrusion Assemblages in Eastern Qimantag, East Kunlun, and Their Tectonic Settings. Acta Petrologica Sinica, 30(11):3213-3228 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411009 [36] Wang, F., Feng, H. L., Shi, W. B., et al., 2016. Relief History and Denudation Evolution of the Northern Tibet Margin: Constraints from 40Ar/39Ar and (U-Th)/He Dating and Implications for Far-Field Effect of Rising Plateau. Tectonophysics, 675: 196-208. https://doi.org/10.1016/j.tecto.2016.03.001 [37] Wang, F., Jourdan, F., Lo, C. H., et al., 2014a. YBCs Sanidine: A New Standard for 40Ar/39Ar Dating. Chemical Geology, 388: 87-97. https://doi.org/10.1016/j.chemgeo.2014.09.003 [38] Wang, F., Zhu, R. X., Hou, Q. L., et al., 2014b. 40Ar/39Ar Thermochronology on Central China Orogen: Cooling, Uplift and Implications for Orogeny Dynamics. Geological Society, London, Special Publications, 378(1): 189-206. https://doi.org/10.1144/sp378.3 [39] Wang, F., Shi, W.B., Zhu, R.X., 2014.Problems of Modern 40Ar/39Ar Geochronology: Reviews. Acta Petrologica Sinica, 30(2): 326-340 (in Chinese with English abstract). [40] Wang, L. Z., Wang, L. Y., Peng, P. G., et al., 2018. A Thermal Event in the Ordos Basin: Insights from Illite 40Ar/39Ar Dating with Regression Analysis. Journal of Earth Science, 29(3): 629-638. https://doi.org/10.1007/s12583-017-0903-7 [41] 毕丽莎, 梁晓, 王根厚, 等, 2018.滇西澜沧江构造带中-南段澜沧群变质变形期次及Ar-Ar年代学约束.地球科学, 43(9): 3252-3266. doi: 10.3799/dqkx.2018.999 [42] 陈静, 谢智勇, 李彬, 等, 2013.东昆仑拉陵灶火钼多金属矿床含矿岩体地质地球化学特征及其成矿意义.地质与勘探, 49(5):813-824. http://d.old.wanfangdata.com.cn/Periodical/dzykt201305002 [43] 邱华宁, 白秀娟, 2019.流体包裹体40Ar/39Ar定年技术与应用.地球科学, 44(3):685-697. doi: 10.3799/dqkx.2019.007 [44] 邱华宁, 白秀娟, 刘文贵, 等, 2015.自动化40Ar/39Ar定年设备研制.地球化学, 44(5): 477-484. doi: 10.3969/j.issn.0379-1726.2015.05.007 [45] 王秉璋, 陈静, 罗照华, 等, 2014.东昆仑祁漫塔格东段晚二叠世-早侏罗世侵入岩岩石组合时空分布、构造环境的讨论.岩石学报, 30(11):3213-3228. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411009 [46] 王非, 师文贝, 朱日祥, 2014. 40Ar/39Ar年代学中几个重要问题的讨论.岩石学报, 30(2): 326-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201402002 -
周波附表.docx