Graptolite Biozonation of the Wufeng and Longmaxi Formations and Its Environmental Implications from the Xindi 2 Borehole in Yongshan-Daguan Area, NE Yunnan
-
摘要: 由于缺乏对四川盆地西南缘永善-大关地区五峰组-龙马溪组生物地层的详细划分与对比,黑色页岩分布时限及其沉积背景不明确.对新地2井五峰组-龙马溪组黑色页岩岩心开展生物地层研究,识别出了从上奥陶统凯迪阶上部WF1 Dicellograptus complanatus带至志留系兰多维列统埃隆阶顶部LM8 Stimulograptus sedgwickii带的9个生物带和组合.新地2井与宁211井、焦页1井、威202井、巫溪2井黑色页岩生物地层对比结果显示,新地2井的顶界与宁211井、焦页1井黑色页岩笔石带相近,但与威202井、巫溪2井相比低了1个笔石带.结合TOC值标定,新地2井富有机质页岩沉积期为WF2-LM6笔石带,其顶界高于宁211井的LM4笔石带.在笔石生物地层框架内对比了各井黑色页岩的沉积厚度、沉积速率及TOC值,探讨了它们的沉积演化差异及构造背景.靠近古隆起或古陆的沉积区,海侵-海泛稳定期时间呈缩短的趋势,富有机质页岩上界可低至LM5笔石带或以下;远离古隆起或古陆的沉积区,富有机质页岩上界可达LM8-LM9笔石带.受沉积水体深浅差异及古隆起陆源碎屑输入的影响,威远、焦石坝及巫溪地区出现了沉积分异现象.阶段性的海退事件及古隆起的状态变化(隆升与扩大)是广西运动的构造响应.Abstract: Due to the lack of detailed division and comparison of graptolite biozonation in Wufeng and Longmaxi formations of Yongshan-Daguan area, the distribution time of black shale and its sedimentary background are unclear. Nine graptolite biozones of the Wufeng and Longmaxi formations are recognized in the Xindi 2 borehole from the Yongshan-Daguan area, NE Yunnan in this paper. They are Dicellograptus complanatus, D. complexus, P. pacificus-M. extraordinarius, A. ascensus-P. acuminatus, C. vesiculosus, C. cyphus, D. triangulatus, L. convolutes, and S. sedgwickii biozones. A correlation of the Wufeng-Longmaxi graptolite biozones among the Xingdi 2, Ning 211, Jiaoye 1, Wei 202, and Wuxi 2 boreholes are indicated. The top of the Longmaxi black shale is diachronous, from which the top of the Longmaxi black shale of the Xindi 2, Ning 211, and Jiaoye 1 boreholes are one biozone lower than those of the Wei 202 and Wuxi 2 boreholes. High TOC content in the Longmaxi black shale is measured from WF2 (D. complexus Biozone) to LM6 (D. triangulatus Biozone) in the Xindi 2 borehole but only up to LM 5 (C. cyphus Biozone) in the Ning 211 borehole near the Central Guizhou uplift. However, the top of the Longmaxi black shale in Wei 202 and Wuxi 2 boreholes may reach to the level of LM9 (S. guerichi Biozone).According to our study, the transgression to maximum flooding period is shortened near the uplift or the old land, and the upper limit of high-quality black shale can be as low as LM5 (or below). Sedimentary differentiation occurred in Weiyuan, Jiaoshiba and Wuxi areas, which was affected by sedimentary water depth and the debris input from the uplift.
-
图 2 扬子区奥陶纪-志留纪之交笔石带序列
WF1为Dicellograptus complanatus带;表中各带同位素年龄值均代表其底界年龄,引自Gradstein et al. (2012)和陈旭等(2015, 2018)
Fig. 2. Subdivision of the Ordovician-Silurian graptolite biozones in the Yangtze region
图 4 新地2井五峰组和龙马溪组部分典型笔石化石
a1. Styracograptus chiai (Mu),2 081.04 m,WF1;a2. Pararetiograptus sp.,2 080.94 m,WF2;a3. Dicellograptus complexus Davies,2 080.51 m,WF2;a4. Paraorthograptus pacificus(Ruedemann),2 080.10 m,WF3;a5. Rectograptus songtaoensis Li,2 075.43 m;a6. Dicellograptus ornatus Elles and Wood,2 075.03 m;a7.Rectograptus obesus Li,2 071.53 m;a8.Appendispinograptus supernus(Elles and Wood),2 079.22 m,WF3;b1. Neodiplograptus anhuiensis(Li),2 067.74 m;b2. Normalograptus mirnyensis (Obut and Sobolevskaya),2 068.87 m;b3. Cystograptus penna (Hopkinson),2 043.66 m;b4. Petalolithus latus (Barrande),2 039.37 m;b5. Coronograptus annellus (Li),2 047.77 m;b6. Stimulograptus sedgwickii (Portlock),1 968.49 m,LM8;b7. Dimorphograptus nanjingensis Sun,2 054.22 m;b8. Parapetalolithus palmeus (Barrande),1 925.44 m,LM8;b9. Rastrites pregrinus Barrande,2 033.88 m,LM6;b10. Atavograptus atavus (Jones),2 048.17 m;b11. Richardsograptus laifengensis Chen,1 988.92m;b12. Coronograptus cyphus (Lopworth),2 046.13 m;b13. Paramonoclimacis chengkouensis (Ge),1 970.20 m;b14. Monograptus cf. capillaris (Carruthers),2 046.84 m;b15. Cystograptus vesiculosus(Nicholson),2 056.97 m,LM4;b16. Pseudorthograptus minutus (Churkin and Carter),2 043.66 m;b17. Cystograptus penna (Hopkinson),2 056.71 m,LM4;b18. Demirastrites cf triangulatus (Harkness),2 033.46 m;b19. Avitograptus cf. avitus (Davies), 2 070.34 m;b20. Coronograptus gregarius (Lopworth),2 047.25 m;b21. Richardsograptus elongatus (Churkin and Carter),2 047.77 m;b22. Lituigraptus sp.,LM7;b23. Lithurgraptus cf. convolutues (Hisinger),1 986.98 m,LM7;b24. Lithurgraptus cf. convolutues(Hisinger),2 006.64 m;b25. Petalolithus cf. minor Elles,2 039.47 m.图中比例尺均代表 1 mm
Fig. 4. Graptolites of the Wufeng and Longmaxi formations in Well Xindi 2
表 1 典型井的生物地层划分及厚度、沉积速率、TOC对比
Table 1. Graptolite biozones, thickness, sedimentary rate and TOC comparison of typical wells
系 统 阶 笔石带 沉积时间
(Ma)新地2井
(本文)宁211井
(罗超等,2017)威202井
(王红岩等,2015)焦页1井
(郭旭升等,2014;Liu et al., 2017 )巫溪2井
(王红岩等,2017;武瑾等,2017)井深
(m)厚度
(m)沉积速率
(m/Ma)TOC
(%)井深
(m)厚度
(m)沉积速率
(m/Ma)TOC
(%)井深
(m)厚度
(m)沉积
速率(m/Ma)TOC
(%)井深
(m)厚度
(m)沉积速率
(m/Ma)TOC
(%)井深
(m)厚度
(m)沉积速率
(m/Ma)TOC
(%)志留系 兰多维列统 特列奇阶 N2 未见顶 未见顶 未见顶 未见顶 LM9/N1 0.36 1 915.50 2 180.00 2 541.63 > 6? 2.1 未见顶 1 564.2 > 53.79 > 149.42 1.80 埃隆阶 LM8 0.27 1 968.49 52.99 196.26 0.74 2 213.16 33.16 122.81 0.55 2 546.79 5.16 19.11 2 344.19 > 44.19 > 163.67 1.43 1 599.1 34.90 129.26 2.87 LM7 0.45 2 009.14 40.65 90.33 1.31 2 251.73 38.57 85.71 0.86 2 551.08 4.29 9.53 2 348.22 4.03 8.96 2.40 1 610.91 11.81 26.24 3.51 LM6 1.56 2 045.67 36.53 23.42 2.76 2 313.44 61.71 39.56 1.42 2 561.6 10.52 6.74 3.7 2 367.43 19.21 12.31 1.99 1 613.86 2.95 1.89 4.49 鲁丹阶 LM5 0.80 2 047.77 2.10 2.62 3.94 2 326.97 13.53 16.91 1.48 2 567.34 5.74 7.18 3.3 2 390.58 23.15 28.94 2.59 1 620.47 6.61 3.89 4.71 LM4 0.90 2 056.97 9.20 10.22 5.85 2 337.21 10.24 11.38 4.50 2 571.79 4.45 1.56 4.9 2 404.27 13.69 15.21 3.66 LM3 0.93 2 064.55 12.40 9.12 3.79 2 342.20 4.99 5.37 4.25 2 407.76 3.49 2.57 4.67 1 624.67 4.2 3.09 5.41 LM2 0.43 2 069.37 2 346.33 4.13 9.60 3.69 奥陶系 上奥陶统 赫南特阶 LM1 0.60 2 070.44(?) 1.07 1.78 6.16(?) 2 349.04 2.71 4.52 6.80 2 412.10 4.34 7.23 3.22 1 628.9 4.23 7.05 5.32 WF4 0.73 2 080.1 9.66 3.73 3.51 2 351.67 2.63 3.60 5.59 2 579.6 7.81 2.45 ? 2 412.52 0.42 0.16 4.85 1 629.1 0.20 0.27 6.09 凯迪阶
(上部)WF3 1.86 2 353.99 2.32 1.25 3.00 1 636.00 6.90 2.80 WF2 0.60 2 080.94 0.84 1.40 2.10 2 357.5 3.51 5.85 2.56 2 415.20 2.68 4.47 WF1 2 081.62 0.68 1.23 2 415.36 0.16 4.95 总厚度 166.12 177.50 > 115.36 > 125.59 注:表中井深代表底界深度. -
[1] Chen, X., Chen, Q., Zhen, Y. Y., et al., 2018. Circumjacent Distribution Pattern of the Lungmachian Graptolitic Black Shale (Early Silurian) on the Yichang Uplift and Its Peripheral Region. Scientia Sinica Terrae, 48(9): 1198-1206 (in Chinese). doi: 10.1360/N072017-00445 [2] Chen, X., Fan, J. X., Chen, Q., et al., 2014. Toward a Stepwise Kwangsian Orogeny. Scientia Sinica Terrae, 44(5):842-850 (in Chinese). doi: 10.1360/zd-2014-44-5-842 [3] Chen, X., Fan, J. X., Wang, W. H., et al., 2017. Stage-Progressive Distribution Pattern of the Lungmachi Black Graptolitic Shales from Guizhou to Chongqing, Central China. Scientia Sinica Terrae, 47(6):720-732 (in Chinese). doi: 10.1360/N072016-00186 [4] Chen, X., Fan, J.X., Zhang, Y.D., et al., 2015.Subdivision and Delineation of the Wufeng and Lungmachi Black Shales in the Subsurface Areas of the Yangtze Platform. Jorunal of Stratigraphy, 39(4):351-358 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201504001 [5] Cooper, R.A., Sadler, P.M., 2012.The Ordovician Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M., eds., The Geologic Time Scale 2012. Elsevier, Oxford, 489-523. [6] Gradstein, F.M., Ogg, J.G., Schmitz, M., et al., 2012. The Geologic Time Scale 2012. Elsevier, Oxford. [7] Guo, X.S., Hu, D.F., Wen, Z.D., et al., 2014.Major Factors Controlling the Accumulation and High Productivity in Marine Shale Gas in the Lower Paleozoic of Sichuan Basin and its Periphery: A Case Study of the Wufeng-Longmaxi Formation of Jiaoshiba Area. Geology in China, 41(3):893-901 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201403016.htm [8] Li, D.H., Liu, G.X., Nie, H.K., et al., 2019. Development Characteristics and Influencing Factors of Upper Gas Reservoir in Jiaoshiba Anticline. Earth Science, 44(11):3653-3661 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201911006 [9] Li, J., He, D.F., Mei, Q.H., et al., 2015. Tectonic-Depositional Environment and Proto-Type Basins Evolution of the Ordovician in Sichuan Basin and Adjacent Areas. Acta Petrolei Sinica, 36(4):427-445 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201504004 [10] Liu, Z. H., Algeo, T. J., Guo, X. S., et al., 2017. Paleo-Environmental Cyclicity in the Early Silurian Yangtze Sea (South China): Tectonic or Glacio-Eustatic Control? Palaeogeography, Palaeoclimatology, Palaeoecology, 466: 59-76. https://doi.org/10.1016/j.palaeo.2016.11.007 [11] Lu, Y.B., Ma, Y.Q., Wang, Y.X., et al., 2017.The Sedimentary Response to the Major Geological Events and Lithofacies Characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area. Earth Science, 42(7):1169-1184 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707013 [12] Luo, C., Wang, L.S., Shi, X.W., et al., 2017.Biostratigraphy of the Wufeng to Longmaxi Formation at Well Ning 211 of Changning Shale Gas Field. Journal of Stratigraphy, 41(2):142-152 (in Chinese with English abstract). [13] Melchin, M.J., 1998.Morphology and Phylogeny of Some Early Silurian 'Diplograptid' Genera from Cornwallis Island, Arctic Canada. Palaeontology, 41(2):263-315. [14] Melchin, M.J., Sadler, P.M., Cramer, B.D., 2012. The Silurian Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M., eds., The Geologic Time Scale 2012. Elsevier, Oxford, 525-558. [15] Mitchell, C.E., 1987. Evolution and Phylogenetic Classification of the Diplograptacea. Palaeontology, 30(2):353-405. http://www.researchgate.net/publication/289119022_Evolution_and_phylogenetic_classification_of_the_Diplograptacea [16] Mu, E.Z., Li, J.J., Ge, M.Y., et al., 1993. Upper Ordovician Graptolites of Central China Region. Science Press, Beijing, 133-134 (in Chinese). [17] Rong, J.Y., 1979. The Hirnantia Fauna of China with the Comments on the Ordovician-Silurian Boundary. Acta Stratigraphica Sinica, 3(1): 1-29 (in Chinese). http://www.researchgate.net/publication/285788597_The_Hirnantia_fauna_of_China_with_comments_on_the_Ordovician-Silurian_boundary [18] Rong, J.Y., Johnson, M.E., Yang, X.C., 1984.Early Silurian (Llandovery) Sea-Level Changes in the Upper Yangtze Region of Central and Southwestern China. Acta Palaeontologica Sinica, 23(6): 672-693(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GSWX198406001.htm [19] Rong, J. Y., Wang, Y., Zhang, X.L., et al., 2012. Tracking Shallow Marine Red Beds through Geological Time as Exemplified by the Lower Telychian (Silurian) in the Upper Yangtze Region, South China. Scientia Sinica Terrae, 42(6):862-878 (in Chinese). doi: 10.1360/zd-2012-42-6-862 [20] Sun, C.X., Nie, H.K., Liu, G.X., et al., 2019. Quartz Type and Its Control on Shale Gas Enrichment and Production: A Case Study of the Wufeng-Longmaxi Formations in the Sichuan Basin and Its Surrounding Areas, China. Earth Science, 44(11):3692-3704 (in Chinese with English abstract). [21] Wang, H.Y., Guo, W., Liang, F., et al., 2015.Biostratigraphy Characteristics and Scientific Meaning of the Wufeng and Longmaxi Formation Black Shales at Well Wei 202 of the Weiyuan Shale Gas Field, Sichuan Basin. Journal of Stratigraphy, 39(3):289-293 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201503006 [22] Wang, H.Y., Guo, W., Liang, F., et al., 2017. Black Shale Biostratigraphic Characteristics and Stratigraphic Correlation in the Wufeng and Longmaxi Fms of the Xuanhan–Wuxi Areas. Natural Gas Industry, 37(7):27-33 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201707008.htm [23] Wang, Y.M., Huang, J.L., Wang, S.F., et al., 2016. Dissection of Two Calibrated Areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin. Natural Gas Geoscience, 27(3):423-432 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201603004 [24] Wang, Z.J., Yu, Q., Yang, P., et al., 2018. The Main Controlling Factors of Shales Gas Enrichment and Exploration Prospect Areas in Sichuan-Yunnan-Guizhou Border Areas, Southwestern China. Sedimentary Geology and Tethyan Geology, 38(3):1-15 (in Chinese with English abstract). [25] Wu, J., Liang, F., Lin, W., et al., 2017. Reservoirs Characteristics and Gas-Bearing Capacity of Wufeng-Longmaxi Formation Shale in Well WX-2, Northeast Chongqing Area. Acta Petrolei Sinica, 38(5):512-524 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201705004 [26] Xiong, G.Q., Wang, J., Li, Y.Y., et al., 2017. Lithofacies Palaeogeography of the Early Paleozoic Black Rock Series in Dabashan Region and Their Shale-Gas Geological Significance. Journal of Palaeogeography, 19(6):965-986 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201706003 [27] 陈旭, 陈清, 甄勇毅, 等, 2018.志留纪初宜昌上升及其周缘龙马溪组黑色笔石页岩的圈层展布模式.中国科学:地球科学, 48(9):1198-1206. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201809006.htm [28] 陈旭, 樊隽轩, 陈清, 等, 2014.论广西运动的阶段性.中国科学:地球科学, 44(5):842-850. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201405002 [29] 陈旭, 樊隽轩, 王文卉, 等, 2017.黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式.中国科学:地球科学, 47(6):720-732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201706005 [30] 陈旭, 樊隽轩, 张元动, 等, 2015.五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定.地层学杂志, 39(4): 351-358. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201504001 [31] 郭旭升, 胡东风, 文治东, 等, 2014.四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组—龙马溪组为例.中国地质, 41(3):893-901. doi: 10.3969/j.issn.1000-3657.2014.03.016 [32] 李东晖, 刘光祥, 聂海宽, 等, 2019.焦石坝背斜上部气层开发特征及影响因素.地球科学, 44(11):3653-3661. doi: 10.3799/dqkx.2019.212 [33] 李皎, 何登发, 梅庆华, 等, 2015.四川盆地及邻区奥陶纪构造—沉积环境与原型盆地演化.石油学报, 36(4): 427-445. http://d.old.wanfangdata.com.cn/Periodical/syxb201504004 [34] 陆扬博, 马义权, 王雨轩, 等, 2017.上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应.地球科学, 42(7):1169—1184. doi: 10.3799/dqkx.2017.095 [35] 罗超, 王生兰, 石学文, 等, 2017.长宁页岩气田宁211井五峰组-龙马溪组生物地层.地层学杂志, 41(2):142-152. http://d.old.wanfangdata.com.cn/Conference/9577473 [36] 穆恩之, 李积金, 葛梅钰, 等, 1993.华中区上奥陶统笔石.北京:科学出版社, 133-134. [37] 戎嘉余, 1979.中国的赫南特贝动物群(Hirnantia fauna)并论奥陶系与志留系的分界.地层学杂志, 3(1):1-29. http://www.cnki.com.cn/Article/CJFDTotal-DCXZ197901000.htm [38] 戎嘉余, 马科斯·约翰逊, 杨学长, 1984.上扬子区早志留世(兰多维列世)的海平面变化.古生物学报, 23(6):672-694. http://www.cnki.com.cn/Article/CJFD1984-GSWX198406001.htm [39] 戎嘉余, 王怿, 张小乐, 等, 2012.追踪地质时期的浅海红层——以上扬子区志留系下红层为例.中国科学:地球科学, 42(6):862-878. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201206006 [40] 孙川翔, 聂海宽, 刘光祥, 等, 2019.石英矿物类型及其对页岩气富集开采的控制:以四川盆地及其周缘五峰组-龙马溪组为例.地球科学, 44(11):3692-3704. doi: 10.3799/dqkx.2019.203 [41] 王红岩, 郭伟, 梁峰, 等, 2015.四川盆地威远页岩气田五峰组和龙马溪组黑色页岩生物地层特征与意义.地层学杂志, 39(3):289-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201503006 [42] 王红岩, 郭伟, 梁峰, 等, 2017.宣汉-巫溪地区五峰组-龙马溪组黑色页岩生物地层特征及分层对比.天然气工业, 37(7):27-33. http://www.cnki.com.cn/Article/CJFDTotal-TRQG201707008.htm [43] 王玉满, 黄金亮, 王淑芳, 等, 2016.四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖.天然气地球科学, 27(3):423-432. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201603004 [44] 汪正江, 余谦, 杨平, 等, 2018.川滇黔邻区龙马溪组页岩气富集主控因素与勘探方向.沉积与特提斯地质, 38(3): 1-15. doi: 10.3969/j.issn.1009-3850.2018.03.001 [45] 武瑾, 梁峰, 吝文, 等, 2017.渝东北地区巫溪2井五峰组-龙马溪组页岩气储层及含气性特征.石油学报, 38(5): 512-524. http://d.old.wanfangdata.com.cn/Periodical/syxb201705004 [46] 熊国庆, 王剑, 李园园, 等, 2017.大巴山地区早古生代黑色岩系岩相古地理及页岩气地质意义.古地理学报, 19(6):965-986. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201706003