• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    俯冲带岩浆作用与大陆地壳生长

    马超 汤艳杰 英基丰

    马超, 汤艳杰, 英基丰, 2019. 俯冲带岩浆作用与大陆地壳生长. 地球科学, 44(4): 1128-1142. doi: 10.3799/dqkx.2019.026
    引用本文: 马超, 汤艳杰, 英基丰, 2019. 俯冲带岩浆作用与大陆地壳生长. 地球科学, 44(4): 1128-1142. doi: 10.3799/dqkx.2019.026
    Ma Chao, Tang Yanjie, Ying Jifeng, 2019. Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4): 1128-1142. doi: 10.3799/dqkx.2019.026
    Citation: Ma Chao, Tang Yanjie, Ying Jifeng, 2019. Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4): 1128-1142. doi: 10.3799/dqkx.2019.026

    俯冲带岩浆作用与大陆地壳生长

    doi: 10.3799/dqkx.2019.026
    基金项目: 

    国家自然科学基金项目 41725014

    国家自然科学基金项目 41688103

    详细信息
      作者简介:

      马超(1997-), 男, 博士研究生, 地球化学专业

      通讯作者:

      汤艳杰

    • 中图分类号: P542.4;P588.1;P591.1

    Magmatism in Subduction Zones and Growth of Continental Crust

    • 摘要: 大陆地壳的起源、生长和改造一直都是国际地学界广泛关注的热点问题,目前仍存在一定的争议,特别体现在陆壳增生的方式和速率上.为了探讨大陆地壳的生长方式,简要综述了俯冲带及其岩浆作用和大陆地壳生长的研究成果.俯冲带可划分为洋洋俯冲带、洋陆俯冲带和陆陆俯冲带,其岩浆作用以产出弧岩浆岩为主要特征,被广泛接受为大陆地壳生长的主要方式.目前主要有两种陆壳生长的假说:玄武岩模式和安山岩模式.玄武岩模式主要通过拆沉和底垫过程来实现新生地壳向大陆地壳的演化;安山岩模式则强调陆壳直接形成于产出安山质岩浆的俯冲带岩浆弧环境.俯冲带和碰撞带等板块汇聚边界是显生宙大陆地壳生长和改造的主要位置,俯冲带岩浆作用对陆壳生长发挥着重要的作用.

       

    • 图  1  大陆地壳结构组成示意图

      Hacker et al.(2015)

      Fig.  1.  Schematic diagram of the structure of the continental crust

      图  2  大陆地壳生成模式

      Castro et al.(2013)

      Fig.  2.  Formation patterns of continental crust

      图  3  拆沉模式示意图

      Ducea et al.(2015)

      Fig.  3.  Schematic diagram of delamination model

      图  4  岛弧下地壳与大陆下地壳微量元素组成对比

      Kelemen and Behn(2016)

      Fig.  4.  Comparison of trace elements in arc versus continental lower crust

      图  5  底垫过程示意图

      Ducea et al.(2015)

      Fig.  5.  Schematic diagram of relamination model

      图  6  底垫模式构造背景示意图

      Hacker et al.(2015)

      Fig.  6.  Schematic diagrams of the tectonic settings for relamination

      图  7  原生安山质及玄武质岩浆生成模式示意图

      Tamura et al.(2016)

      Fig.  7.  Formation patterns of primary andesitic and basaltic magmas

    • [1] Arculus, R.J., 1981.Island Arc Magmatism in Relation to the Evolution of the Crust and Mantle.Tectonophysics, 75(1-2):113-133. https://doi.org/10.1016/0040-1951(81)90212-2
      [2] Armstrong, R.L., 1981.Radiogenic Isotopes:The Case for Crustal Recycling on a Near-Steady-State No-Continental-Growth Earth.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 301(1461):443-472. https://doi.org/10.1098/rsta.1981.0122
      [3] Beall, A.P., Moresi, L., Cooper, C.M., 2018.Formation of Cratonic Lithosphere during the Initiation of Plate Tectonics.Geology, 46(6):487-490. https://doi.org/10.1130/g39943.1
      [4] Beck, S.L., Zandt, G., 2002.The Nature of Orogenic Crust in the Central Andes.Journal of Geophysical Research:Solid Earth, 107(B10):ESE 7-1-ESE 7-16. https://doi.org/10.1029/2000jb000124
      [5] Bird, P., 1979.Continental Delamination and the Colorado Plateau.Journal of Geophysical Research:Solid Earth, 84(B13):7561-7571. https://doi.org/10.1029/jb084ib13p07561
      [6] Bourdon, B., Turner, S., Dosseto, A., 2003.Dehydration and Partial Melting in Subduction Zones:Constraints from U-Series Disequilibria.Journal of Geophysical Research:Solid Earth, 108(B6). https://doi.org/10.1029/2002jb001839
      [7] Cai, P.J., Xu, R.K., Zheng, Y.Y., et al., 2018.From Oceanic Subduction to Continental Colision in North Qaidam:Evidence from Kaipinggou Orogenic M-Type Peridotite.Earth Science, 43(8):2875-2892 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808025.htm
      [8] Castro, A., Vogt, K., Gerya, T., 2013.Generation of New Continental Crust by Sublithospheric Silicic-Magma Relamination in Arcs:A Test of Taylor's Andesite Model.Gondwana Research, 23(4):1554-1566. https://doi.org/10.1016/j.gr.2012.07.004
      [9] Chemenda, A.I., Burg, J.P., Mattauer, M., 2000.Evolutionary Model of the Himalaya-Tibet System:Geopoem Based on New Modelling, Geological and Geophysical Data.Earth and Planetary Science Letters, 174(3-4):397-409. https://doi.org/10.1016/s0012-821x(99)00277-0
      [10] Chen, L., Zhao, Z.F., Zheng, Y.F., 2014.Origin of Andesitic Rocks:Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China.Lithos, 190-191:220-239. https://doi.org/10.1016/j.lithos.2013.12.011
      [11] Chen, L.H., Zhou, X.H., 2005.Subduction-Related Metasomatism in the Thinning Lithosphere:Evidence from a Composite Dunite-Orthopyroxenite Xenolith Entrained in Mesozoic Laiwu High-Mg Diorite, North China Craton.Geochemistry, Geophysics, Geosystems, 6(6). https://doi.org/10.1029/2005gc000938
      [12] DeBari, S.M., Greene, A.R., 2011.Vertical Stratification of Composition, Density, and Inferred Magmatic Processes in Exposed Arc Crustal Sections.In: DeBari, S.M., Greene, A.R., eds., Frontiers in Earth Sciences.Springer Berlin Heidelberg, Berlin, 121-144.https://doi.org/10.1007/978-3-540-88558-0_5
      [13] Ducea, M.N., Saleeby, J.B., Bergantz, G., 2015.The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs.Annual Review of Earth and Planetary Sciences, 43(1):299-331. https://doi.org/10.1146/annurev-earth-060614-105049
      [14] Ellam, R.M., Hawkesworth, C.J., 1988.Is Average Continental Crust Generated at Subduction Zones? Geology, 16(4):314-317.https://doi.org/10.1130/0091-7613(1988)0160314:iaccga>2.3.co;2 doi: 10.1130/0091-7613(1988)0160314:iaccga>2.3.co;2
      [15] Ernst, W.G., 2005.Alpine and Pacific Styles of Phanerozoic Mountain Building:Subduction-Zone Petrogenesis of Continental Crust.Terra Nova, 17(2):165-188. https://doi.org/10.1111/j.1365-3121.2005.00604.x
      [16] Fan, W.M., Peng, T.P., Wang, Y.J., 2009.Triassic Magmatism in the Southern Lancangjiang Zone, Southwestern China and Its Constraints on the Tectonic Evolution of Paleo-Tethys.Earth Science Frontiers, 16(6):291-302(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200906031
      [17] Foley, S.F., Barth, M.G., Jenner, G.A., 2000.Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas.Geochimica et Cosmochimica Acta, 64(5):933-938. https://doi.org/10.1016/s0016-7037(99)00355-5
      [18] Gao, S., Luo, T.C., Zhang, B.R., et al., 1998a.Chemical Composition of the Continental Crust as Revealed by Studies in East China.Geochimica et Cosmochimica Acta, 62(11):1959-1975. https://doi.org/10.1016/s0016-7037(98)00121-5
      [19] Gao, S., Zhang, B.R., Jin, Z.M., et al., 1998b.How Mafic is the Lower Continental Crust? Earth and Planetary Science Letters, 161(1-4):101-117. https://doi.org/10.1016/s0012-821x(98)00140-x
      [20] Grove, T.L., Till, C.B., Krawczynski, M.J., 2012.The Role of H2O in Subduction Zone Magmatism.Annual Review of Earth and Planetary Sciences, 40(1):413-439. https://doi.org/10.1146/annurev-earth-042711-105310
      [21] Guy, A., Edel, J.B., Schulmann, K., et al., 2011.A Geophysical Model of the Variscan Orogenic Root (Bohemian Massif):Implications for Modern Collisional Orogens.Lithos, 124(1-2):144-157. https://doi.org/10.1016/j.lithos.2010.08.008
      [22] Hacker, B.R., Kelemen, P.B., Behn, M.D., 2011.Differentiation of the Continental Crust by Relamination.Earth and Planetary Science Letters, 307(3-4):501-516. https://doi.org/10.1016/j.epsl.2011.05.024
      [23] Hacker, B.R., Kelemen, P.B., Behn, M.D., 2015.Continental Lower Crust.Annual Review of Earth and Planetary Sciences, 43(1):167-205. https://doi.org/10.1146/annurev-earth-050212-124117
      [24] Hao, J., Wang, E.Q., Liu, X.H., et al., 2006.Jinyanshan Collisional Orogenic Belt of the Early Paleozoic in the Altun Mountains:Evidence from Single Zircon U-Pb and 40Ar/39Ar Isotopic Dating for the Arc Magmatite and Ophiolitic Mélange.Acta Petrologica Sinica, 22(11):2743-2752(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200611011.htm
      [25] Harmon, R.S., Barreiro, B.A., Moorbath, S., et al., 1984.Regional O-, Sr-, and Pb-Isotope Relationships in Late Cenozoic Calc-Alkaline Lavas of the Andean Cordillera.Journal of the Geological Society, 141(5):803-822. https://doi.org/10.1144/gsjgs.141.5.0803
      [26] Hastie, A.R., Kerr, A.C., Pearce, J.A., et al., 2007.Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements:Development of the Th-Co Discrimination Diagram.Journal of Petrology, 48(12):2341-2357. https://doi.org/10.1093/petrology/egm062
      [27] Hawkesworth, C.J., Turner, S.P., McDermott, F., et al., 1997.U-Th Isotopes in Arc Magmas:Implications for Element Transfer from the Subducted Crust.Science, 276(5312):551-555. https://doi.org/10.1126/science.276.5312.551
      [28] Hong, D.W., Wang, S.G., Xie, X.L., et al., 2000.Genesis of Positive ε(Nd, t) Granitoids in the Da Hinggan Mts.-Mongolia Orogenic Belt and Growth Continental Crust.Earth Science Frontiers, 7(2):441-456 (in Chinese with English abstract).
      [29] Huang, Y., Chubakov, V., Mantovani, F., et al., 2013.A Reference Earth Model for the Heat-Producing Elements and Associated Geoneutrino Flux.Geochemistry, Geophysics, Geosystems, 14(6):2003-2029. https://doi.org/10.1002/ggge.20129
      [30] Ishikawa, A., Kuritani, T., Makishima, A., et al., 2007.Ancient Recycled Crust beneath the Ontong Java Plateau:Isotopic Evidence from the Garnet Clinopyroxenite Xenoliths, Malaita, Solomon Islands.Earth and Planetary Science Letters, 259(1-2):134-148. https://doi.org/10.1016/j.epsl.2007.04.034
      [31] Jacobson, C.E., Grove, M., Pedrick, J.N., et al., 2011.Late Cretaceous-Early Cenozoic Tectonic Evolution of the Southern California Margin Inferred from Provenance of Trench and Forearc Sediments.Geological Society of America Bulletin, 123(3-4):485-506. https://doi.org/10.1130/b30238.1
      [32] Jagoutz, O., Kelemen, P.B., 2015.Role of Arc Processes in the Formation of Continental Crust.Annual Review of Earth and Planetary Sciences, 43(1):363-404. https://doi.org/10.1146/annurev-earth-040809-152345
      [33] Jull, M., Kelemen, P.B., 2001.On the Conditions for Lower Crustal Convective Instability.Journal of Geophysical Research:Solid Earth, 106(B4):6423-6446. https://doi.org/10.1029/2000jb900357
      [34] Kapp, P., Yin, A., Manning, C.E., et al., 2003.Tectonic Evolution of the Early Mesozoic Blueschist-Bearing Qiangtang Metamorphic Belt, Central Tibet.Tectonics, 22(4):17-1-17-11. https://doi.org/10.1029/2002tc001383
      [35] Karato, S.I., 2012.On the Origin of the Asthenosphere.Earth and Planetary Science Letters, 321-322:95-103. https://doi.org/10.1016/j.epsl.2012.01.001
      [36] Kearey, P., Klepeis, K.A., Vine, F.J., et al., 2009.Global Tectonics.Wiley-Blackwell, Chiechester, 482.
      [37] Kelemen, P.B., Behn, M.D., 2016.Formation of Lower Continental Crust by Relamination of Buoyant Arc Lavas and Plutons.Nature Geoscience, 9(3):197-205. https://doi.org/10.1038/ngeo2662
      [38] Kelemen, P.B., Hanghøj, K., Greene, A.R., 2003.One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust.In: Kelemen, P.B., Hanghøj, K., Greene, A.R., eds., Treatise on Geochemistry, Volume 3.Elsevier, Oxford, 593-659.
      [39] Kelemen, P.B., Yogodzinski, G.M., Scholl, D.W., 2004.Along-Strike Variation in the Aleutian Island Arc: Genesis of High Mg# Andesite and Implications for Continental Crust.In: Kelemen, P.B., Yogodzinski, G.M., Scholl, D.W., eds., Inside the Subduction Factory.American Geophysical Union, Washington, D.C., 223-276.
      [40] Kessel, R., Schmidt, M.W., Ulmer, P., et al., 2005.Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth.Nature, 437(7059):724-727. https://doi.org/10.1038/nature03971
      [41] Kirby, S.H., 2000.Taking the Temperature of Slabs.Nature, 403(6765):31-34. https://doi.org/10.1038/47382
      [42] Kodaira, S., Noguchi, N., Takahashi, N., et al., 2010.Evolution from Fore-Arc Oceanic Crust to Island Arc Crust:A Seismic Study along the Izu-Bonin Fore Arc.Journal of Geophysical Research:Solid Earth, 115(B9):B09102.
      [43] Kodaira, S., Sato, T., Takahashi, N., et al., 2007.New Seismological Constraints on Growth of Continental Crust in the Izu-Bonin Intra-Oceanic Arc.Geology, 35(11):1031-1034. https://doi.org/10.1130/g23901a.1
      [44] Komiya, T., Maruyama, S., Masuda, T., et al., 1999.Plate Tectonics at 3.8-3.7 Ga:Field Evidence from the Isua Accretionary Complex, Southern West Greenland.The Journal of Geology, 107(5):515-554. https://doi.org/10.1086/314371
      [45] Korenaga, J., 2013.Initiation and Evolution of Plate Tectonics on Earth:Theories and Observations.Annual Review of Earth and Planetary Sciences, 41(1):117-151. https://doi.org/10.1146/annurev-earth-050212-124208
      [46] Lee, C.T.A., Cheng, X., Horodyskyj, U., 2006.The Development and Refinement of Continental Arcs by Primary Basaltic Magmatism, Garnet Pyroxenite Accumulation, Basaltic Recharge and Delamination:Insights from the Sierra Nevada, California.Contributions to Mineralogy and Petrology, 151(2):222-242. https://doi.org/10.1007/s00410-005-0056-1
      [47] Lee, C.T.A., Morton, D.M., Kistler, R.W., et al., 2007.Petrology and Tectonics of Phanerozoic Continent Formation:From Island Arcs to Accretion and Continental Arc Magmatism.Earth and Planetary Science Letters, 263(3-4):370-387. https://doi.org/10.1016/j.epsl.2007.09.025
      [48] Lexa, O., Schulmann, K., Janoušek, V., et al., 2011.Heat Sources and Trigger Mechanisms of Exhumation of HP Granulites in Variscan Orogenic Root.Journal of Metamorphic Geology, 29(1):79-102. https://doi.org/10.1111/j.1525-1314.2010.00906.x
      [49] Li, H.M., Zhai, S.K., Tao, C.H., et al., 2009.Advances on the Magmatism Processes in the Subduction Zones.Advances in Marine Science, 27(1):98-105(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBHH200901014.htm
      [50] Li, Z.H., 2014.A Review on the Numerical Geodynamic Modeling of Continental Subduction, Collision and Exhumation.Science China Earth Sciences, 57(1):47-69. https://doi.org/10.1007/s11430-013-4696-0
      [51] Ling, W.L., Cheng, J.P., Wang, X.H., et al., 2002.Geochemical Features of the Neoproterozoic Igneous Rocks from the Wudang Region and Their Implications for the Reconstruction of the Jinning Tectonic Evolution along the South Qinling Orogenic Belt.Acta Petrologica Sinica, 18(1):25-36(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200201004
      [52] Lustrino, M., 2005.How the Delamination and Detachment of Lower Crust can Influence Basaltic Magmatism.Earth-Science Reviews, 72(1-2):21-38. https://doi.org/10.1016/j.earscirev.2005.03.004
      [53] Manikyamba, C., Kerrich, R., Khanna, T.C., et al., 2009.Enriched and Depleted Arc Basalts, with Mg-Andesites and Adakites:A Potential Paired Arc-back-Arc of the 2.6 Ga Hutti Greenstone Terrane, India.Geochimica et Cosmochimica Acta, 73(6):1711-1736. https://doi.org/10.1016/j.gca.2008.12.020
      [54] Maruyama, S., Liou, J.G., Terabayashi, M., 1996.Blueschists and Eclogites of the World and Their Exhumation.International Geology Review, 38(6):485-594. https://doi.org/10.1080/00206819709465347
      [55] McCulloch, M.T., Gamble, J.A., 1991.Geochemical and Geodynamical Constraints on Subduction Zone Magmatism.Earth and Planetary Science Letters, 102(3-4):358-374. https://doi.org/10.1016/0012-821x(91)90029-h
      [56] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200703005.htm
      [57] Morse, S.A., 1980.Basalts and Phase Diagrams:An Introduction to the Quantitative Use of Phase Diagrams in Igneous Petrology.Precambrian Research, 17(3):306-307. http://www.sciencedirect.com/science/article/pii/0301926882900304
      [58] Nebel, O., Capitanio, F.A., Moyen, J.F., et al., 2018.When Crust Comes of Age:On the Chemical Evolution of Archaean, Felsic Continental Crust by Crustal Drip Tectonics.Philosophical Transactions.Series A, Mathematical, Physical, and Engineering Sciences, 376(2132):20180103. doi: 10.1098/rsta.2018.0103
      [59] Nielsen, S.G., Horner, T.J., Pryer, H.V., et al., 2018.Barium Isotope Evidence for Pervasive Sediment Recycling in the Upper Mantle.Science Advances, 4(7):eaas8675. https://doi.org/10.1126/sciadv.aas8675
      [60] Niu, Y.L., O'Hara, M.J., 2009.MORB Mantle Hosts the Missing Eu (Sr, Nb, Ta and Ti) in the Continental Crust:New Perspectives on Crustal Growth, Crust-Mantle Differentiation and Chemical Structure of Oceanic Upper Mantle.Lithos, 112(1-2):1-17. https://doi.org/10.1016/j.lithos.2008.12.009
      [61] Niu, Y.L., Zhao, Z.D., Zhu, D.C., et al., 2013.Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis.Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      [62] Peacock, S.M., Wang, K., 1999.Seismic Consequences of Warm versus Cool Subduction Metamorphism:Examples from Southwest and Northeast Japan.Science, 286(5441):937-939. https://doi.org/10.1126/science.286.5441.937
      [63] Perfit, M.R., Gust, D.A., Bence, A.E., et al., 1980.Chemical Characteristics of Island-Arc Basalts:Implications for Mantle Sources.Chemical Geology, 30(3):227-256. https://doi.org/10.1016/0009-2541(80)90107-2
      [64] Plank, T., Langmuir, C.H., 1993.Tracing Trace Elements from Sediment Input to Volcanic Output at Subduction Zones.Nature, 362(6422):739-743. https://doi.org/10.1038/362739a0
      [65] Polat, A., Kerrich, R., 2002.Nd-Isotope Systematics of ~2.7 Ga Adakites, Magnesian Andesites, and Arc Basalts, Superior Province:Evidence for Shallow Crustal Recycling at Archean Subduction Zones.Earth and Planetary Science Letters, 202(2):345-360. https://doi.org/10.1016/s0012-821x(02)00806-3
      [66] Poli, S., Schmidt, M.W., 2002.Petrology of Subducted Slabs.Annual Review of Earth and Planetary Sciences, 30(1):207-235. https://doi.org/10.1146/annurev.earth.30.091201.140550
      [67] Price, R.C., Gamble, J.A., Smith, I.E.M., et al., 2012.The Anatomy of an Andesite Volcano:A Time-Stratigraphic Study of Andesite Petrogenesis and Crustal Evolution at Ruapehu Volcano, New Zealand.Journal of Petrology, 53(10):2139-2189. https://doi.org/10.1093/petrology/egs050
      [68] Rudnick, R., Gao, S., 2003.Composition of the Continental Crust.Treatise on Geochemistry, 3:659. doi: 10.1016-0016-7037(95)00038-2/
      [69] Seber, D., Barazangi, M., Ibenbrahim, A., et al., 1996.Geophysical Evidence for Lithospheric Delamination beneath the Alboran Sea and Rif-Betic Mountains.Nature, 379(6568):785-790. https://doi.org/10.1038/379785a0
      [70] Shao, J.A., Tian, W., Tang, K.D., et al., 2015.Petrogenesis and Tectonic Settings of the Late Carboniferous High Mg Basalts of Inner Mongolia.Earth Science Frontiers, 22(5):171-181(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201505014
      [71] Singer, B.S., Jicha, B.R., Leeman, W.P., et al., 2007.Along-Strike Trace Element and Isotopic Variation in Aleutian Island Arc Basalt:Subduction Melts Sediments and Dehydrates Serpentine.Journal of Geophysical Research:Solid Earth, 112(B6):B06206. http://www.researchgate.net/publication/42794049_Along-strike_trace_element_and_isotopic_variation_in_Aleutian_Island_arc_basalt_subduction_melts_sediments_and_dehydrates_serpentine?ev=prf_cit
      [72] Smith, I.E.M., Price, R.C., 2006.The Tonga-Kermadec Arc and Havre-Lau back-Arc System:Their Role in the Development of Tectonic and Magmatic Models for the Western Pacific.Journal of Volcanology and Geothermal Research, 156(3-4):315-331. https://doi.org/10.1016/j.jvolgeores.2006.03.006
      [73] Song, S.G., Niu, Y.L., Su, L., et al., 2014.Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling:The Example of the North Qaidam UHPM Belt, NW China.Earth-Science Reviews, 129:59-84. https://doi.org/10.1016/j.earscirev.2013.11.010
      [74] Song, S.G., Niu, Y.L., Zhang, L.F., et al., 2009.Time Constraints on Orogenesis from Oceanic Subtraction to Continental Subduction, Collision, and Exhumation:An Example from North Qilian and North Qaidam HP-UHP Belts.Acta Petrologica Sinica, 25(9):2067-2077(in Chinese with English abstract).
      [75] Song, S.G., Wang, M.J., Wang, C., et al., 2015.Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth:A Perspective.Science China Earth Sciences, 58(8):1284-1304. https://doi.org/10.1007/s11430-015-5102-x
      [76] Spandler, C., Pirard, C., 2013.Element Recycling from Subducting Slabs to Arc Crust:A Review.Lithos, 170-171:208-223. https://doi.org/10.1016/j.lithos.2013.02.016
      [77] Stalder, R., Foley, S.F., Brey, G.P., et al., 1998.Mineral-Aqueous Fluid Partitioning of Trace Elements at 900-1 200 ℃ and 3.0-5.7 GPa:New Experimental Data for Garnet, Clinopyroxene, and Rutile, and Implications for Mantle Metasomatism.Geochimica et Cosmochimica Acta, 62(10):1781-1801. https://doi.org/10.1016/s0016-7037(98)00101-x
      [78] Stern, R.J., 2002.Subduction Zones.Reviews of Geophysics, 40(4):3-1-3-38. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232216228/
      [79] Straub, S.M., Zellmer, G.F., 2012.Volcanic Arcs as Archives of Plate Tectonic Change.Gondwana Research, 21(2-3):495-516. https://doi.org/10.1016/j.gr.2011.10.006
      [80] Syracuse, E.M., Abers, G.A., 2006.Global Compilation of Variations in Slab Depth beneath Arc Volcanoes and Implications.Geochemistry, Geophysics, Geosystems, 7(5):Q05017. https://doi.org/10.1029/2005gc001045
      [81] Tamura, Y., Ishizuka, O., Aoike, K., et al., 2010.Missing Oligocene Crust of the Izu-Bonin Arc:Consumed or Rejuvenated during Collision? Journal of Petrology, 51(4):823-846. https://doi.org/10.1093/petrology/egq002
      [82] Tamura, Y., Sato, T., Fujiwara, T., et al., 2016.Advent of Continents:A New Hypothesis.Scientific Reports, 6:33517. https://doi.org/10.1038/srep33517
      [83] Tan, D.B., Li, D.Y., Xiao, Y.L., 2018.Geochemical Characteristics of Niobium and Tantalum:A Review of Twin Elements.Earth Science, 43(1):317-332(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201801019
      [84] Tang, Y.J., Zhang, H.F., Ying, J.F., et al., 2013.Rapid Eruption of the Ningwu Volcanics in Eastern China:Response to Cretaceous Subduction of the Pacific Plate.Geochemistry, Geophysics, Geosystems, 14(6):1703-1721. https://doi.org/10.1002/ggge.20121
      [85] Taylor, S.R., 1967.The Origin and Growth of Continents.Tectonophysics, 4(1):17-34. https://doi.org/10.1016/0040-1951(67)90056-x
      [86] Taylor, S.R., McLennan, S.M., 1995.The Geochemical Evolution of the Continental Crust.Reviews of Geophysics, 33(2):241-265. https://doi.org/10.1029/95rg00262
      [87] Turner, S., Caulfield, J., Turner, M., et al., 2012.Recent Contribution of Sediments and Fluids to the Mantle's Volatile Budget.Nature Geoscience, 5(1):50-54. https://doi.org/10.1038/ngeo1325
      [88] Uyeda, S., Kanamori, H., 1979.Back-Arc Opening and the Mode of Subduction.Journal of Geophysical Research:Solid Earth, 84(B3):1049-1061. doi: 10.1029/JB084iB03p01049
      [89] van Keken, P.E., Hacker, B.R., Syracuse, E.M., et al., 2011.Subduction Factory:4.Depth-Dependent Flux of H2O from Subducting Slabs Worldwide.Journal of Geophysical Research:Solid Earth, 116(B1):B01401. doi: 10.1029-2010JB007922/
      [90] Wakita, K., Metcalfe, I., 2005.Ocean Plate Stratigraphy in East and Southeast Asia.Journal of Asian Earth Sciences, 24(6):679-702. https://doi.org/10.1016/j.jseaes.2004.04.004
      [91] Wei, C.J., Zhang, Y.H., 2008.Phase Transition in the Subducted Oceanic Lithosphere and Generation of the Subduction Zone Magma.Chinese Science Bulletin, 53(23):3603-3614. https://doi.org/10.1007/s11434-008-0405-3
      [92] Winchester, J.A., Floyd, P.A., 1976.Geochemical Magma Type Discrimination:Application to Altered and Metamorphosed Basic Igneous Rocks.Earth and Planetary Science Letters, 28(3):459-469. https://doi.org/10.1016/0012-821x(76)90207-7
      [93] Winter, J.D., 2001. An Introduction to Igneous and Metamorphic Petrology.Prentice Hall, Englewood Cliffs.
      [94] Xiao, Q.H., Deng, J.F., Qiu, R.Z., et al., 2009.A Preliminary Study of the Relationship between Granitoids and the Growth of Continental Crust:A Case Study of the Formation of Key Orogen Granitoids in China.Geology in China, 36(3):594-622(in Chinese with English abstract).
      [95] Xiong, X.L., Keppler, H., Audétat, A., et al., 2011.Partitioning of Nb and Ta between Rutile and Felsic Melt and the Fractionation of Nb/Ta during Partial Melting of Hydrous Metabasalt.Geochimica et Cosmochimica Acta, 75(7):1673-1692. https://doi.org/10.1016/j.gca.2010.06.039
      [96] Yogodzinski, G.M., Kelemen, P.B., 1998.Slab Melting in the Aleutians:Implications of an Ion Probe Study of Clinopyroxene in Primitive Adakite and Basalt.Earth and Planetary Science Letters, 158(1-2):53-65. https://doi.org/10.1016/s0012-821x(98)00041-7
      [97] Yogodzinski, G.M., Kelemen, P.B., 2007.Trace Elements in Clinopyroxenes from Aleutian Xenoliths:Implications for Primitive Subduction Magmatism in an Island Arc.Earth and Planetary Science Letters, 256(3-4):617-632. https://doi.org/10.1016/j.epsl.2007.02.015
      [98] Zandt, G., Gilbert, H., Owens, T.J., et al., 2004.Active Foundering of a Continental Arc Root beneath the Southern Sierra Nevada in California.Nature, 431(7004):41-46. https://doi.org/10.1038/nature02847
      [99] Zhang, H.F., Sun, M., Zhou, X.H., et al., 2003.Secular Evolution of the Lithosphere beneath the Eastern North China Craton:Evidence from Mesozoic Basalts and High-Mg Andesites.Geochimica et Cosmochimica Acta, 67(22):4373-4387. https://doi.org/10.1016/s0016-7037(03)00377-6
      [100] Zhang, J., Li, H.P., Chen, Q., et al., 2015.Review on the Research of Subduction Zone.Geological Survey and Research, 38(1):18-27, 34 (in Chinese with English abstract).
      [101] Zhang, J.J., Zheng, Y.F., Zhao, Z.F., 2009.Geochemical Evidence for Interaction between Oceanic Crust and Lithospheric Mantle in the Origin of Cenozoic Continental Basalts in East-Central China.Lithos, 110(1):305-326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=70d804fe7d04b8b69ca0666e2bd9abb9
      [102] Zhang, X.H., Zhai, M.G., 2010.Magmatism and Its Metallogenetic Effects during the Paleozoic Continental Crustal Construction in Northern North China:An Overview.Acta Petrologica Sinica, 26(5):1329-1341 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201005001.htm
      [103] Zhao, Z.H., Wang, Q., Xiong, X.L., 2004.Complex Mantle-Crust Interaction in Subduction Zone.Bulletin of Mineralogy, Petrology and Geochemistry, 23(4):277-284(in Chinese with English abstract).
      [104] Zheng, Y.F., 2012.Metamorphic Chemical Geodynamics in Continental Subduction Zones.Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
      [105] Zheng, Y.F., Chen, R.X., Xu, Z., et al., 2016.The Transport of Water in Subduction Zones.Science China Earth Sciences, 59(4):651-682. https://doi.org/10.1007/s11430-015-5258-4
      [106] Zheng, Y.F., Chen, Y.X., Dai, L.Q., et al., 2015.Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens.Science China Earth Sciences, 58(7):1045-1069. https://doi.org/10.1007/s11430-015-5097-3
      [107] Zheng, Y.F., Zhao, Z.F., Chen, Y.X., 2013.Continental Subduction Channel Processes:Plate Interface Interaction during Continental Collision.Chinese Science Bulletin, 58(35):4371-4377. https://doi.org/10.1007/s11434-013-6066-x
      [108] Zheng, Y.F., Wu, F.Y., 2009.Growth and Reworking of Cratonic Lithosphere.Chinese Science Bulletin, 54(19):3347-3353. https://doi.org/10.1007/s11434-009-0458-y
      [109] Zhu, D.C., Wang, Q., Zhao, Z.D., et al., 2018.Magmatic Origin of Continental Arcs and Continental Crust Formation.Earth Science Frontiers, 25(6):67-77(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201806007
      [110] Zirakparvar, N.A., Baldwin, S.L., Vervoort, J.D., 2013.The Origin and Geochemical Evolution of the Woodlark Rift of Papua New Guinea.Gondwana Research, 23(3):931-943. https://doi.org/10.1016/j.gr.2012.06.013
      [111] 蔡鹏捷, 许荣科, 郑有业, 等, 2018.柴北缘从大洋俯冲到陆陆碰撞:来自开屏沟造山带M型橄榄岩的证据.地球科学, 43(8):2875-2892. http://earth-science.net/WebPage/Article.aspx?id=3918
      [112] 范蔚茗, 彭头平, 王岳军, 2009.滇西古特提斯俯冲-碰撞过程的岩浆作用记录.地学前缘, 16(6):291-302. doi: 10.3321/j.issn:1005-2321.2009.06.031
      [113] 郝杰, 王二七, 刘小汉, 等, 2006.阿尔金山脉中金雁山早古生代碰撞造山带:弧岩浆岩的确定与岩体锆石U-Pb和蛇绿混杂岩40Ar/39Ar年代学研究的证据.岩石学报, 22(11):2743-2752. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200611012
      [114] 洪大卫, 王式洸, 谢锡林, 等, 2000.兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长.地学前缘, 7(2):441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012
      [115] 李怀明, 翟世奎, 陶春辉, 等, 2009.板块俯冲带岩浆作用过程的研究.海洋科学进展, 27(1):98-105. doi: 10.3969/j.issn.1671-6647.2009.01.013
      [116] 凌文黎, 程建萍, 王歆华, 等, 2002.武当地区新元古代岩浆岩地球化学特征及其对南秦岭晋宁期区域构造性质的指示.岩石学报, 18(1):25-36. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200201004
      [117] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
      [118] 邵济安, 田伟, 唐克东, 等, 2015.内蒙古晚石炭世高镁玄武岩的成因和构造背景.地学前缘, 22(5):171-181. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505014
      [119] 宋述光, 牛耀龄, 张立飞, 等, 2009.大陆造山运动:从大洋俯冲到大陆俯冲、碰撞、折返的时限:以北祁连山、柴北缘为例.岩石学报, 25(9):2067-2077. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909003
      [120] 谭东波, 李东永, 肖益林, 2018."孪生元素"铌-钽的地球化学特性和研究进展.地球科学, 43(1):317-332. http://earth-science.net/WebPage/Article.aspx?id=3711
      [121] 肖庆辉, 邓晋福, 邱瑞照, 等, 2009.花岗岩类与大陆地壳生长初探:以中国典型造山带花岗岩类岩石的形成为例.中国地质, 36(3):594-622. doi: 10.3969/j.issn.1000-3657.2009.03.008
      [122] 张继, 李海平, 陈青, 等, 2015.俯冲带研究进展与问题.地质调查与研究, 38(1):18-27, 34. doi: 10.3969/j.issn.1672-4135.2015.01.003
      [123] 张晓晖, 翟明国, 2010.华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应.岩石学报, 26(5):1329-1341. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201005001
      [124] 赵振华, 王强, 熊小林, 2004.俯冲带复杂的壳幔相互作用.矿物岩石地球化学通报, 23(4):277-284. doi: 10.3969/j.issn.1007-2802.2004.04.001
      [125] 朱弟成, 王青, 赵志丹, 等, 2018.大陆边缘弧岩浆成因与大陆地壳形成.地学前缘, 25(6):67-77. http://d.old.wanfangdata.com.cn/Periodical/dxqy201806007
    • 加载中
    图(7)
    计量
    • 文章访问数:  6047
    • HTML全文浏览量:  1992
    • PDF下载量:  262
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-02-21
    • 刊出日期:  2019-04-15

    目录

      /

      返回文章
      返回