• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    冈底斯中部松多岩组形成时代及物源:来自碎屑锆石U-Pb年代学证据

    解超明 宋宇航 王明 范建军 张红雨 郝宇杰

    解超明, 宋宇航, 王明, 范建军, 张红雨, 郝宇杰, 2019. 冈底斯中部松多岩组形成时代及物源:来自碎屑锆石U-Pb年代学证据. 地球科学, 44(7): 2224-2233. doi: 10.3799/dqkx.2019.024
    引用本文: 解超明, 宋宇航, 王明, 范建军, 张红雨, 郝宇杰, 2019. 冈底斯中部松多岩组形成时代及物源:来自碎屑锆石U-Pb年代学证据. 地球科学, 44(7): 2224-2233. doi: 10.3799/dqkx.2019.024
    Xie Chaoming, Song Yuhang, Wang Ming, Fan Jianjun, Zhang Hongyu, Hao Yujie, 2019. Age and Provenance of Sumdo Formation in Central Gangdise, Tibetan Plateau: Detrital Zircon U-Pb Geochronological Evidence. Earth Science, 44(7): 2224-2233. doi: 10.3799/dqkx.2019.024
    Citation: Xie Chaoming, Song Yuhang, Wang Ming, Fan Jianjun, Zhang Hongyu, Hao Yujie, 2019. Age and Provenance of Sumdo Formation in Central Gangdise, Tibetan Plateau: Detrital Zircon U-Pb Geochronological Evidence. Earth Science, 44(7): 2224-2233. doi: 10.3799/dqkx.2019.024

    冈底斯中部松多岩组形成时代及物源:来自碎屑锆石U-Pb年代学证据

    doi: 10.3799/dqkx.2019.024
    基金项目: 

    中国地质调查局项目 DD20160015

    自然资源部东北亚矿产资源评价重点实验室自主课题基金资助 DBY-ZZ-18-06

    国家自然科学基金项目 41872231

    中国地质调查局项目 DD20160026

    国家自然科学基金项目 41602230

    详细信息
      作者简介:

      解超明(1983-), 男, 副教授, 博士, 从事区域大地构造研究及相关教学工作, 主要从事青藏高原区域地质及大地构造研究

    • 中图分类号: P534.45

    Age and Provenance of Sumdo Formation in Central Gangdise, Tibetan Plateau: Detrital Zircon U-Pb Geochronological Evidence

    • 摘要: 冈底斯中部广泛发育的松多岩组因缺少化石依据,其沉积时代一直存在争议,严重制约了对冈底斯古生代构造演化的认识.在详细野外地质调查基础上,利用LA-ICP-MS锆石U-Pb同位素定年对松多岩组中变质砂岩进行了锆石U-Pb同位素测定,获得变质砂岩中最小碎屑锆石年龄值为316 Ma,时代为晚石炭世,代表了松多岩组形成时代的下限.通过碎屑锆石年龄示踪和区域对比研究,松多岩组物源很可能来自拉萨地块内部(南拉萨地块和北拉萨地块),可能是松多古特提斯洋初始洋盆的沉积记录.研究区松多岩组沉积时代下限的厘定,进一步完善了该区晚古生代地层系统,对冈瓦纳大陆北缘晚石炭世-早二叠世岩相古地理研究具有重要意义.

       

    • 图  1  冈底斯中部大地构造简图(a)及松多地区地质简图(b)

      Fig.  1.  Tectonic framework of the central Gangdise (a) and geological map of the Sumdo area, showing the distribution of the Sumdo Formation (b)

      图  2  松多地区松多岩组野外露头及显微镜下照片

      a.变质砂岩与白云母石英片岩的片理互层现象;b.变质砂岩中的沟槽模构造野外露头照片;c.变质砂岩与变质粉砂岩互层产出,并发育平行层理和交错层理构造;d.白云母石英片岩的野外露头照片;e.变质砂岩正交偏光下的显微照片;f.白云母石英片岩的正交偏光下的显微照片

      Fig.  2.  Field photographs and micrographs of Sumdo Formation in the Sumdo areas

      图  3  冈底斯中部松多岩组中变质砂岩碎屑锆石CL图像、分析点位

      Fig.  3.  Cathodoluminescence (CL) images of representative zircon grains of metamorphosed sandstones from Sumdo Formation in the central Gangdise

      图  4  冈底斯中部松多岩组变质砂岩碎屑锆石U-Pb谐和图和年龄直方图

      Fig.  4.  Concordia plots and age histogram of detrital zircon from metamorphosed sandstones in the central Gangdise

      图  5  羌北、羌南、北拉萨、南拉萨、特提斯喜马拉雅及西澳大利亚地层中碎屑锆石年龄谱系对比

      a.南拉萨碎屑锆石数据,据Zhang et al.(2008)Dong et al.(2010)Guo et al.(2012)Guo et al.(2016);b.羌北-昌都板块中碎屑锆石数据,据Gehrels et al.(2011)Jiang et al.(2015);c.羌南-保山板块中碎屑锆石数据,据Gehrels et al.(2011)Fan et al.(2015);d.北拉萨地块中碎屑锆石数据,据Gehrels et al.(2011)Zhu et al.(2011)Li et al.(2014);e.特提斯喜马拉雅地层中的碎屑锆石数据,据Aikman et al.(2008)Gehrels et al.(2011);f.西澳大利亚中碎屑锆石数据,据Cawood and Nemchin(2000)Veevers et al.(2005).

      Fig.  5.  Distribution of zircon ages of detrital zircons from sedimentary compared to the distributions of the North Qiangtang, South Qiangtang, North Lhasa, South Lhasa, Tethyan Himalayan and western Australia

    • [1] Aikman, A. B., Harrison, T. M., Lin, D., 2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1-2):14-23. https://doi.org/10.1016/j.epsl.2008.06.038
      [2] Cawood, P. A., Johnson, M. R. W., Nemchin, A. A., 2007. Early Palaeozoic Orogenesis along the Indian Margin of Gondwana:Tectonic Response to Gondwana Assembly. Earth and Planetary Science Letters, 255(1-2):70-84. https://doi.org/10.1016/j.epsl.2006.12.006
      [3] Cawood, P. A., Nemchin, A. A., 2000. Provenance Record of a Rift Basin:U/Pb Ages of Detrital Zircons from the Perth Basin, Western Australia. Sedimentary Geology, 134(3-4):209-234. https://doi.org/10.1016/s0037-0738(00)00044-0
      [4] Chen, S.Y., 2010. The Development of Sumdo Suture in the Lhasa Block, Tibet (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      [5] Chen, S. Y., Yang, J. S., Li, Y., et al., 2009. Ultramafic Blocks in Sumdo Region, Lhasa Block, Eastern Tibet Plateau:An Ophiolite Unit. Journal of Earth Science, 20(2):332-347. https://doi.org/10.1007/s12583-009-0028-x
      [6] Chen, S.Y., Yang, J.S., Luo, L.Q., et al., 2007. MORB-Type Eclogites in the Lhasa Block, Tibet, China:Petrochemical Evidence. Geological Bulletin of China, 26(10):1327-1339 (in Chinese).
      [7] Cheng, H., Liu, Y. M., Vervoort, J. D., et al., 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar Multichronometric Dating on the Bailang Eclogite Constrains the Closure Timing of the Paleo-Tethys Ocean in the Lhasa Terrane, Tibet. Gondwana Research, 28(4):1482-1499. https://doi.org/10.1016/j.gr.2014.09.017
      [8] Dong, X., Zhang, Z. M., Geng, G. S., et al., 2010. Devonian Magmatism from the Southern Lhasa Terrane, Tibetan Plateau. Acta Petrologica Sinica, 26(7):2226-2232 (in Chinese with English abstract). doi: 10.1159-000264777/
      [9] Fan, J. J., Li, C., Wang, M., et al., 2015. Features, Provenance, and Tectonic Significance of Carboniferous-Permian Glacial Marine Diamictites in the Southern Qiangtang-Baoshan Block, Tibetan Plateau. Gondwana Research, 28(4):1530-1542. https://doi.org/10.1016/j.gr.2014.10.015
      [10] Gehrels, G., Kapp, P., DeCelles, P., et al., 2011. Detrital Zircon Geochronology of Pre-Tertiary Strata in the Tibetan-Himalayan Orogen. Tectonics, 30(5):TC5016. https://doi.org/10.1029/2011tc002868
      [11] Geng, Q. R., Wang, L. Q., Pan, G. T., et al., 2007. Carboniferous Marginal Rifting in Gangdese:Volcanic Rocks and Stratigraphic Constraints, Xizang (Tibet), China. Acta Geologica Sinica, 81(9):1259-1276 (in Chinese with English abstract).
      [12] Geological Survey Institute of Yunnan Province, 2010. Report on 1:250 000 Regional Geological Survey of Nyingchi County, China University of Geosciences Press, Wuhan (in Chinese).
      [13] Guo, L., Zhang, H. F., Harris, N., et al., 2012. Paleogene Crustal Anatexis and Metamorphism in Lhasa Terrane, Eastern Himalayan Syntaxis:Evidence from U-Pb Zircon Ages and Hf Isotopic Compositions of the Nyingchi Complex. Gondwana Research, 21(1):100-111. https://doi.org/10.1016/j.gr.2011.03.002
      [14] Guo, L., Zhang, H. F., Harris, N., et al., 2016. Late Devonian-Early Carboniferous Magmatism in the Lhasa Terrane and Its Tectonic Implications:Evidences from Detrital Zircons in the Nyingchi Complex. Lithos, 245:47-59. https://doi.org/10.1016/j.lithos.2015.06.018
      [15] He, S. P., Li, R. S., Wang, C., et al., 2013. Discovery of the Paleoproterozoic Terrane in Lhasa Block, Qinghai-Tibet Plateau. Earth Science, 38(3):519-528 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2013.052
      [16] Hu, P. Y., Zhai, Q. G., Wang, J., et al., 2018. Ediacaran Magmatism in the North Lhasa Terrane, Tibet and Its Tectonic Implications. Precambrian Research, 307:137-154. https://doi.org/10.1016/j.precamres.2018.01.012
      [17] Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2012. Identification of Early Carboniferous Granitoids from Southern Tibet and Implications for Terrane Assembly Related to the Paleo-Tethyan Evolution. The Journal of Geology, 120(5):531-541. https://doi.org/10.1086/666742
      [18] Jiang, Q. Y., Li, C., Su, L., et al., 2015. Carboniferous Arc Magmatism in the Qiangtang Area, Northern Tibet:Zircon U-Pb Ages, Geochemical and Lu-Hf Isotopic Characteristics, and Tectonic Implications. Journal of Asian Earth Sciences, 100:132-144. https://doi.org/10.1016/j.jseaes.2015.01.012
      [19] Li, G. W., Sandiford, M., Liu, X. H., et al., 2014. Provenance of Late Triassic Sediments in Central Lhasa Terrane, Tibet and Its Implication. Gondwana Research, 25(4):1680-1689. https://doi.org/10.1016/j.gr.2013.06.019
      [20] Li, Z. L., Yang, J. S., Xu, Z. Q., et al., 2009. Geochemistry and Sm-Nd and Rb-Sr Isotopic Composition of Eclogite in the Lhasa Terrane, Tibet, and Its Geological Significance. Lithos, 109(3-4):240-247. https://doi.org/10.1016/j.lithos.2009.01.004
      [21] Lin, Y. H., Zhang, Z. M., Dong, X., et al., 2013. Precambrian Evolution of the Lhasa Terrane, Tibet:Constraint from the Zircon U-Pb Geochronology of the Gneisses. Precambrian Research, 237:64-77. https://doi.org/10.1016/j.precamres.2013.09.006
      [22] Liu, Q., Deng, Y. B., Xiang, S. Y., et al., 2017. Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance. Earth Science, 42(6):881-890 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.076
      [23] Liu, Y., Liu, H. F., Theye, T., et al., 2009. Evidence for Oceanic Subduction at the NE Gondwana Margin during Permo-Triassic Times. Terra Nova, 21(3):195-202. https://doi.org/10.1111/j.1365-3121.2009.00874.x
      [24] Peng, Z. M., Zhang, J., Guan, J. L., et al., 2018. The Discovery of Early-Middle Ordovician Granitic Gneiss from the Giant Lincang Batholith in Sanjiang Area of Western Yunnan and Its Geological Implications. Earth Science, 43(8):2571-2585 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.102
      [25] Veevers, J. J., Saeed, A., Belousova, E. A., et al., 2005. U-Pb Ages and Source Composition by Hf-Isotope and Trace-Element Analysis of Detrital Zircons in Permian Sandstone and Modern Sand from Southwestern Australia and a Review of the Paleogeographical and Denudational History of the Yilgarn Craton. Earth-Science Reviews, 68(3-4):245-279. https://doi.org/10.1016/j.earscirev.2004.05.005
      [26] Wang, B., Xie, C. M., Li, C., et al., 2017. The Discovery of Wenmulang Ophiolite in Songduo Area of the Tibetan Plateau and Its Geological Significance. Geological Bulletin of China, 36(11):2076-2081 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201711017
      [27] Wang, L. Q., Pan, G. T., Zhu, D. C., et al., 2008. Carboniferous-Permian Island Arc Orogenesis in the Gangdise Belt, Tibet, China:Evidence from Volcanic Rocks and Geochemistry. Geological Bulletin of China, 27(9):1509-1534 (in Chinese with English abstract).
      [28] Wu, X. Y., Wang, Q., Zhu, D. C., et al., 2013. Origin of the Early Carboniferous Granitoids in the Southern Margin of the Lhasa Terrane and Its Implication for the Opening of the Songdo Tethyan Ocean. Acta Petrologica Sinica, 29(11):3716-3730 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311006
      [29] Xu, W. C., Zhang, H. F., Harris, N., et al., 2013. Geochronology and Geochemistry of Mesoproterozoic Granitoids in the Lhasa Terrane, South Tibet:Implications for the Early Evolution of Lhasa Terrane. Precambrian Research, 236:46-58. https://doi.org/10.1016/j.precamres.2013.07.016
      [30] Xu, X. Z., Yang, J. S., Li, T. F., et al., 2007. SHRIMP U-Pb Ages and Inclusions of Zircons from the Sumdo Eclogite in the Lhasa Block, Tibet. Geological Bulletin of China, 26(10):1340-1355 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200710012
      [31] Xu, Z. Q., Yang, J. S., Li, W. C., et al., 2013. Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6):1847-1860 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306001
      [32] Yang, D. M., He, Z. H., Huang, Y. C., et al., 2005. Metamorphism Characteristics of Songduo Group in Menba Township Mozhugongka County, Tibet and the Discussion on Its Age. Journal of Jiling University (Earth Science Edition), 35(4):430-435 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200504004
      [33] Yang, J. S., Xu, Z. Q., Geng, Q. R., et al., 2006. A Possible New HP/UHP(?) Metamorphic Belt in China:Discovery of Eclogite in the Lasha Terrane, Tibet. Acta Geologica Sinica, 80(12):1783-1792 (in Chinese with English abstract).
      [34] Yang, J. S., Xu, Z. Q., Li, T. F., et al., 2007. Oceanic Subduction-Type Eclogite in the Lhasa Block, Tibet, China:Remains of the Paleo-Tethys Ocean Basin?. Geological Bulletin of China, 26(10):1277-1287 (in Chinese with English abstract).
      [35] Yu, Y. P., Xie, C. M., Fan, J. J., et al., 2018. Zircon U-Pb Geochronology and Geochemistry of Early Jurassic Granodiorites in Sumdo Area, Tibet:Constraints on Petrogenesis and the Evolution of the Neo-Tethyan Ocean. Lithos, 320-321:134-143. https://doi.org/10.1016/j.lithos.2018.09.006
      [36] Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3):353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
      [37] Zhang, H. F., Xu, W. C., Zong, K. Q., et al., 2008. Tectonic Evolution of Metasediments from the Gangdise Terrane, Asian Plate, Eastern Himalayan Syntaxis, Tibet. International Geology Review, 50(10):914-930. https://doi.org/10.2747/0020-6814.50.10.914
      [38] Zhang, K. J., Tang, X. C., 2009. Eclogites in the Interior of the Tibetan Plateau and Their Geodynamic Implications. Science Bulletin, 54(15):2556-2567. https://doi.org/10.1007/s11434-009-0407-9
      [39] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      [40] Zhu, D. C., Zhao, Z. D., Niu, Y., et al., 2011. Lhasa Terrane in Southern Tibet Came from Australia. Geology, 39(8):727-730. https://doi.org/10.1130/g31895.1
      [41] 陈松永, 2010.西藏拉萨地块中古特提斯缝合带的厘定(博士学位论文).北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-2011012318.htm
      [42] 陈松永, 杨经绥, 罗立强, 等, 2007.西藏拉萨地块MORB型榴辉岩的岩石地球化学特征.地质通报, 26(10):1327-1339. doi: 10.3969/j.issn.1671-2552.2007.10.011
      [43] 董昕, 张泽明, 耿官升, 等, 2010.青藏高原拉萨地体南部的泥盆纪花岗岩.岩石学报, 26(7):2226-2232. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201007023
      [44] 耿全如, 王立全, 潘桂棠, 等, 2007.西藏冈底斯带石炭纪陆缘裂陷作用:火山岩和地层学证据.地质学报, 81(9):1259-1276. doi: 10.3321/j.issn:0001-5717.2007.09.011
      [45] 云南省地质调查院, 2010.《1:250 000林芝县幅区域地质调查报告》.武汉:中国地质大学出版社.
      [46] 何世平, 李荣社, 王超, 等, 2013.青藏高原拉萨地块发现古元古代地体.地球科学, 38(3):519-528. http://earth-science.net/WebPage/Article.aspx?id=2720
      [47] 刘强, 邓玉彪, 向树元, 等, 2017.藏南仲巴地体早奥陶世构造-热事件及其地质意义.地球科学, 42(6):881-890. http://earth-science.net/WebPage/Article.aspx?id=3585
      [48] 彭智敏, 张辑, 关俊雷, 等, 2018.滇西"三江"地区临沧花岗岩基早-中奥陶世花岗质片麻岩的发现及其意义.地球科学, 43(8):2571-2585. http://earth-science.net/WebPage/Article.aspx?id=3897
      [49] 王斌, 解超明, 李才, 等, 2017.青藏高原松多地区温木朗蛇绿岩的发现及其地质意义.地质通报, 36(11):2076-2081. doi: 10.3969/j.issn.1671-2552.2017.11.017
      [50] 王立全, 潘桂棠, 朱弟成, 等, 2008.西藏冈底斯石炭纪-二叠纪岛弧造山作用:火山岩和地球化学证据.地质通报, 27(9):1509-1534. doi: 10.3969/j.issn.1671-2552.2008.09.012
      [51] 吴兴源, 王青, 朱弟成, 等, 2013.拉萨地体南缘早石炭世花岗岩类的起源及其对松多特提斯洋开启的意义.岩石学报, 29(11):3716-3730. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311006
      [52] 徐向珍, 杨经绥, 李天福, 等, 2007.青藏高原拉萨地块松多榴辉岩的锆石SHRIMP U-Pb年龄及锆石中的包裹体.地质通报, 26(10):1340-1355. doi: 10.3969/j.issn.1671-2552.2007.10.012
      [53] 许志琴, 杨经绥, 李文昌, 等, 2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报, 29(6):1847-1860. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306001
      [54] 杨德明, 和钟铧, 黄映聪, 等, 2005.西藏墨竹工卡县门巴地区松多岩群变质作用特征及时代讨论.吉林大学学报(地球科学版), 35(4):430-435. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200504004
      [55] 杨经绥, 许志琴, 耿全如, 等, 2006.中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带.地质学报, 80(12):1783-1792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200612001
      [56] 杨经绥, 许志琴, 李天福, 等, 2007.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆的残留.地质通报, 26(10):1277-1287. doi: 10.3969/j.issn.1671-2552.2007.10.006
    • 加载中
    图(5)
    计量
    • 文章访问数:  5561
    • HTML全文浏览量:  1756
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-11-18
    • 刊出日期:  2019-07-15

    目录

      /

      返回文章
      返回