Origin of Middle Silurian Diabase Dike in the Taining District, South China: Implications for Intracontinental Orogeny
-
摘要: 华南早古生代造山作用以武夷-云开造山带最为典型.然而,该次造山作用过程中岩石圈地幔性质及构造背景一直存在争议,还需要更多的基性岩证据.对武夷造山带中段泰宁地区何宝山辉绿岩脉开展了年代学、地球化学及Sr-Nd-Hf同位素研究.LA-ICP-MS锆石U-Pb年龄(430±3 Ma)表明辉绿岩脉形成于中志留世.岩石具有高Al2O3(15.23%~18.49%)、低Na2O(2.82%~4.21%)和K2O(1.63%~2.42%)含量特征,属亚碱性系列.稀土元素标准化图呈右倾,无明显Eu异常,显示富集大离子亲石元素(Rb、Ba、K、La、Sr)、不同程度亏损高场强元素(Ta、U、Hf、Ti).岩石具有高Nb含量(5.74×10-6~8.45×10-6),其(Nb/La)N和Nb/U值与富Nb岛弧玄武岩相似.全岩(87Sr/86Sr)i=0.709 5~0.710 9,εNd(t)=-0.8~-0.1,锆石εHf(t)=-9.2~-2.7,对应二阶段模式年龄T2DM(Hf)=1.4~1.8 Ga.地球化学、Sr-Nd及Hf同位素揭示泰宁地区基性岩浆源自富集岩石圈地幔13.3%~21.8%的熔融,但在熔融前曾受到古俯冲物质(俯冲板片熔体+5%沉积物熔体)的源区混染.武夷地区于早古生代为陆内造山环境,脉岩形成于后造山垮塌阶段,可能与冈瓦纳东缘造山作用的应力向大陆传播引起华夏地块内部俯冲有关.Abstract: The Early Paleozoic orogen in South China is an intraplate orogen and represented by the Wuyi-Yunkai Orogenic Belt (WYOB). However,the nature of lithospheric mantle and tectonic setting during this orogenic process have been controversial. We present here,for the first time,geochronological,isotopic and geochemical data for the Hebaoshan diabase dike in Taining area,central WYOB. LA-ICP-MS dating on zircon of the Hebaoshan diabase dike yields an age of 430±3 Ma,suggesting the formation time of Middle Silurian. Seven samples possess high Al2O3(15.23%-18.49%) and low Na2O(2.82%-4.21%),K2O (1.63%-2.42%) contents,belonging to subalkaline rocks. The REE patterns show a negative slope due to LREE enrichment with insignificant Eu anomalies. Diabase is characterized by enrichment in Rb,Ba,K,La,Sr while depletion in Ta,U,Hf and Ti,relative to the primitive mantle. The high Nb(5.74×10-6-8.45×10-6) content,together with high values of (Nb/La)N and Nb/U,coincides with those of typical Nb-rich Island Arc Basalt. The Hebaoshan diabase dike,with variable εNd(t) values (-0.8—-0.1),εHf(t) values (-9.2—-2.7) and two-stage Hf model ages (T2DM(Hf)=1.4-1.8 Ga),was probably derived from the partial melting (13.3%~21.8%) of previously subduction-modified lithospheric mantle in the garnet-spinel olives facies and was likely formed in an intracontinental post-orogenic collapse regime related to a far-field effect from Eastern Gondwana orogeny.
-
Key words:
- diabase dike /
- Early Paleozoic /
- intracontinental orogen /
- Wuyi-Yunkai Orogen Belt /
- South China /
- geochronology /
- geochemistry
-
图 1 早古生代岩浆岩和变质岩分布(a)及研究区地质简图(b)
图中年龄均为锆石U-Pb年龄;图a据Yao et al. (2012)修改;图b据陈国建等(2015)修改
Fig. 1. Distribution of Early Paleozoic magmatic and metamorphic rocks in Wuyi-Yunkai Orogen Belt (a) and simplified geological map of the study area (b)
图 3 何宝山辉绿岩脉锆石阴极发光图像(a)、U-Pb年龄谐和图(b、c)和t -εHf(t)图解(d)
图a中实线圆圈表示年龄分析点位和编号, 虚线圆圈表示Hf同位素分析点位和编号;图d据Wang et al. (2013b)
Fig. 3. Cathodoluminescence (CL) images of the representative zircon grains (a), concordia diagrams of zircon U-Pb data (b, c) and t vs. εHf(t) diagram (d) for the Hebaoshan diabase dike
图 4 何宝山辉绿岩脉Zr/TiO2-Nb/Y图解(a)和Nb/U-Nb图解(b)
图a据Winchester and Floyd (1976);图b据Kepezhinskas et al. (1996)
Fig. 4. Zr/TiO2 vs. Nb/Y (a) and Nb/U vs. Nb (b) for the Hebaoshan diabase samples
图 6 何宝山辉绿岩脉球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)
标准化值引自Sun and McDonough (1989)和Taylor and Mclennan (1985);N-MORB、E-MORB和OIB数据引自Sun and McDonough (1989);武夷带南部志留纪富Nb辉长岩数据引自Wang et al. (2013a);Okinawa Trough弧后盆地玄武岩数据引自Shinjo et al. (1999)
Fig. 6. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spider diagram (b) for the Hebaoshan diabase samples
图 7 何宝山辉绿岩脉87Sr/86Sr-εNd(t) (a), Nb/La-εNd(t) (b), SiO2-εNd(t) (c)图解和Y-Zr/Y图解(d)
图a、b和c据Wang et al. (2013a).图a中武夷山南部志留纪辉长岩、Reccamonfina、Batu tara和Reman Region均代表来源于俯冲板片流体或熔体交代过的富集岩石圈地幔的钾质岩石(Nelson, 1992).图a和b中①③黑色实线分别代表亏损地幔和地幔楔与华夏地块沉积物源区混合模拟曲线, 其中①表示华南板块基底发生拆沉进入软流圈地幔;②④灰色虚线分别代表幔源和地幔楔来源岩浆发生不同程度地壳混染模拟曲线.图d据Zhao et al. (2007), 为不同类型地幔部分熔融模型(选择原始地幔为初始组成);Ga表示石榴石二辉橄榄岩地幔,Ga-Sp表示石榴石-尖晶石二辉橄榄岩地幔,Sp表示尖晶石二辉橄榄岩地幔,Sp-Pl表示尖晶石-斜长石二辉橄榄岩
Fig. 7. Initial Sr-Nd isotopic composition at 430 Ma (a), Nb/La vs. εNd(t) (b), SiO2 vs. εNd(t) (c) and Y vs. Zr/Y (d) for the Hebaoshan diabase samples
图 8 何宝山辉绿岩脉La/Nb-Ba/Nb图解(a)和La/Nb-La/Ba图解(b)
图a据Zhang et al. (2012);图b据Zhao et al. (2007). MORB.洋中脊玄武岩;OIB.洋岛玄武岩;PM.原始地幔;HIUM.高U/Pb比值的地幔;IAT.岛弧拉斑玄武岩; DupalOIB.异常洋岛玄武岩
Fig. 8. La/Nb vs. Ba/Nb (a) and La/Nb vs. La/Ba (b) for the Hebaoshan diabase samples
图 9 何宝山辉绿岩脉Nb/Zr-Th/Zr (a)、Th/Yb-Ba/La (b)、εNd(t)-Nd/Pb (c)和εNd(t)-Nb/Y (d)图解
图c、d据Wang et al. (2013a)
Fig. 9. Nb/Zr vs. Th/Zr (a), Th/Yb vs. Ba/La (b), εNd(t) vs. Nd/Pb (c) and εNd(t) vs. Nb/Y (d) for the Hebaoshan diabase samples
图 10 何宝山辉绿岩脉成因模式
图a据Charvet et al. (2010)修改, 武夷-云开地区于新元古代被俯冲熔体、5%沉积物熔体混染及少量俯冲流体交代的岩石圈地幔在460~ 435 Ma同造山挤压条件下处于稳定状态;图b据Yao et al.(2012)修改, 435~400 Ma后造山拉张环境中, 岩石圈地幔下部发生拆沉, 上涌的软流圈促使经改造发生富集作用的岩石圈地幔部分熔融, 形成基性岩浆
Fig. 10. The petrogenetic mechanism for the Hebaoshan diabase dike
表 1 泰宁地区何宝山辉绿岩脉锆石U-Pb分析结果
Table 1. Zircon LA-ICP-MS U-Pb results for the Hebaoshan diabase dike
点号 元素含量(10-6) Th/ U U-Th-Pb同位素比值 年龄(Ma) 232Th 238U 207Pb/ 235U 1σ 206Pb/ 238U 1σ 208Pb/ 232Th 1σ 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ HCY-1-01 147 635 0.23 0.532 2 0.022 0 0.069 0 0.001 0 0.029 6 0.004 8 428 94.4 433 14.6 430 6.3 HCY-1-02 124 270 0.46 6.054 2 0.204 0 0.333 6 0.005 0 0.138 3 0.003 9 2 103 59.6 1984 29.4 1 856 24.0 HCY-1-03 75 104 0.72 0.701 8 0.078 7 0.083 0 0.002 4 0.037 2 0.001 6 665 294.4 540 47.0 514 14.2 HCY-1-04 67 123 0.54 6.471 1 0.128 6 0.374 7 0.003 9 0.122 5 0.002 5 2 025 36.3 2 042 17.5 2 051 18.5 HCY-1-05 98 157 0.63 7.279 9 0.232 8 0.373 5 0.008 9 0.132 1 0.009 9 2 258 66.5 2 146 28.6 2 046 41.8 HCY-1-06 375 803 0.47 0.538 6 0.040 7 0.069 4 0.000 6 0.023 7 0.002 6 557 15.7 449 17.6 430 4.5 HCY-1-07 425 478 0.89 0.469 3 0.022 2 0.066 2 0.002 5 0.046 5 0.005 7 256 95.4 391 15.3 423 15.2 HCY-1-08 103 257 0.40 5.316 6 0.100 1 0.336 6 0.003 3 0.102 1 0.001 8 1 866 33.3 1872 16.1 1 870 16.1 HCY-1-09 133 1 645 0.08 0.555 9 0.022 1 0.068 4 0.002 3 0.021 9 0.002 0 534 32.1 450 8.5 430 5.4 HCY-1-10 100 91 1.11 7.108 8 0.222 6 0.373 4 0.007 1 0.107 0 0.002 4 2 206 53.9 2 125 27.9 2 045 33.6 HCY-1-11 263 835 0.31 0.573 7 0.016 0 0.069 2 0.001 3 0.032 8 0.001 7 606 36.1 460 10.4 431 8.0 HCY-1-12 128 111 1.15 6.666 0 0.190 5 0.374 0 0.007 1 0.112 2 0.003 1 2 085 44.1 2 068 25.3 2 048 33.4 HCY-1-13 152 206 0.74 5.939 3 0.156 7 0.345 8 0.004 5 0.103 3 0.001 9 2 013 40.7 1 967 23.0 1 915 21.8 HCY-1-14 108 437 0.25 7.039 8 0.307 8 0.374 4 0.014 2 0.207 7 0.012 2 2 181 54.9 2 116 38.9 2 050 66.8 HCY-1-15 105 168 0.63 6.689 2 0.154 8 0.374 8 0.006 0 0.109 8 0.002 0 2 087 34.6 2 071 20.5 2 052 28.3 HCY-1-16 270 1 648 0.16 0.557 1 0.011 3 0.068 9 0.000 6 0.026 1 0.000 9 543 44.4 450 7.3 429 3.5 HCY-1-17 246 1 748 0.14 0.563 7 0.059 2 0.069 0 0.002 4 0.021 3 0.003 7 567 157.4 454 38.4 430 3.0 HCY-1-18 128 127 1.01 6.885 9 0.295 1 0.374 9 0.006 0 0.117 5 0.004 2 2 135 86.6 2 097 38.0 2 052 28.3 HCY-1-19 925 1 600 0.58 0.530 0 0.032 5 0.069 3 0.003 7 0.032 2 0.002 0 479 34.7 441 17.2 430 4.3 HCY-1-20 734 1 183 0.62 0.512 5 0.044 0 0.069 1 0.003 2 0.022 4 0.000 6 343 91.7 420 29.5 431 5.3 HCY-1-21 350 487 0.72 6.940 6 0.191 7 0.373 8 0.005 5 0.103 4 0.002 7 2 150 49.7 2 104 24.5 2 047 25.8 表 2 泰宁地区何宝山辉绿岩脉锆石Hf同位素分析结果
Table 2. Zircon Lu-Hf isotopic compositions for the Hebaoshan diabase dike
点号 年龄(Ma) 176Yb/177Hf 1σ 176Lu/177Hf 1σ 176Hf/177Hf 1σ εHf(t) T1DM (Ga) T2DM (Ga) fLu/Hf 对应U-Pb点号 HCY-1-01 430 0.026 234 0.008 581 0.001 062 0.000 104 0.282 436 0.000 841 -2.7 1.16 1.44 -0.97 01 HCY-1-02 2 025 0.017 891 0.005 228 0.000 682 0.000 059 0.281 589 0.000 750 2.5 2.31 2.42 -0.98 04 HCY-1-03 2 258 0.024 787 0.007 072 0.000 934 0.000 079 0.281 492 0.000 734 3.9 2.46 2.54 -0.97 05 HCY-1-04 430 0.023 840 0.006 639 0.000 782 0.000 064 0.282 437 0.000 715 -2.5 1.15 1.43 -0.98 06 HCY-1-05 423 0.036 467 0.022 866 0.001 233 0.000 279 0.282 257 0.001 565 -9.5 1.41 1.80 -0.96 07 HCY-1-06 1 866 0.020 266 0.005 380 0.000 737 0.000 058 0.281 464 0.000 684 -5.6 2.48 2.73 -0.98 08 HCY-1-07 430 0.022 072 0.005 694 0.000 783 0.000 061 0.282 409 0.000 666 -3.5 1.18 1.50 -0.98 09 HCY-1-08 2 206 0.039 387 0.009 895 0.001 450 0.000 107 0.281 481 0.000 647 1.6 2.51 2.62 -0.96 10 HCY-1-09 431 0.059 845 0.039 277 0.002 289 0.000 439 0.282 315 0.001 689 -7.3 1.37 1.70 -0.93 11 HCY-1-10 2 085 0.026 398 0.005 955 0.000 995 0.000 073 0.281 525 0.000 573 1.1 2.42 2.55 -0.97 12 HCY-1-11 2 013 0.045 132 0.009 953 0.001 688 0.000 127 0.281 673 0.000 556 3.8 2.25 2.34 -0.95 13 HCY-1-12 2 181 0.019 089 0.004 057 0.000 572 0.000 044 0.281 580 0.000 539 5.8 2.32 2.37 -0.98 14 HCY-1-13 2 087 0.040 641 0.008 372 0.001 017 0.000 073 0.281 662 0.000 521 6.0 2.23 2.28 -0.97 15 HCY-1-14 429 0.061 085 0.012 146 0.002 175 0.000 152 0.282 374 0.000 504 -5.3 1.28 1.58 -0.93 16 HCY-1-15 430 0.128 690 0.068 608 0.004 886 0.000 764 0.282 391 0.001 371 -5.4 1.36 1.59 -0.85 17 HCY-1-16 2 135 0.036 717 0.006 975 0.001 086 0.000 061 0.281 635 0.000 486 6.0 2.27 2.32 -0.97 18 HCY-1-17 430 0.023 183 0.012 404 0.001 473 0.000 127 0.282 433 0.001 468 -3.2 1.18 1.48 -0.99 19 HCY-1-18 431 0.022 493 0.012 321 0.000 840 0.000 138 0.282 428 0.001 406 -2.9 1.16 1.45 -0.97 20 HCY-1-19 2 150 0.028 354 0.005 028 0.000 958 0.000 055 0.281 637 0.000 450 6.6 2.26 2.30 -0.97 21 表 3 泰宁地区何宝山辉绿岩脉主量元素(%)分析结果
Table 3. Major elements contents (%) for the Hebaoshan diabase dike
样号 SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 LOI Total SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 Total 原始值 校正值 HCY-1 46.11 1.26 16.48 10.40 0.31 5.50 8.14 3.35 1.80 0.25 6.60 100.20 49.26 1.35 17.61 11.11 0.33 5.88 8.70 3.58 1.92 0.27 100.00 HCY-2 47.25 1.28 17.30 10.32 0.29 4.99 7.45 3.71 2.03 0.30 5.67 100.59 49.78 1.35 18.23 10.87 0.31 5.26 7.85 3.91 2.14 0.32 100.00 HCY-3 48.70 1.34 17.34 10.27 0.30 4.69 4.63 3.95 2.27 0.29 5.75 99.53 51.93 1.43 18.49 10.95 0.32 5.00 4.94 4.21 2.42 0.31 100.00 HCY-5 43.59 1.17 14.58 10.72 0.27 9.79 9.75 2.61 1.54 0.21 5.74 97.97 46.26 1.24 15.47 11.38 0.29 10.39 10.35 2.77 1.63 0.22 100.00 HCY-6 44.79 1.12 14.70 10.05 0.29 9.73 11.30 2.72 1.62 0.23 5.17 99.72 46.39 1.16 15.23 10.41 0.30 10.08 11.70 2.82 1.68 0.24 100.00 HCY-7 45.37 1.26 16.74 10.48 0.47 5.12 7.97 3.33 1.99 0.25 8.46 101.44 48.80 1.36 18.00 11.27 0.51 5.51 8.57 3.58 2.14 0.27 100.00 HCY-8 45.76 1.26 16.83 10.76 0.47 5.30 7.78 3.33 1.97 0.26 8.51 102.23 48.83 1.34 17.96 11.48 0.50 5.66 8.30 3.55 2.10 0.28 100.00 表 4 泰宁地区何宝山辉绿岩脉微量元素(10-6)、稀土元素(10-6)和Sr-Nd同位素分析结果
Table 4. Trace elements (10-6) and rare earth elements (10-6) and Sr-Nd isotopic compositions for the Hebaoshan diabase dike
样号 HCY-1 HCY-2 HCY-3 HCY-5 HCY-6 HCY-7 HCY-8 Sc 25.90 23.20 21.20 27.90 27.30 27.80 26.70 V 239.00 239.00 251.00 256.00 232.00 246.00 239.00 Cr 87.60 45.90 16.60 556.00 605.00 89.10 79.30 Co 35.50 40.00 29.00 50.30 64.70 34.70 34.60 Ni 36.96 32.86 18.80 182.71 185.54 36.52 36.32 Ga 15.90 16.20 14.80 13.40 13.50 15.60 16.00 Rb 53.80 61.10 76.60 9.89 11.00 68.40 62.00 Sr 533.00 594.00 624.00 442.00 434.00 633.00 607.00 Y 17.20 20.70 17.10 13.10 16.60 16.80 18.40 Zr 66.50 85.70 75.10 57.30 61.00 68.00 74.70 Nb 6.08 8.45 7.40 5.74 6.00 6.60 7.06 Ba 390.00 506.00 526.00 193.00 196.00 734.00 736.00 La 11.20 13.90 11.40 7.71 9.15 10.90 12.30 Ce 22.90 29.40 24.30 16.80 20.10 22.80 24.80 Pr 2.75 3.56 2.98 2.11 2.47 2.79 3.03 Nd 12.40 15.70 13.10 9.59 11.50 12.50 12.90 Sm 2.66 3.27 2.93 2.08 2.63 2.83 3.22 Eu 0.96 1.16 0.93 0.78 0.92 0.99 1.03 Gd 2.92 3.65 2.96 2.28 2.93 3.13 3.30 Tb 0.45 0.55 0.43 0.36 0.43 0.47 0.51 Dy 2.78 3.36 2.76 2.15 2.71 2.85 2.93 Ho 0.58 0.67 0.58 0.46 0.56 0.60 0.62 Er 1.55 1.86 1.62 1.21 1.59 1.59 1.71 Tm 0.21 0.26 0.25 0.17 0.21 0.24 0.23 Yb 1.37 1.68 1.46 1.11 1.30 1.47 1.52 Lu 0.20 0.25 0.22 0.16 0.21 0.22 0.22 Hf 1.53 1.93 1.69 1.29 1.32 1.69 1.69 Ta 0.33 0.49 0.39 0.28 0.37 0.34 0.41 Pb 6.15 5.32 5.47 2.25 2.60 11.49 8.68 Th 1.02 1.40 1.21 0.70 0.78 1.04 1.10 U 0.22 0.32 0.27 0.17 0.20 0.25 0.28 87Rb/86Sr 0.292 038 0.297 616 0.355 199 - - 0.312 649 0.295 556 147Sm/144Nd 0.129 682 0.145 165 0.135 212 - - 0.136 867 0.150 899 87Sr/86Sr 0.709 48 0.709 63 0.710 87 - - 0.710 07 0.710 74 2σ 0.000 006 0.000 005 0.000 007 - - 0.000 008 0.000 008 143Nd/144Nd 0.512 446 0.512 460 0.512 454 - - 0.512 465 0.512 468 2σ 0.000 008 0.000 007 0.000 008 - - 0.000 009 0.000 006 87Sr/86Sr(t) 0.707 691 0.708 087 0.708 695 - - 0.708 155 0.708 930 εNd(t) -0.1 -0.7 -0.2 - - -0.1 -0.8 T1DM(Nd) 1.21 1.20 1.21 - - 1.36 1.44 T2DM(Nd) 1.15 1.14 1.15 - - 1.18 1.19 注:εNd(t)值计算采用(147Sm/144Nd)CHUR=0.196 7,(143Nd/144Nd)CHUR=0.512 (DePaolo and Wasserburg, 1979);t代表成岩年龄(430 Ma). -
[1] Arai, S., Ishimaru, S., Okrugin, V. M., 2003. Metasomatized Harzburgite Xenoliths from Avacha Volcano as Fragments of Mantle Wedge of the Kamchatka Arc: Implication for the Metasomatic Agent. The Island Arc, 12(2): 233-246. https://doi.org/10.1046/j.1440-1738.2003.00392.x [2] Bourdon, E., Eissen, J., Monzier, M., et al., 2002. Adakite-Like Lavas from Antisana Volcano (Ecuador): Evidence for Slab Melt Metasomatism beneath Andean Northern Volcanic Zone. Journal of Petrology, 43(2): 199-217. https://doi.org/10.1093/petrology/43.2.199 [3] Cawood, P. A., Wang, Y. J., Xu, Y. J., et al., 2013. Locating South China in Rodinia and Gondwana: A Fragment of Greater India Lithosphere? Geology, 41(8): 903-906. https://doi.org/10.1130/g34395.1 [4] Charvet, J., Shu, L. S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309-330. https://doi.org/10.1016/j.jseaes.2010.03.006 [5] Chen, G. J., Zhang, W. B., Liu, J. T., 2015. LA-ICP-MS Zircon U-Pb Dating and Geological Features of Changxing Intrusion in the Hebaoshan Gold Deposit, Taining County, Fujian Province. Geology in China, 42(2): 547-555 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201502014 [6] Defant, M. J., Kepezhinskas, P., 2001. Evidence Suggests Slab Melting in Arc Magmas. Eos, Transactions American Geophysical Union, 82(6): 65-69. https://doi.org/10.1029/01eo00038 [7] DePaolo, D. J., Wasserburg, G. J., 1979. Petrogenetic Mixing Models and Nd-Sr Isotopic Patterns. Geochimica et Cosmochimica Acta, 43(4): 615-627. https://doi.org/10.1016/0016-7037(79)90169-8 [8] Duggen, S., Hoernle, K., van den Bogaard, P., et al., 2005. Post-Collisional Transition from Subduction- to Intraplate-Type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. Journal of Petrology, 46(6): 1155-1201. https://doi.org/10.1093/petrology/egi013 [9] Faure, M., Shu, L. S., Wang, B., et al., 2009. Intracontinental Subduction: A Possible Mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova, 21(5): 360-368. https://doi.org/10.1111/j.1365-3121.2009.00888.x [10] Gao, S., Zhang, B. R., Jin, Z. M., 1999. Delamination of the Lower Crust in the Qinling-Dabie Orogenic Belt. Scientia Sinica Terrae, 29(6): 532-541 (in Chinese). [11] Griffin, W. L., Belousova, E. A., Shee, S. R., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3-4): 231-282. https://doi.org/10.1016/j.precamres.2003.12.011 [12] Guo, L. Z., Shi, Y. S., Lu, H. F., et al., 1989. The Pre-Devonian Tectonic Patterns and Evolution of South China. Journal of Southeast Asian Earth Sciences, 3(1-4): 87-93. https://doi.org/10.1016/0743-9547(89)90012-3 [13] Gurenko, A. A., Chaussidon, M., 1995. Enriched and Depleted Primitive Melts Included in Olivine from Icelandic Tholeiites: Origin by Continuous Melting of a Single Mantle Column. Geochimica et Cosmochimica Acta, 59(14): 2905-2917. https://doi.org/10.1016/0016-7037(95)00184-0 [14] Hawkesworth, C. J., Blake, S., Evans, P., et al., 2000. Time Scales of Crystal Fractionation in Magma Chambers: Integrating Physical, Isotopic and Geochemical Perspectives. Journal of Petrology, 41(7): 991-1006. https://doi.org/10.1093/petrology/41.7.991 [15] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/c2ja30078h [16] Jenner, G. A., Dunning, G. R., Malpas, J., et al., 1991. Bay of Islands and Little Port Complexes, Revisited: Age, Geochemical and Isotopic Evidence Confirm Suprasubduction-Zone Origin. Canadian Journal of Earth Sciences, 28(10): 1635-1652. https://doi.org/10.1139/e91-146 [17] Johnson, K. T. M., 1998. Experimental Determination of Partition Coefficients for Rare Earth and High-Field-Strength Elements between Clinopyroxene, Garnet, and Basaltic Melt at High Pressures. Contributions to Mineralogy and Petrology, 133(1-2): 60-68. https://doi.org/10.1007/s004100050437 [18] Kepezhinskas, P., Defant, M. J., Drummond, M. S., 1996. Progressive Enrichment of Island Arc Mantle by Melt-Peridotite Interaction Inferred from Kamchatka Xenoliths. Geochimica et Cosmochimica Acta, 60(7): 1217-1229. https://doi.org/10.1016/0016-7037(96)00001-4 [19] Li, Z. X., Li, X. H., Wartho, J. A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China: New Age Constraints and Pressure-Temperature Conditions. Geological Society of America Bulletin, 122(5-6): 772-793. https://doi.org/10.1130/b30021.1 [20] Liu, Y., Gao, S., Hu, Z., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 [21] Ludwig, K. R., 2012. User's Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [22] Maaløe, S., Pedersen, R. B., 2003. Two Methods for Estimating the Degree of Melting and Trace Element Concentrations in the Sources of Primary Magmas. Chemical Geology, 193(3-4): 155-166. https://doi.org/10.1016/s0009-2541(02)00267-x [23] Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and some Implications for Crustal Evolution. Lithos, 79(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048 [24] Münker, C., 2000. The Isotope and Trace Element Budget of the Cambrian Devil River Arc System, New Zealand: Identification of Four Source Components. Journal of Petrology, 41(6): 759-788. https://doi.org/10.1093/petrology/41.6.759 [25] Naumann, T. R., Geist, D. J., 1999. Generation of Alkalic Basalt by Crystal Fractionation of Tholeiitic Magma. Geology, 27(5): 423-426. https://doi.org/10.1130/0091-7613(1999)0270423:goabbc > 2.3.co; 2 doi: 10.1130/0091-7613(1999)0270423:goabbc>2.3.co;2 [26] Nelson, D. R., 1992. Isotopic Characteristics of Potassic Rocks: Evidence for the Involvement of Subducted Sediments in Magma Genesis. Lithos, 28(3-6): 403-420. https://doi.org/10.1016/0024-4937(92)90016-r [27] Othman, D.B., White, W. M., Patchett, J., 1989. The Geochemistry of Marine Sediments, Island Arc Magma Genesis, and Crust-Mantle Recycling. Earth and Planetary Science Letters, 94(1-2): 1-21. https://doi.org/10.1016/0012-821x(89)90079-4 [28] Peng, S. B., Liu, S. F., Lin, M. S., et al., 2016a. Early Paleozoic Subduction in Cathaysia (Ⅰ): New Evidence from Nuodong Ophiolite. Earth Science, 41(5): 765-778 (in Chinese with English abstract). [29] Peng, S. B., Liu, S. F., Lin, M. S., et al., 2016b. Early Paleozoic Subduction in Cathaysia (Ⅱ): New Evidence from the Dashuang High Magnesian-Magnesian Andesite. Earth Science, 41(6): 931-947 (in Chinese with English abstract). [30] Petrone, C. M., Ferrari, L., 2008. Quaternary Adakite: Nb-Enriched Basalt Association in the Western Trans-Mexican Volcanic Belt: Is There Any Slab Melt Evidence? Contributions to Mineralogy and Petrology, 156(1): 73-86. https://doi.org/10.1007/s00410-007-0274-9 [31] Qi, Y. Q., Hu, R. Z., Liu, S., et al., 2016. Petrogenesis and Geodynamic Setting of Early Cretaceous Mafic-Ultramafic Intrusions, South China: A Case Study from the Gan-Hang Tectonic Belt. Lithos, 258-259: 149-162. https://doi.org/10.1016/j.lithos.2016.04.027 [32] Qin, X. F., Wang, Z. Q., Wang, T., et al., 2015. The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi: Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt. Acta Geoscientica Sinica, 36(3) : 283-292 (in Chinese with English abstract). [33] Sen, C., Dunn, T., 1995. Experimental Modal Metasomatism of a Spinel Lherzolite and the Production of Amphibole-Bearing Peridotite. Contributions to Mineralogy and Petrology, 119(4): 422-432. https://doi.org/10.1007/s004100050052 [34] Shinjo, R., Chung, S. L., Kato, Y., et al., 1999. Geochemical and Sr-Nd Isotopic Characteristics of Volcanic Rocks from the Okinawa Trough and Ryukyu Arc: Implications for the Evolution of a Young, Intracontinental Back Arc Basin. Journal of Geophysical Research: Solid Earth, 104(B5): 10591-10608. https://doi.org/10.1029/1999jb900040 [35] Shu, L. S., 2006. Predevonian Tectonic Evolution of South China:From Cathaysian Block to Caledonian Period Folded Orogenic Belt. Geological Journal of China University, 12(4): 418-431 (in Chinese with English abstract). doi: 10.1007-s10926-009-9217-9/ [36] Shu, L. S., Jahn, B. M., Charvet, J., et al., 2014. Early Paleozoic Depositional Environment and Intraplate Tectono-Magmatism in the Cathaysia Block (South China): Evidence from Stratigraphic, Structural, Geochemical and Geochronological Investigations. American Journal of Science, 314(1): 154-186. https://doi.org/10.2475/01.2014.05 [37] Shu, L. S., Yu, J. H., Jia, D., et al., 2008. Early Paleozoic Orogenic Belt in the Eastern Segment of South China. Geological Bulletin of China, 27(10): 1581-1593 (in Chinese with English abstract). [38] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [39] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford. [40] Wang, C. C., Liu, Y. C., Yang, Y., et al., 2018.Metamorphic Evolution of Mafic Granulites from the Wuhe Complex at the Southeastern Margin of the North China Craton. Earth Science, 43(1):296-316 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201801018 [41] Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Triassic Nb-Enriched Basalts, Magnesian Andesites, and Adakites of the Qiangtang Terrane (Central Tibet): Evidence for Metasomatism by Slab-Derived Melts in the Mantle Wedge. Contributions to Mineralogy and Petrology, 155(4): 473-490. https://doi.org/10.1007/s00410-007-0253-1 [42] Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2011. Kwangsian Crustal Anatexis within the Eastern South China Block: Geochemical, Zircon U-Pb Geochronological and Hf Isotopic Fingerprints from the Gneissoid Granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1-2): 239-260. https://doi.org/10.1016/j.lithos.2011.07.027 [43] Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2013a. Origin of Paleosubduction-Modified Mantle for Silurian Gabbro in the Cathaysia Block: Geochronological and Geochemical Evidence. Lithos, 160-161: 37-54. https://doi.org/10.1016/j.lithos.2012.11.004 [44] Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013b. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019 [45] Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013c. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020 [46] Wang, Z.H., Yang, W.Q., Zhou, D., et al., 2018.Detrital Zircon U-Pb Geochronological Records and Its Response of Provenance Transformation of Strata Surrounding Cambrian-Devonian Unconformity in Eastern Margin of Yunkai Massif. Earth Science, 43(11):4193-4203 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811033 [47] Winchester, J. A., Floyd, P. A., 1976. Geochemical Magma Type Discrimination: Application to Altered and Metamorphosed Basic Igneous Rocks. Earth and Planetary Science Letters, 28(3): 459-469. https://doi.org/10.1016/0012-821x(76)90207-7 [48] Xia, Y., Xu, X. S., Zou, H. B., et al., 2014. Early Paleozoic Crust-Mantle Interaction and Lithosphere Delamination in South China Block: Evidence from Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes of Granites. Lithos, 184-187: 416-435. https://doi.org/10.1016/j.lithos.2013.11.014 [49] Xu, Y.J., Du, Y.S., 2018.From Periphery Collision to Intraplate Orogeny: Early Paleozoic Orogenesis in Southeastern Part of South China. Earth Science, 43(2):333-353 (in Chinese with English abstract). [50] Yang, Z. Y., Sun, Z. M., Yang, T., et al., 2004. A Long Connection (750-380 Ma) between South China and Australia: Paleomagnetic Constraints. Earth and Planetary Science Letters, 220(3-4): 423-434. https://doi.org/10.1016/s0012-821x(04)00053-6 [51] Yao, W. H., Li, Z. X., Li, W. X., et al., 2012. Post-Kinematic Lithospheric Delamination of the Wuyi-Yunkai Orogen in South China: Evidence from ca. 435 Ma high-Mg Basalts. Lithos, 154: 115-129. https://doi.org/10.1016/j.lithos.2012.06.033 [52] Yu, J.H., Wei, Z.Y., Wang, L.J., et al., 2006. Cathaysia Block: A Young Continent Composed of Ancient Materials. Geological Journal of China University, 12(4): 440-447 (in Chinese with English abstract). [53] Yu, P. P., Zheng, Y., Zhou, Y. Z., et al., 2018. Zircon U-Pb Geochronology and Geochemistry of the Metabasite and Gabbro: Implications for the Neoproterozoic and Paleozoic Tectonic Settings of the Qinzhou Bay-Hangzhou Bay Suture Zone, South China. Geological Journal, 53(5): 2219-2239. https://doi.org/10.1002/gj.3060 [54] Yu, P. P., Zhou, Y. Z., Zheng, Y., et al., 2017. Neoproterozoic Subduction of the South Section of Qin-Hang Orogenic Junction Belt: Evidence from the Geochronology and Geochemistry for the Metabasite in Guizi Melange, Western Guangdong Province, South China. Acta Petrologica Sinica, 33(3): 739-752 (in Chinese with English abstract). [55] Zhang, A. M., Wang, Y. J., Fan, W. M., et al., 2012. Earliest Neoproterozoic (ca. 1.0 Ga) Arc-Back-Arc Basin Nature along the Northern Yunkai Domain of the Cathaysia Block: Geochronological and Geochemical Evidence from the Metabasite. Precambrian Research, 220-221: 217-233. https://doi.org/10.1016/j.precamres.2012.08.003 [56] Zhang, F. R., Shu, L. S., Wang, D.Z., et al., 2009.Discussions on the Tectonic Setting of Caledonian Granitoids in the Eastern Segment of South China. Earth Science Frontiers, 16(1):248-260 (in Chinese with English abstract). [57] Zhang, H. X., Niu, H. C., Sato, H., et al., 2005. Late Paleozoic Adakites and Nb-Enriched Basalts from Northern Xinjiang, Northwest China: Evidence for the Southward Subduction of the Paleo-Asian Oceanic Plate. The Island Arc, 14(1): 55-68. https://doi.org/10.1111/j.1440-1738.2004.00457.x [58] Zhang, Q., Jiang, Y. H., Wang, G. C., et al., 2015a. Origin of Silurian Gabbros and Ⅰ-Type Granites in Central Fujian, SE China: Implications for the Evolution of the Early Paleozoic Orogen of South China. Lithos, 216-217: 285-297. https://doi.org/10.1016/j.lithos.2015.01.002 [59] Zhang, C. L., Santosh, M., Zhu, Q. B., et al., 2015b. The Gondwana Connection of South China: Evidence from Monazite and Zircon Geochronology in the Cathaysia Block. Gondwana Research, 28(3): 1137-1151. https://doi.org/10.1016/j.gr.2014.09.007 [60] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006. Zircon Isotope Evidence for ≥3.5 Ga Continental Crust in the Yangtze Craton of China. Precambrian Research, 146(1-2): 16-34. https://doi.org/10.1016/j.precamres.2006.01.002 [61] Zhao, G. C., 2015. Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Research, 27(3): 1173-1180. https://doi.org/10.1016/j.gr.2014.09.004 [62] Zhao, J. H., Hu, R. Z., Zhou, M. F., et al., 2007. Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 144(6): 937-952. https://doi.org/10.1017/s0016756807003834 [63] Zheng, Y. F., Zhang, S. B., 2007. Formation and Evolution of Precambrian Continental Crust in South China. Chinese Science Bulletin, 52(1): 1-12. https://doi.org/10.1007/s11434-007-0015-5 [64] Zhou, D., Long, W. G., Wang, L., et al., 2017. Geochronology and Lu-Hf isotope of Early Paleozoic Zhuya-Shiban Gabbros in Yunkai Terrane, South China. Geological Bulletin of China, 36(5): 726-737 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201705005 [65] Zou, H. B., Zindler, A., 1996. Constraints on the Degree of Dynamic Partial Melting and Source Composition Using Concentration Ratios in Magmas. Geochimica et Cosmochimica Acta, 60(4): 711-717. https://doi.org/10.1016/0016-7037(95)00434-3 [66] 陈国建, 张伟波, 刘江涛, 2015.福建省泰宁县何宝山金矿床长兴岩体锆石LA-ICP-MS U-Pb年龄及其地质意义.中国地质, 42(2): 547-555. doi: 10.3969/j.issn.1000-3657.2015.02.014 [67] 高山, 张本仁, 金振明, 1999.秦岭-大别造山带下地壳拆沉作用.中国科学:地球科学, 29(6): 532-541. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd199906008 [68] 彭松柏, 刘松峰, 林木森, 等, 2016a.华夏早古生代俯冲作用(Ⅰ):来自糯垌蛇绿岩的新证据.地球科学, 41(5):765-778. doi: 10.3799/dqkx.2016.065 [69] 彭松柏, 刘松峰, 林木森, 等, 2016b.华夏早古生代俯冲作用(Ⅱ):大爽高镁-镁质安山岩新证据.地球科学, 41(6):931-947. doi: 10.3799/dqkx.2016.079 [70] 覃小锋, 王宗起, 王涛, 等, 2015.桂东鹰扬关群火山岩时代和构造环境的重新厘定:对钦杭结合带西南段构造格局的制约.地球学报, 36(3):283-292. http://d.old.wanfangdata.com.cn/Periodical/dqxb201503003 [71] 舒良树, 2006.华南前泥盆纪构造演化:从华夏地块到加里东期造山带.高校地质学报, 12(4):418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002 [72] 舒良树, 于津海, 贾东, 等, 2008.华南东段早古生代造山带研究.地质通报, 27(10):1581-1593. doi: 10.3969/j.issn.1671-2552.2008.10.001 [73] 王程程, 刘贻灿, 杨阳, 等, 2018.华北东南缘五河杂岩中镁铁质麻粒岩的变质演化.地球科学, 43(1):296-316. doi: 10.3799/dqkx.2018.018 [74] 王志宏, 杨文强, 周岱, 等, 2018.云开地块东缘寒武系-泥盆系不整合界面上下的碎屑锆石U-Pb年代学记录及对物源转换的响应.地球科学, 43(11):4193-4203. doi: 10.3799/dqkx.2018.242 [75] 徐亚军, 杜远生, 2018.从板缘碰撞到陆内造山:华南东南缘早古生代造山作用演化.地球科学, 43(2):333-353. doi: 10.3799/dqkx.2017.582 [76] 于津海, 魏震洋, 王丽娟, 等, 2006.华夏地块:一个由古老物质组成的年轻陆块.高校地质学报, 12(4): 440-447. doi: 10.3969/j.issn.1006-7493.2006.04.004 [77] 虞鹏鹏, 周永章, 郑义, 等, 2017.钦-杭结合带南段新元古代俯冲作用:来自粤西贵子混杂岩变基性岩年代学和地球化学的证据.岩石学报, 33(3): 739-752. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201703006 [78] 张芳荣, 舒良树, 王德滋, 等, 2009.华南东段加里东期花岗岩类形成构造背景探讨.地学前缘, 16(1):248-260. doi: 10.3321/j.issn:1005-2321.2009.01.027 [79] 周岱, 龙文国, 王磊, 等, 2017.云开地区早古生代竹雅-石板辉长岩锆石U-Pb定年与Lu-Hf同位素特征.地质通报, 36(5): 726-737. doi: 10.3969/j.issn.1671-2552.2017.05.005