Geochemical Characteristics and Metal Enrichment Rules of Black Shales in the Zhuxi Vanadium Ore Field, Eastern Guizhou
-
摘要: 目前急需分析黔东注溪钒矿形成的环境、成矿的物质来源以及矿化富集规律,指导实际地质勘查工作.系统研究了注溪矿区内中洞、老屋基和坪哨3个典型岩性剖面中黑色岩含矿岩系及矿层的全岩主微量元素组成.结果表明,含矿岩系具有较高的SiO2、MnO、Ce/Ce*和Eu/Eu*值,而矿层则含相对较高的Al2O3、Fe2O3、TiO2、CaO、Na2O、K2O、P2O5、V2O5、REE、As、Cu、Pb、Zn、Mo、Ni、Ti、Cr、Rb、Sr、Th、U和V.含矿岩系与矿层的主微量地球化学特征显示注溪钒矿床的成矿物源具有一定程度陆源物质的输入,且在成矿阶段受到了热水作用及生物作用的影响.另外,由南至北各剖面的热水成矿作用逐渐减弱;含矿岩系及矿层沉积环境均属缺氧环境,其中坪哨剖面的矿层沉积环境的缺氧程度要高于其他剖面.因此,注溪钒矿床钒富集成矿主要受古环境的还原条件和热液活动的影响,其中还原环境对钒元素的富集成矿起主要作用.据此推测坪哨剖面矿层形成时的海水深度应最深,北矿段中洞剖面的最浅;喷流热水带来的V等大量多金属元素在喷口及其附近大规模成矿.Abstract: There is an urgent need to analyze the forming environment,the metal enrichment process and ore-forming rules of the Zhuxi vanadium ore field in eastern Guizhou Province. This paper systematically studies the major and trace element compositions of ore-bearing rocks and ore strata from three typical black shale sections in the ore field. The results show that ore-bearing rocks contain high contents/values of SiO2,MnO,Ce/Ce* and Eu/Eu*,while ore strata have higher concentrations of Al2O3,Fe2O3,TiO2,CaO,Na2O,K2O,P2O5,V2O5,REE,As,Cu,Pb,Zn,Mo,Ni,Ti,Cr,Rb,Sr,Th,U and V. The major and trace element geochemical characteristics of ore-bearing rocks and ores indicate that the ore-forming source of the Zhuxi vanadium ore field had a certain degree of continental material input,whilst both hydrothermal and biological processes played a significant role during the ore-forming process. In addition,the intensities of hydrothermal process decreased from southern to northern sections and the sedimentary environment of both ore-bearing rocks and ores was anoxic. The ores from the Pingshao lithological sections were formed in the most reducing environment than those from other sections. Therefore,the V enrichment and mineralization in the Zhuxi ore field has mainly been controlled by reducing paleoenvironment and hydrothermal activity,and the reducing environment has been more significant for V mineralization. It can be inferred that ores from the Pingshao section should have been deposited in the deepest seawater environment while the ores from northern Zhongdong section had the shallowest seawater level. Exhalative fluid brought abundant V and other metal elements depositing in the vent and adjacent areas,leading to the large-scale mineralization.
-
图 1 贵州省寒武纪梅树村期岩相古地理简图
Fig. 1. Simplified Cambrian (Meishucun period) lithofacies paleogeographic map of the Guizhou Province
图 7 注溪钒矿含矿岩系与矿层北美页岩标准化稀土配分模式图(a、b)与平均地壳标准化微量元素蛛网图(c、d)
标准化值分别据Haskin(1984)和Yaroshevsky(2006)
Fig. 7. North American shale-normalized REE patterns (a, b) and average crust-normalized trace elements patterns (c, d) for ore-bearing rocks and ores from the Zhuxi V ore field
图 8 注溪钒矿主微量元素图解
a.Al/(Al+Fe+Mn)-SiO2/Al2O3图解;b. SiO2/(K2O+Na2O)-MnO/TiO2图解,据Murray(1994);c. Y-Ho图解;d. REE-La/Yb图解,据Allègre and Minster(1978);e. Th-U图解,据Boström(1983);f. Al2O3/(Al2O3+Fe2O3T)-Fe2O3T /TiO2图解, 据Murray(1994)
Fig. 8. Plots of major and trace elements for the Zhuxi V ore field
图 9 注溪钒矿矿化富集模式简图
据杨剑(2009)修改
Fig. 9. Cartoon-like profile of the mineralization enrichment patterns for the Zhuxi V ore field
表 1 注溪钒矿含矿岩系及矿石特征
Table 1. Characteristics of ore-bearing rocks and ores in the Zhuxi V ore field
岩石名称 矿物成分 结构构造 其他特征 硅质岩 主要矿物成分为硅质,含有少量的粘土矿物、粉砂质碎屑、有机质等.粉砂级碎屑主要成分为石英矿物屑. 硅质呈微-隐晶结构,晶体呈半自形-他形;粘土矿物呈不均匀分布,具有显微鳞片状结构,沿长轴方向定向性排列好. 石英矿物屑,呈次圆状-圆状零星分布,磨圆度和分选性均良好,碎屑矿物成熟度良好.有机质特征为污染状分布. 多金属层 岩性为灰绿色含黄铁矿含炭粘土质粉砂岩,含磷质结核.矿物成分有粉砂级陆源碎屑、粘土矿物、有机质和黄铁矿等.粉砂级陆源碎屑矿物成分以石英矿物屑为主. 粉砂状结构、层纹-条纹-条带状构造. 粉砂级陆源碎屑呈次圆状、圆状,呈层不均匀分布,具有良好的磨圆度和分选性,碎屑矿物成熟度较高.粘土矿物呈显微鳞片状晶体,层状分布.有机质呈层纹状不均匀分布.黄铁矿呈星散状分布,结晶颗粒大小为细-粉-微-隐晶级,粒度 < 0.25 mm,颗粒形态为半自形-他形,粒状晶体. 黑色炭质粉砂岩、炭质粘土岩 岩石矿物成分由陆源碎屑、有机质和泥质等组分组成,其中陆源碎屑成分以石英矿物屑为主. 粉砂质、泥质结构,层纹状、层状构造. 陆源碎屑呈不均匀层纹状分布,表现良好的磨圆度和分选性,呈次圆状、圆状. -
[1] Alibo, D.S., Nozaki, Y., 1999. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363-372. https://doi.org/10.1016/s0016-7037(98)00279-8 [2] Allègre, C.J., Minster, J.F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1): 1-25. https://doi.org/10.1016/0012-821x(78)90123-1 [3] Anderson, R.F., Fleisher, M.Q., LeHuray, A.P., 1989. Concentration, Oxidation State, and Particulate Flux of Uranium in the Black Sea. Geochimica et Cosmochimica Acta, 53(9): 2215-2224. https://doi.org/10.1016/0016-7037(89)90345-1 [4] Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2): 37-55. https://doi.org/10.1016/0301-9268(95)00087-9 [5] Bolhar, R., Van Kranendonk, M. J., 2007. A Non-Marine Depositional Setting for the Northern Fortescue Group, Pilbara Craton, Inferred from Trace Element Geochemistry of Stromatolitic Carbonates. Precambrian Research, 155(3-4): 229-250. https://doi.org/10.1016/j.precamres.2007.02.002 [6] Boström, K., 1983. Genesis of Ferromanganese Deposits-Diagnostic Criteria for Recent and Old Deposits. Hydrothermal Processes at Seafloor Spreading Centers, 12:473-489. https://doi.org/10.1007/978-1-4899-0402-7_20 [7] Bradley, D.C., 2008. Passive Margins through Earth History. Earth-Science Reviews, 91(1-4): 1-26. https://doi.org/10.1016/j.earscirev.2008.08.001 [8] Bradley, D.C., 2011. Secular Trends in the Geologic Record and the Supercontinent Cycle. Earth-Science Reviews, 108(1-2): 16-33. https://doi.org/10.1016/j.earscirev.2011.05.003 [9] Chang, H.J., Chu, X.L., Feng, L.J., et al., 2009.Redox Sensitive Trace Elements as Paleoenvironments Proxies. Geological Review, 55(1):91-99 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200901011 [10] Chen, D.R., Wu, B., Yang, E.L., et al., 2014. Geological Characteristics of Polymetallic Layer in Zhuxi V Deposit, Cengu County, Guizhou Province. Western Prospecting Engineering, 26(8):184-187 (in Chinese). [11] Chen, D. Z., Qing, H. R., Yan, X., et al., 2006. Hydrothermal Venting and Basin Evolution (Devonian, South China): Constraints from Rare Earth Element Geochemistry of Chert. Sedimentary Geology, 183(3-4): 203-216. https://doi.org/10.1016/j.sedgeo.2005.09.020 [12] Chen, D. Z., Wang, J. G., Qing, H. R., et al., 2009a. Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 258(3-4): 168-181. https://doi.org/10.1016/j.chemgeo.2008.10.016 [13] Chen, Y.Q., Jiang, S.Y., Ling, H.F., et al., 2009b. Pb-Pb Dating of Black Shales from the Lower Cambrian and Neoproterozoic Strata, South China. Geochemistry, 69(2):183-189. https://doi.org/10.1016/j.chemer.2008.12.005 [14] Chen, D. Z., Zhou, X. Q., Fu, Y., et al., 2015. New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 27(1): 62-68. https://doi.org/10.1111/ter.12134 [15] Chen, H.S., Yang, E.L., Yang, X. D., et al., 2013.Vanadium Deposits in the Lower Cambrian Black Rock Series in Eastern Guizhou Province. Contributions to Geology and Mineral Resources Research, 28(2):230-235 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201302010 [16] Chen, L., Zhong, H., Hu, R.Z., et al., 2006.Early Cambrian Oceanic Anoxic Event in Northern Guizhou: Biomarkers and Organic Carbon Isotope. Acta Petrologica Sinica, 22(9):2413-2423 (in Chinese with English abstract). [17] Chen, Y.X., Cui, Y.L., Liao, J.F., et al., 2013.Research and Ore Prospecting Problem of the Lower Cambrian Black Series in Yunnan Province, China. Acta Mineralogica Sinica, 33(4):637-642 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201304032 [18] Dai, C.G., Wang, M., Chen, J.S., et al., 2013.Tectonic Movement Characteristic and Its Geological Significance of Guizhou.Guizhou Geology, 30(2):119-124 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzdz201302008 [19] Fang, W.X., Hu, R.Z., Su, W.C., et al., 2002.Geochemical Characteristics of Dahebian-Gongxi Superlarge Barite Deposits and Analysis on Its Background of Tectonic Geology, China. Acta Petrologica Sinica, 18(2):247-256 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200202013 [20] Feng, Y.F., Chen, D.R., Wu, Z.C., et al., 2013. Exploration for Stratum-Controlled Mineralization Enrichment Rules of Zhuxi V Orebody in Cengu County. The Earth, (5):100-104 (in Chinese). [21] Fu, Y., Dong, L., Li, C., et al., 2016. New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation. Journal of Earth Science, 27(2): 271-281. https://doi.org/10.1007/s12583-016-0606-7 [22] Gao, P., He, Z. L., Li, S. J., et al., 2018. Volcanic and Hydrothermal Activities Recorded in Phosphate Nodules from the Lower Cambrian Niutitang Formation Black Shales in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 505: 381-397. https://doi.org/10.1016/j.palaeo.2018.06.019 [23] German, C.R., Elderfield, H., 1990. Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules. Paleoceanography, 5(5): 823-833. https://doi.org/10.1029/pa005i005p00823 [24] German, C.R., Holliday, B.P., Elderfield, H., 1991. Redox Cycling of Rare Earth Elements in the Suboxic Zone of the Black Sea. Geochimica et Cosmochimica Acta, 55(12): 3553-3558. https://doi.org/10.1016/0016-7037(91)90055-a [25] Han, T., Zhu, X. Q., Li, K., et al., 2015. Metal Sources for the Polymetallic Ni-Mo-PGE Mineralization in the Black Shales of the Lower Cambrian Niutitang Formation, South China. Ore Geology Reviews, 67: 158-169. https://doi.org/10.1016/j.oregeorev.2014.11.020 [26] Haskin, L.A., 1984. Chapter 4: Petrogenetic Modelling—Use of Rare Earth Elements. Developments in Geochemistry, 2:115-152. https://doi.org/10.1016/B978-0-444-42148-7.50009-5 [27] Jewell, P.W., Stallard, R.F., 1991. Geochemistry and Paleoceanographic Setting of Central Nevada Bedded Barites. The Journal of Geology, 99(2): 151-170. https://doi.org/10.1086/629482 [28] Jenkins, R.J.F., Cooper, J. A., Compston, W., 2002. Age and Biostratigraphy of Early Cambrian Tuffs from SE Australia and Southern China. Journal of the Geological Society, 159(6): 645-658. https://doi.org/10.1144/0016-764901-127 [29] Jiang, S.Y., Pi, D.H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459(7248): E5-E6. https://doi.org/10.1038/nature08048 [30] Jiang, Y.H., Li, S.R., 2005.A Study of the Fluid Environment of Silicalite of Transitional Precambrian-Cambrian Age in Hunan and Guizhou Provinces. Earth Science Frontiers, 12(4):622-629 (in Chinese with English abstract). doi: 10.1074-jbc.M111.287474/ [31] Jones, B., Manning, D.A.C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-x [32] Kamber, B.S., Webb, G.E., 2001. The Geochemistry of Late Archaean Microbial Carbonate: Implications for Ocean Chemistry and Continental Erosion History. Geochimica et Cosmochimica Acta, 65(15): 2509-2525. https://doi.org/10.1016/s0016-7037(01)00613-5 [33] Kimura, H., Watanabe, Y., 2001. Oceanic Anoxia at the Precambrian-Cambrian Boundary. Geology, 29(11): 995. https://doi.org/10.1130/0091-7613(2001)029 < 0995:oaatpc > 2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0995:oaatpc>2.0.co;2 [34] Lan, Z. W., Li, X.H., Chu, X. L., et al., 2017. SIMS U-Pb Zircon Ages and Ni-Mo-PGE Geochemistry of the Lower Cambrian Niutitang Formation in South China: Constraints on Ni-Mo-PGE Mineralization and Stratigraphic Correlations. Journal of Asian Earth Sciences, 137: 141-162. https://doi.org/10.1016/j.jseaes.2016.12.046 [35] Li, S.S., Wei, G.F., Nie, J.T., et al., 2012.The Geological and Geochemical Characteristics of Shuigou Vanadium Deposit in Southern Qinling and Its Genesis.Geoscience, 26(2):243-253 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201202004 [36] Li, Z.X., Bogdanova, S.V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021 [37] Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke Up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5 [38] Ling, H.F., Chen, X., Li, D., et al., 2013. Cerium Anomaly Variations in Ediacaran-Earliest Cambrian Carbonates from the Yangtze Gorges Area, South China: Implications for Oxygenation of Coeval Shallow Seawater. Precambrian Research, 225: 110-127. https://doi.org/10.1016/j.precamres.2011.10.011 [39] Lu, G.Z., 2013. Geological Characteristics and Clues for Prospecting of Zhuxi V Deposit in Cengong. Mineral Resources and Geology, 27(3):217-221 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcydz201303007 [40] Mao, J.W., Lehmann, B., Du, A.D., et al., 2002. Re-Os Dating of Polymetallic Ni-Mo-PGE-Au Mineralization in Lower Cambrian Black Shales of South China and Its Geologic Significance. Economic Geology, 97(5): 1051-1061. https://doi.org/10.2113/gsecongeo.97.5.1051 [41] Mao, Z.C., Du, Y.S., Zhang, M., et al., 2008.Devonian Sedimentary Environment and Sedimentary Organic Matter Characteristics of Central Guangxi Province. Science in China (Series D), 38(S2):80-86 (in Chinese). [42] Marchig, V., Gundlach, H., Möller, P., et al., 1982. Some Geochemical Indicators for Discrimination between Diagenetic and Hydrothermal Metalliferous Sediments. Marine Geology, 50(3): 241-256. https://doi.org/10.1016/0025-3227(82)90141-4 [43] Meyer, E.E., Quicksall, A.N., Landis, J.D., et al., 2012. Trace and Rare Earth Elemental Investigation of a Sturtian Cap Carbonate, Pocatello, Idaho: Evidence for Ocean Redox Conditions before and during Carbonate Deposition. Precambrian Research, 192-195: 89-106. https://doi.org/10.1016/j.precamres.2011.09.015 [44] Morford, J.L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments.Geochimica et Cosmochimica Acta, 63(11-12): 1735-1750. https://doi.org/10.1016/s0016-7037(99)00126-x [45] Murray, R.W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sedimentary Geology, 90(3-4): 213-232. https://doi.org/10.1016/0037-0738(94)90039-6 [46] Murray, R.W., Buchholtz Ten Brink, M. R., Gerlach, D. C., et al., 1991. Rare Earth, Major, and Trace Elements in Chert from the Franciscan Complex and Monterey Group, California: Assessing REE Sources to Fine-Grained Marine Sediments. Geochimica et Cosmochimica Acta, 55(7): 1875-1895. https://doi.org/10.1016/0016-7037(91)90030-9 [47] Nozaki, Y., Zhang, J., Amakawa, H., 1997. The Fractionation between Y and Ho in the Marine Environment. Earth and Planetary Science Letters, 148(1-2): 329-340. https://doi.org/10.1016/s0012-821x(97)00034-4 [48] Owen, A.W., Armstrong, H.A., Floyd, J.D., 1999. Rare Earth Element Geochemistry of Upper Ordovician Cherts from the Southern Uplands of Scotland. Journal of the Geological Society, 156(1): 191-204. https://doi.org/10.1144/gsjgs.156.1.0191 [49] Peng, J., Tian, J.C., Yi, H.S., et al., 2000.The Late Precambrian Hot Water Sedimentation of the Southeast Yangtze Plate Continental Margin. Acta Sedimentologica Sinica, 18(1):107-113 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200001018 [50] Sageman, B.B., Murphy, A.E., Werne, J.P., et al., 2003. A Tale of Shales: The Relative Roles of Production, Decomposition, and Dilution in the Accumulation of Organic-Rich Strata, Middle-Upper Devonian, Appalachian Basin. Chemical Geology, 195(1-4): 229-273. https://doi.org/10.1016/s0009-2541(02)00397-2 [51] Slack, J.F., Grenne, T., Bekker, A., et al., 2007. Suboxic Deep Seawater in the Late Paleoproterozoic: Evidence from Hematitic Chert and Iron Formation Related to Seafloor-Hydrothermal Sulfide Deposits, Central Arizona, USA. Earth and Planetary Science Letters, 255(1-2): 243-256. https://doi.org/10.1016/j.epsl.2006.12.018 [52] Tang, H.S., Xu, W.J., Xie, S.Y., et al., 2005. The Ore Type in Lower Cambrian Black Rock Series in China. Mineral Resources and Geology, 19(4):341-344 (in Chinese with English abstract). [53] Tang, X., Zhang, J. C., Liu, Y., et al., 2018. Geochemistry of Organic Matter and Elements of Black Shale during Weathering in Northern Guizhou, Southwestern China: Their Mobilization and Inter-Connection. Geochemistry, 78(1): 140-151. https://doi.org/10.1016/j.chemer.2017.08.002 [54] Taylor, S.R., McLennan, S.M., 1986. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Cambridge. [55] Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 [56] Wang, J.J., Zeng, P.S., Ma, J., et al., 2015.Black Rock Series and Associated Minerals: An Example of the Yangtze Platform. Geology and Exploration, 51(4):677-689 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzykt201504008 [57] Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2012. New U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran-Cambrian Transition. Journal of Asian Earth Sciences, 48: 1-8. https://doi.org/10.1016/j.jseaes.2011.12.023 [58] Wang, Z.Z., Chen, D.Z., Wang, J.G., et al., 2007.Ree Geochemistry and Depositional Settings of the Devonian Cherts in Nanning Area, Guangxi. Chinese Journal of Geology (Scientia Geologica Sinica), 42(3):558-569 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200703011 [59] Wedepohl, K.H., 1971. Environmental Influences on the Chemical Composition of Shales and Clays.Physics and Chemistry of the Earth, 8:307-333. https://doi.org/10.1016/0079-1946(71)90020-6 [60] Wignall, P.B., Twitchett, R.J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Science, 272(5265): 1155-1158. https://doi.org/10.1126/science.272.5265.1155 [61] Wilde, P., Quinby-Hunt, M.S., Erdtmann, B.D., 1996. The Whole-Rock Cerium Anomaly: A Potential Indicator of Eustatic Sea-Level Changes in Shales of the Anoxic Facies. Sedimentary Geology, 101(1-2): 43-53. https://doi.org/10.1016/0037-0738(95)00020-8 [62] Xu, L. G., Lehmann, B., Mao, J. W., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China—A Reassessment. Economic Geology, 106(3):511-522. https://doi.org/10.2113/econgeo.106.3.511 [63] Xu, L. G., Lehmann, B., Mao, J. W., et al., 2012. Mo Isotope and Trace Element Patterns of Lower Cambrian Black Shales in South China: Multi-Proxy Constraints on the Paleoenvironment. Chemical Geology, 318-319: 45-59. https://doi.org/10.1016/j.chemgeo.2012.05.016 [64] Xu, S.Q., 1997.The Best Location of Middle-Upper Cambrian Demarcation Line from Cambrian Sequence Framework in the Western Hunan. Earth Science, 22(5): 511-514 (in Chinese with English abstract). [65] Yang, J., 2009. Study on the Formation Environment and Geochemistry of Lower Cambrian Black Shale Series, Northern Guizhou Province, China (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [66] Yang, J., Jin, S.R., He, T.Y., et al., 2013. Geological Features and Genetic Analysis of Nickel Molybdenum in New Tugou of Guizhou Zunyi. Journal of Southwest University of Science and Technology, 28(1):54-61 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xngxyxb201301011 [67] Yang, J., Yi, F. C., Hou, L. J., 2004.Genesis and Petrogeochemistry Characteristics of Lower Cambrian Black Shale Series in Northern Guizhou. Acta Mineralogica Sinica, 24(3):285-289 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb200403013 [68] Yang, X.L., Zhu, M.Y., Zhao, Y.L., et al., 2007. Trace Element Geochemical Characteristics from the Ediacaran Cambrian Transition Interval in Eastern Guizhou, South China. Acta Geologica Sinica, 81(10):1391-1397 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200710009 [69] Yang, X.L., Zhu, M.Y., Zhao, Y.L., et al., 2008.REE Geochemical Characteristics of the Ediacaran-Lower Cambrian Black Rock Series in Eastern Guizhou. Geological Review, 54(1):3-15 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000004406 [70] Yaroshevsky, A.A., 2006. Abundances of Chemical Elements in the Earth's Crust. Geochemistry International, 44(1): 48-55. https://doi.org/10.1134/s001670290601006x [71] Ye, J., Fan, D.L., 2000.Characteristics and Mineralization of Ore Deposits Related to Black Shale Series. Bulletin of Mineralogy Petrology and Geochemistry, 19(2):95-102(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200002004 [72] Yin, L., Li, J., Tian, H., et al., 2018. Rhenium-Osmium and Molybdenum Isotope Systematics of Black Shales from the Lower Cambrian Niutitang Formation, SW China: Evidence of a Well Oxygenated Ocean at ca. 520 Ma. Chemical Geology, 499: 26-42. https://doi.org/10.1016/j.chemgeo.2018.08.016 [73] 常华进, 储雪蕾, 冯连君, 等, 2009.氧化还原敏感微量元素对古海洋沉积环境的指示意义.地质论评, 55(1):91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011 [74] 陈德荣, 吴波, 杨恩林, 等, 2014.贵州岑巩注溪钒矿床多金属层地质特征.西部探矿工程, 26(8):184-187. doi: 10.3969/j.issn.1004-5716.2014.08.055 [75] 陈恨水, 杨恩林, 杨秀德, 等, 2013.黔东下寒武统黑色岩系钒矿床.地质找矿论丛, 28(2):230-235. http://d.old.wanfangdata.com.cn/Periodical/dzzklc201302010 [76] 陈兰, 钟宏, 胡瑞忠, 等, 2006.黔北早寒武世缺氧事件:生物标志化合物及有机碳同位素特征.岩石学报, 22(9):2413-2423. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609018 [77] 陈艳霞, 崔银亮, 廖剑锋, 等, 2013.云南下寒武统黑色岩系矿床研究现状及相关找矿问题探讨.矿物学报, 33(4):637-642. http://d.old.wanfangdata.com.cn/Periodical/kwxb201304032 [78] 戴传固, 王敏, 陈建书, 等, 2013.贵州构造运动特征及其地质意义.贵州地质, 30(2):119-124. doi: 10.3969/j.issn.1000-5943.2013.02.008 [79] 方维萱, 胡瑞忠, 苏文超, 等, 2002.大河边-新晃超大型重晶石矿床地球化学特征及形成的地质背景.岩石学报, 18(2):247-256. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200202013 [80] 冯运富, 陈德荣, 吴志成, 等, 2013.岑巩县注溪矿区钒矿层(体)层控富集规律初探.地球, (5):100-104. [81] 江永宏, 李胜荣, 2005.湘、黔地区前寒武-寒武纪过渡时期硅质岩生成环境研究.地学前缘, 12(4):622-629. doi: 10.3321/j.issn:1005-2321.2005.04.035 [82] 李赛赛, 魏刚锋, 聂江涛, 等, 2012.南秦岭水沟钒矿床地质地球化学特征及成因.现代地质, 26(2):243-253. doi: 10.3969/j.issn.1000-8527.2012.02.004 [83] 陆国章, 2013.岑巩县注溪钒矿地质特征及找矿标志.矿产与地质, 27(3):217-221. doi: 10.3969/j.issn.1001-5663.2013.03.007 [84] 毛治超, 杜远生, 张敏, 等, 2008.广西桂中地区泥盆系沉积环境及沉积有机质特征.中国科学(D辑), 38(S2):80-86. doi: 10.1097-SAP.0b013e31822e5c4a/ [85] 彭军, 田景春, 伊海生, 等, 2000.扬子板块东南大陆边缘晚前寒武纪热水沉积作用.沉积学报, 18(1):107-113. doi: 10.3969/j.issn.1000-0550.2000.01.018 [86] 唐红松, 徐文杰, 谢世业, 等, 2005.我国下寒武统黑色岩系的矿产类型.矿产与地质, 19(4):341-344. doi: 10.3969/j.issn.1001-5663.2005.04.003 [87] 王聚杰, 曾普胜, 麻菁, 等, 2015.黑色岩系及相关矿产——以扬子地台为例.地质与勘探, 51(4):677-689. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201504008 [88] 王卓卓, 陈代钊, 汪建国, 等, 2007.广西南宁地区泥盆纪硅质岩稀土元素地球化学特征及沉积背景.地质科学, 42(3):558-569. doi: 10.3321/j.issn:0563-5020.2007.03.011 [89] 徐世球, 1997.湖南凤凰寒武纪Fischer点图及其意义.地球科学, 22(5):511-514. http://www.earth-science.net/article/id/554 [90] 杨剑, 2009.黔北地区下寒武统黑色岩系形成环境与地球化学研究(博士学位论文).西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-11941-2009176704.htm [91] 杨捷, 金少荣, 何天元, 等, 2013.贵州遵义新土沟镍钼矿地质特征及成因浅析.西南科技大学学报, 28(1):54-61. doi: 10.3969/j.issn.1671-8755.2013.01.011 [92] 杨剑, 易发成, 侯兰杰, 等, 2004.黔北黑色岩系的岩石地球化学特征和成因.矿物学报, 24(3):285-289. doi: 10.3321/j.issn:1000-4734.2004.03.013 [93] 杨兴莲, 朱茂炎, 赵元龙, 等, 2007.黔东前寒武纪-寒武纪转换时期微量元素地球化学特征研究.地质学报, 81(10):1391-1397. doi: 10.3321/j.issn:0001-5717.2007.10.009 [94] 杨兴莲, 朱茂炎, 赵元龙, 等, 2008.黔东震旦系-下寒武统黑色岩系稀土元素地球化学特征.地质论评, 54(1):3-15. doi: 10.3321/j.issn:0371-5736.2008.01.002 [95] 叶杰, 范德廉, 2000.黑色岩系型矿床的形成作用及其在我国的产出特征.矿物岩石地球化学通报, 19(2):95-102. doi: 10.3969/j.issn.1007-2802.2000.02.004 -
dqkx-44-9-2978-Table1-3.docx