Differentiation and Coupling Model of Source-to-Sink Systems with Transitional Facies in Pingbei Slope of Xihu Sag
-
摘要: 为了推进西湖凹陷平北斜坡带岩性油气藏领域的勘探进程,厘清岩性体发育模式和分布规律,基于最新钻井、薄片、重矿物及覆盖全区的高精度三维地震资料,精细刻画西湖凹陷平北斜坡带源-汇系统单元,探讨构建了不同物源供给、地形格局和潮汐改造背景下源-汇系统耦合模式及其差异性.通过重矿物组分与岩屑分析,明确物源区物源组分、方向及供给强度;利用测井与岩心、地震相和多属性聚类分析明确潮汐改造作用在沉积物分布和演化上的响应.结合古地貌形态和断裂活动性,定量-半定量分析源-汇系统各单元要素间相关性,明确物源供给、地形格局和潮汐作用控制下源-汇系统耦合模式及其差异性,分别构建低物源供给-单断-潮汐改造型耦合模式、中等物源供给-古隆起与反向断阶-河控-潮控型耦合模式和高物源供给-同向断阶-河控-潮控型耦合模式.据此指出各源-汇系统内沉积体展布成因及规律,有效指导海陆过渡相背景下有利储集目标预测,为类似地质背景下油气勘探提供思路与技术方法支持.Abstract: In order to promote the exploration process of lithologic hydrocarbon reservoir in Pingbei slope of Xihu Sag and to clarify the development mode and distribution law of lithologic sand body, a comprehensive study is presented in this paper, based on the analyses of the latest drilling, thin sections, heavy minerals and high-resolution 3D seismic data of Pingbei slope in the Xihu Sag, East China Sea.The analyses of heavy mineral composition and debris show the components, orientation, and supply strength of the provenance.In addition, the analyses of logging and cores, the seismic facies and multi-attribute reveal the tidal transformation mechanism in the distribution and evolution of sediments.On the basis of quantitative and semi-quantitative analysis of various elements of Source-to-Sink (S2S) systems correlation combined with the paleogeomorphology and faults, the coupling differences of S2S systems under the control of provenance supply and tidal action are clarified.The results show that low provenance supply-single stage fault-tidal control, intermediate provenance supply-paleo-uplift and reverse step faults-river-tidal control, and high provenance supply-consequent step faults-river-tidal control coupling models are established.On this basis, the sedimentary distribution cause and law of each S2S system are systematically discussed.The establishment of different coupling models of S2S systems can provide the key directions of petroleum exploration.In addition, this study also provides reference methods and ideas for the research of S2S systems under different geological backgrounds.
-
图 4 西湖凹陷平北斜坡带平湖组不同源-汇单元重点井岩屑组成及差异
a.A-1井,3 509 m,E2PSQⅡ,正交偏光,变质岩岩屑;b.A-1井,3 325 m,E2PSQⅠ,正交偏光,变质岩岩屑;c.A-3井,3 239 m,E2PSQⅡ,正交偏光,火成岩岩屑;d.B-1井,3 810 m,E2PSQⅢ,单偏光,火成岩岩屑;e.B-1井,3 815 m,E2PSQⅢ,单偏光,凝灰岩岩屑;f.B-3井,4 203 m,E2PSQⅠ,正交偏光,火成岩岩屑;g.C-3井,4 202.77 m,E2PSQⅡ,正交偏光,变质岩岩屑;h.C-3井,4 202.77 m,E2PSQⅡ,正交偏光,变质岩岩屑;i.C-5井,4 471.8 m,E2PSQⅢ,正交偏光,变质岩岩屑
Fig. 4. Differences of cutting compositions under different S2S systems in the Pinghu Formation, Pingbei slope of the Xihu Sag
图 5 西湖凹陷平北斜坡带平湖组不同源-汇单元物源搬运通道地震剖面
剖面位置见图 3
Fig. 5. Sediment transport pathways of various S2S systems in the Pinghu Formation, Pingbei slope of the Xihu Sag
图 6 西湖凹陷平北斜坡带E2PSQⅠ-E2PSQⅢ层序不同源-汇单元重点井测井相与岩心相分析
A.灰色泥质粉砂岩,双粘土层构造;B.黑色层状泥岩夹透镜状泥质粉砂岩;C.上部白色块状细沙岩,下部灰色泥质粉砂岩,冲刷面构造;D.白色块状细粒粉砂岩,平行层理;E.白色块状细粒粉砂岩,平行层理与斜层理交错;F.灰白色泥质粉砂岩夹双粘土层,脉状层理;G.灰白色泥质粉砂岩夹双粘土层构造,泥砾;H.灰白色泥质粉砂岩夹双粘土层条带;I.白色层状中砂岩,上部斜层理,下部平行层理;J.灰白色块状泥质粉砂岩,扰动构造;K.灰白色中砂岩夹单泥质条带;L.白色砂岩夹单泥质条带;M.白色砂岩夹泥岩薄层
Fig. 6. Logging and core facies analysis of various S2S systems in the E2PSQⅠ-E2PSQⅢ, Pingbei slope of the Xihu Sag
图 7 西湖凹陷平北斜坡带E2PSQⅠ-E2PSQⅢ层序不同源-汇单元典型地震相分析
剖面位置见图 3
Fig. 7. Seismic reflection and seismic facies characteristics of various S2S systems in the E2PSQⅠ-E2PSQⅢ, Pingbei Slope of the Xihu Sag
表 1 西湖凹陷平北斜坡带平湖组物源搬运通道参数统计
Table 1. The parametric statistics of sediment transport pathways in the Pinghu Formation, Pingbei slope of the Xihu Sag
源-汇系统 A B C 主物源通道 V1 V2 V3 V4 V5 V6 主物源方位角(°) 130 65 122 152 135 102 通道编号 V1-1 V1-2 V1-3 V2-1 V2-2 V2-3 V3 V4-1 V4-2 V4-3 V4-4 V5-1 V5-2 V6 通道宽度(m) 1 603 2 704 3 967 568 495 327 865 435 224 354 283 895 2 427 1 254 通道深度(m) 110 131 173 62 64 65 85 37 52 77 46 95 214 127 宽深比 14.57 20.64 22.93 9.16 7.73 5.03 10.17 11.75 4.30 4.59 6.15 9.42 11.34 9.87 截面积(km2) 0.176 0.354 0.686 0.035 0.032 0.021 0.073 0.016 0.011 0.027 0.013 0.085 0.519 0.159 表 2 西湖凹陷平北斜坡带E2PSQⅠ-E2PSQⅢ层序钻井岩性特征及多属性吻合率统计
Table 2. Analysis of drilling lithology characteristics and multi-attribute coincidence rate in the E2PSQⅠ-E2PSQⅢ, Pingbei slope of the Xihu Sag
层序 源汇系统 井名 岩性组合特征 含砂率 多属性 吻合率 E2PSQⅢ A A-1 厚层砂岩夹泥岩 55.8% 黄 85.7% A-2 49.4% 黄 A-3 54.8% 黄 B B-1 泥岩夹中-厚层砂岩 39.7% 黄 B-2 泥岩夹厚层砂岩 35.5% 黄 B-3 32.9% 黄 B-4 厚层砂岩与厚层泥岩互层 49.1% 黄-蓝 B-5 泥岩夹厚层砂岩 55.7% 黄-蓝 C C-1 厚层砂岩与厚层泥岩互层 45.5% 黄 C-2 厚层砂岩夹泥岩 66.3% 黄 C-3 上厚层砂岩,下泥岩 66.9% 黄 C-4 51.3% 黄-蓝 C-5 上厚层砂岩,下砂泥互层 62.6% 黄 E2PSQⅡ A A-1 厚层泥岩夹中-厚砂岩 13.6% 黄-蓝 85.7% A-2 20.7% 黄-蓝 A-3 25.0% 黄-蓝 B B-1 厚层泥岩夹中-厚砂岩 25.7% 黄 B-2 25.2% 黄-蓝 B-3 34.7% 黄-蓝 B-4 厚层泥岩夹砂岩 24.4% 黄 B-5 砂泥互层 34.3% 黄 C C-1 厚层泥岩夹厚层砂岩 22.3% 黄-蓝 C-2 砂泥互层 30.8% 黄 C-3 厚层泥岩夹厚层砂岩 49.3% 黄 C-4 34.1% 黄 C-5 砂泥互层 43.4% 黄-蓝 E2PSQⅠ B B-1 下厚层砂砾,上厚层泥 35.8% 红 95.3% B-2 厚层泥岩夹砂岩 24.8% 红-黄 B-3 28.2% 红-黄 B-4 下厚层砂岩,上厚层泥 49.6% 黄 B-5 厚层泥岩夹砂岩 20.2% 蓝 C C-1 下厚层砂岩,上厚层泥 19.4% 红-黄 C-2 泥岩夹厚层砂岩 26.2% 红-黄 C-3 25.7% 黄 表 3 西湖凹陷平北斜坡带E2PSQⅠ-E2PSQⅢ层序不同源-汇系统重点参数统计
Table 3. Parameter statistics of various S2S systems in the E2PSQⅠ-E2PSQⅢ, Pingbei Slope of the Xihu Sag
源-汇
系统源 汇 母岩类型 物源通道编号 物源通道方向 水系编号 水系类型 宽深比 截面积 构造样式 地貌形态 延伸距离 沉积体面积 A 变质岩、
花岗岩V1 130 V1-1 沟谷 14.57 0.180 E2PSQⅢ 缓坡断裂 斜坡地貌 16.0 142 V1-2 20.64 0.354 E2PSQⅡ 断裂陡坡 平缓地貌 9.5 45 V1-3 22.93 0.686 E2PSQⅠ 断裂陡坡 平缓地貌 4.0 37 B 花岗岩 V2 65 V2-1 沟谷 9.16 0.035 E2PSQⅢ 斜坡地貌 29.5 270 V2-2 7.73 0.032 V2-3 5.03 0.021 V3 122 V3 断槽 10.17 0.073 E2PSQⅡ 反向断阶 古隆起 26.6 217 V4 152 V4-1 沟谷 11.75 0.016 V4-2 4.30 0.011 E2PSQⅠ 反向断阶 古隆起 28.9 195 V4-3 4.59 0.027 V4-4 6.15 0.013 C 变质岩 V5 135 V5-1 沟谷 9.42 0.085 E2PSQⅢ 正向多级断阶 斜坡地貌 31.2 348 V5-2 11.34 0.519 E2PSQⅡ 正向多级断阶 斜坡地貌 27.8 268 V6 102 V6 9.87 0.159 E2PSQⅠ 正向多级断阶 斜坡地貌 21.4 240 注:截面积和沉积体面积单位为km2;延伸距离单位为km. -
[1] Allen, P., 2005.Striking a Chord.Nature, 434(7036):961. https://doi.org/10.1038/434961a [2] Allen, P.A., 2008.From Landscapes into Geological History.Nature, 451(7176):274-276. https://doi.org/10.1038/nature06586 [3] Allen, P.A., Hovius, N., 1998.Sediment Supply from Landslide-Dominated Catchments:Implications for Basin-Margin Fans.Basin Research, 10(1):19-35. https://doi.org/10.1046/j.1365-2117.1998.00060.x [4] Cai, H., Zhang, J.P., 2013.Characteristics of Faults on the Pinghu Slope of Xihu Sag, the East China Sea Shelf Basin and Their Sealing Capacity.Marine Geology Frontiers, 29(4):20-26 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/hydzdt201304004 [5] Cai, H., Zhang, J.P., Tang, X.J., 2014.Characteristics of the Fault Systems and Their Control on Hydrocarbon Accumulation in the Xihu Sag, East China Sea Shelf Basin.Nature Gas Industry, 34(10):18-26 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201410004.htm [6] Duan, D.P., Cai, H., Ruan, J.X., et al., 2015.Study about the Sedimentary Microfacies of PH Fm.in X Oilfield-Taking FHT Area as an Example.Offshore Oil, 35(1):42-46 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYSY201501011.htm [7] Gao, W.Z., Tian, C., Zhao, H., et al., 2015.Discussion on the Hydrocarbon Exploration Potential of Non-Structural Reservoir of the Pinghu Slope in Xihu Sag.Offshore Oil, 35(1):22-26 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hysy201501004 [8] Hu, W.S., Cai, F., Hu, F., et al., 2010.The Characteristics of Tectonic Transform Evolutional Rules of Chasmic Cycles in Pinghu Slope of Xihu Depression of East China Sea.Journal of Oil and Gas Technology, 32(3):7-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX201003004.htm [9] Li, S.L., Xu, L., Yu, X.H., et al., 2018.Marine Transgressions and Characteristics of Tide-Dominated Sedimentary Systems in the Oligocene, Xihu Sag, East China Sea Shelf Basin.Journal of Palaeogeography, 20(6):1023-1032 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gdlxb201806009 [10] Liu, Q.H., Zhu, H.T., Shu, Y., et al., 2015.Provenance Systems and Their Control on the Beach-Bar of Paleogene Enping Formation, Enping Sag, Pearl River Mouth Basin.Acta Petrolei Sinica, 36(3):286-299 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201503005.htm [11] Liu, Q.H., Zhu, X.M., Li, S.L., et al., 2016.Pre-Palaeogene Bedrock Distribution and Source-to-Sink System Analysis in the Shaleitian Uplift.Earth Science, 41(11):1935-1949 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.134 [12] Liu, Q.H., Zhu, X.M., Li, S.L., et al., 2017.Source-to-Sink System of the Steep Slope Fault in the Western Shaleitian Uplift.Earth Science, 42(11):1883-1896 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.119 [13] Lu, J.Z., Ye, J.R., Huang, S.B., et al., 2009.Characteristics and Hydrocarbon Generation-Expulsion Histories of Source Rocks of Pingbei Area in Xihu Depression.Offshore Oil, 29(4):38-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hysy200904006 [14] Qin, L.Z., Liu, J.S., Li, S., et al., 2017.Characteristics of Zircon in the Huagang Formation of the Central Inversion Zone of Xihu Sag and Its Provenance Indication.Petroleum Geology & Experiment, 39(4):498-504, 526 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201704010.htm [15] Ren, J.Y., Hu, X.Y., Zhang, J.X., 1998.The Late Mesozoic Tectonic Activation in the Eastern Chinese Continent and Its Evolution Progress.Geotectonica et Metallogenia, 22(2):89-96 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK199802000.htm [16] Sømme, T.O., Helland-Hansen, W., Martinsen, O.J., et al., 2009.Relationships between Morphological and Sedimentological Parameters in Source-to-Sink Systems:A Basis for Predicting Semi-Quantitative Characteristics in Subsurface Systems.Basin Research, 21(4):361-387. https://doi.org/10.1111/j.1365-2117.2009.00397.x [17] Sømme, T.O., Jackson, C.A.L., 2013.Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway:Part 2-Sediment Dispersal and Forcing Mechanisms.Basin Research, 25(5):512-531. https://doi.org/10.1111/bre.12014 [18] Sømme, T.O., Jackson, C.A.L., Vaksdal, M., 2013.Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway:Part 1-Depositional Setting and Fan Evolution.Basin Research, 25(5):489-511. https://doi.org/10.1111/bre.12013 [19] Wei, X.S., Zhu, H.T., Xu, C.G., et al., 2017.Pinchout Point Prediction of Thin Inter-Beds Based on Forward Modeling Method:An Example from BZ12 Block of Bozhong Sag, Bohai Bay Basin.Geological Science and Technology Information, 36(2):265-271 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201702035.htm [20] Wu, F.D., Lu, Y.C., Ruan, X.Y., et al., 1996.Application of Heavy Minerals Cluster Analysis to Study of Clastic Sources and Stratigraphic Correlation.Geoscience, 10(3):397-403 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ603.014.htm [21] Wu, J.P., Zhang, L., Wan, L.F., et al., 2017.Provenance Analysis of Pinghu Formation in Xihu Sag.China Petroleum Exploration, 22(2):50-57 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTSY201702006.htm [22] Yang, C.H., Gao, Z.H., Jiang, Y.M., et al., 2013.Reunderstanding of Clastic Rock Sedimentary Facies of Eocene Pinghu Formation in Pinghu Slope of Xihu Sag.Journal of Oil and Gas Technology, 35(9):11-14 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e2078f9cacbe00d985d48541f19744c4&encoded=0&v=paper_preview&mkt=zh-cn [23] Yu, X.H., Li, S.L., Cao, B., et al., 2017.Oligocene Sequence Framework and Depositional Response in the Xihu Depression, East China Sea Shelf Basin.Acta Sedimentologica Sinica, 35(2):299-314 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201702009 [24] Yuan, W., Xu, X.H., Zhou, X.J., 2014.The New Geochronology Results of the Pinghu Formation in Xihu Depression:Evidence from the SHRIMP Zircon U-Pb Ages of the Volcanic Rocks.Geological Journal of China Universities, 20(3):407-414 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=66b4a04eb06bad50f6258f5be578906b&encoded=0&v=paper_preview&mkt=zh-cn [25] Zeng, H.L., Zhao, W.Z., Xu, Z.H., et al., 2018.Carbonate Seismic Sedimentology:A Case Study of Cambrian Longwangmiao Formation, Gaoshiti-Moxi Area, Sichuan Basin, China.Petroleum Exploration and Development, 45(5):775-784 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/syktykf201805003 [26] Zhang, J.P., Xu, F., Zhong, T., et al., 2012.Sequence Stratigraphy Models and Sedimentary Evolution of Pinghu and Huagang Formations in Xihu Trough.Marine Geology & Quaternary Geology, 32(1):35-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201201009.htm [27] Zhang, J.P., Yu, Y.F., Zhang, T., et al., 2013.A Discussion on the Exploration Potential of Deep Basin Gas in Xihu Sag, East China Sea.China Offshore Oil and Gas, 25(2):24-29, 35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201302003.htm [28] Zhang, S.L., Zhang, J.P., Tang, X.J., et al., 2014.Geometry Characteristics of the Fault System in Xihu Sag in East China Sea and Its Formation Mechanism.Marine Geology & Quaternary Geology, 34(1):87-94 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201401014.htm [29] Zhou, X.H., Yu, Y.X., Tang, L.J., et al., 2010.Cenozoic Offshore Basin Architecture and Division of Structural Elements in Bohai Sea.China Offshore Oil and Gas, 22(5):285-289 (in Chinese with English abstract). [30] Zhu, H.T., Liu, K.Y., Du, Y.S., et al., 2009.Quantitative Simulation and New Consideration on the Transformation System of the Accommodation Space.Earth Science, 34(5):819-828 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx200905014 [31] Zhu, H.T., Li, M., Liu, K.Y., et al., 2010.Sequence Stratigraphic Architectures of Intra-Cratonic Basin and Its Controlling Factors.Earth Science, 35(6):1035-1040 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2010.117 [32] Zhu, H.T., Li, S., Liu, H.R., et al., 2016.The Type and Implication of Migrated Sequence Stratigraphic Architecture in Continental Lacustrine Rift Basin:An Example from the Paleogene Wenchang Formation of Zhu I Depression, Pearl River Mouth Basin.Earth Science, 41(3):361-372 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.028 [33] Zhu, H.T., Liu, K.Y., Zhu, X.M., et al., 2018.Varieties of Sequence Stratigraphic Configurations in Continential Basins.Earth Science, 43(3):770-785 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.906 [34] Zhu, H.T., Liu.Y.M., Liu, K.Y., et al., 2013.Source-Ward Retro-Gradational Stacking Patterns of Sequence Stratigraphic Architectures of Intra-Cratonic Basin:One Example from Shanxi Formation of Ordos Basin, China.Earth Science, 38(4):776-782 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2013.075 [35] Zhu, H.T., Xu, C.G., Zhu, X.M., et al., 2017.Advances of the Source-to-Sink Units and Coupling Model Research in Continental Basin.Earth Science, 42(11):1851-1870 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.117 [36] 蔡华, 张建培, 2013.东海西湖凹陷平湖斜坡带断层特征及其封闭性.海洋地质前沿, 29(4):20-26. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201304004 [37] 蔡华, 张建培, 唐贤君, 2014.西湖凹陷断裂系统特征及其控藏机制.天然气工业, 34(10):18-26. doi: 10.3787/j.issn.1000-0976.2014.10.003 [38] 段冬平, 蔡华, 阮建新, 等, 2015.X油气田PH组沉积微相精细研究——以FHT地区为例.海洋石油, 35(1):42-46. doi: 10.3969/j.issn.1008-2336.2015.01.042 [39] 高伟中, 田超, 赵洪, 等, 2015.西湖凹陷平湖斜坡带非构造油气藏勘探潜力探讨.海洋石油, 35(1):22-26. doi: 10.3969/j.issn.1008-2336.2015.01.022 [40] 胡望水, 蔡峰, 胡芳, 等, 2010.东海西湖凹陷平湖斜坡带裂陷期变换构造特征及其演化规律.石油天然气学报, 32(3):7-12. doi: 10.3969/j.issn.1000-9752.2010.03.002 [41] 李顺利, 许磊, 于兴河, 等, 2018.东海陆架盆地西湖凹陷渐新世海侵作用与潮控体系沉积特征.古地理学报, 20(6):1023-1032. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201806009 [42] 刘强虎, 朱红涛, 舒誉, 等, 2015.珠江口盆地恩平凹陷古近系恩平组物源体系及其对滩坝的控制.石油学报, 36(3):286-299. http://d.old.wanfangdata.com.cn/Periodical/syxb201503004 [43] 刘强虎, 朱筱敏, 李顺利, 等, 2016.沙垒田凸起前古近系基岩分布及源-汇过程.地球科学, 41(11):1935-1949. https://doi.org/10.3799/dqkx.2016.134 [44] 刘强虎, 朱筱敏, 李顺利, 等, 2017.沙垒田凸起西部断裂陡坡型源-汇系统.地球科学, 42(11):1883-1896. https://doi.org/10.3799/dqkx.2017.119 [45] 陆俊泽, 叶加仁, 黄胜兵, 等, 2009.西湖凹陷平北地区烃源岩特征及生排烃史.海洋石油, 29(4):38-43. doi: 10.3969/j.issn.1008-2336.2009.04.038 [46] 秦兰芝, 刘金水, 李帅, 等, 2017.东海西湖凹陷中央反转带花港组锆石特征及物源指示意义.石油实验地质, 39(4):498-504, 526. http://d.old.wanfangdata.com.cn/Periodical/sysydz201704010 [47] 任建业, 胡祥云, 张俊霞, 1998.中国大陆东部晚中生代构造活动及其演化过程.大地构造与成矿学, 22(2):89-96. http://cdmd.cnki.com.cn/Article/CDMD-82501-1013233489.htm [48] 魏小松, 朱红涛, 徐长贵, 等, 2017.基于正演模拟技术的薄互层岩性体尖灭点解释外推:以渤中凹陷12构造区为例.地质科技情报, 36(2):265-271. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702035.htm [49] 武法东, 陆永潮, 阮小燕, 等, 1996.重矿物聚类分析在物源分析及地层对比中的应用.现代地质, 10(3):397-403. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ603.014.htm [50] 吴嘉鹏, 张兰, 万丽芬, 等, 2017.西湖凹陷平湖组物源分析.中国石油勘探, 22(2):50-57. doi: 10.3969/j.issn.1672-7703.2017.02.006 [51] 杨彩虹, 高兆红, 蒋一鸣, 等, 2013.西湖凹陷平湖斜坡带始新统平湖组碎屑沉积体系再认识.石油天然气学报, 35(9):11-14. doi: 10.3969/j.issn.1000-9752.2013.09.003 [52] 于兴河, 李顺利, 曹冰, 等, 2017.西湖凹陷渐新世层序地层格架与沉积充填响应.沉积学报, 35(2):299-314. http://d.old.wanfangdata.com.cn/Periodical/cjxb201702009 [53] 袁伟, 徐旭辉, 周小进, 2014.西湖凹陷平湖组时代新认识:来自火山岩SHRIMP锆石U-Pb年龄的证据.高校地质学报, 20(3):407-414. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201403006.htm [54] 曾洪流, 赵文智, 徐兆辉, 等, 2018.地震沉积学在碳酸盐岩中的应用——以四川盆地高石梯-磨溪地区寒武系龙王庙组为例.石油勘探与开发, 45(5):775-784. http://www.cnki.com.cn/Article/CJFDTotal-SKYK201805004.htm [55] 张建培, 徐发, 钟韬, 等, 2012.东海陆架盆地西湖凹陷平湖组-花港组层序地层模式及沉积演化.海洋地质与第四纪地质, 32(1):35-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201201006 [56] 张建培, 余逸凡, 张田, 等, 2013.东海西湖凹陷深盆气勘探前景探讨.中国海上油气, 25(2):24-29, 35. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201302005 [57] 张绍亮, 张建培, 唐贤君, 等, 2014.东海西湖凹陷断裂系统几何学特征及其成因机制.海洋地质与第四纪地质, 34(1):87-94. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201401014.htm [58] 周心怀, 余一欣, 汤良杰, 等, 2010.渤海海域新生代盆地结构与构造单元划分.中国海上油气, 22(5):285-289. doi: 10.3969/j.issn.1673-1506.2010.05.001 [59] 朱红涛, Liu, K.Y., 杜远生, 等, 2009.可容纳空间转换系统的定量模拟.地球科学, 34(5):819-828. doi: 10.3321/j.issn:1000-2383.2009.05.014 [60] 朱红涛, 李敏, 刘可禹, 等, 2010.陆内克拉通盆地层序地层构型及其控制因素.地球科学, 35(6):1035-1040. https://doi.org/10.3799/dqkx.2010.117 [61] 朱红涛, 李森, 刘浩冉, 等, 2016.陆相断陷湖盆迁移型层序构型及意义:以珠Ⅰ坳陷古近系文昌组为例.地球科学, 41(3):361-372. https://doi.org/10.3799/dqkx.2016.028 [62] 朱红涛, 刘可禹, 朱筱敏, 等, 2018.陆相盆地层序构型多元化体系.地球科学, 43(3):770-785. https://doi.org/10.3799/dqkx.2018.906 [63] 朱红涛, 刘依梦, 刘可禹, 等, 2013.陆内克拉通盆地"溯源退积"层序构型构建:以鄂尔多斯盆地山西组为例.地球科学, 38(4):776-782. https://doi.org/10.3799/dqkx.2013.075 [64] 朱红涛, 徐长贵, 朱筱敏, 等, 2017.陆相盆地源-汇系统要素耦合研究进展.地球科学, 42(11):1851-1870. https://doi.org/10.3799/dqkx.2017.117