Carbon Isotope Trend across the Base of Furongian Series of Cambrian, Northern Henan, North China
-
摘要: 为了确定我国华北寒武系苗岭统鼓山阶和芙蓉统排碧阶的底界,对豫北沙滩剖面碳酸盐岩碳同位素组成演化趋势进行了研究.结果表明寒武系δ13C演化表现出3次正漂移和2次负漂移,正漂移分布于张夏组下部、中部和炒米店组上部,δ13C分别达到最大值2.0‰、1.0‰和3.0‰;负漂移分布于张夏组底部和中下部,δ13C分别降到最低值-3.4‰和-1.0‰.炒米店组上部的δ13C正漂移起始于三叶虫Chuangia带底部,相当于美国、澳大利亚、西伯利亚及我国华南地区的芙蓉统排碧阶的SPICE正漂移.张夏组底部的δ13C负漂移对应于三叶虫Bailiella-Lioparia带,相当于鼓山阶底部的DICE负漂移.这2次δ13C漂移事件不仅可作为区域地层对比的依据,还可作为我国华北寒武系苗岭统鼓山阶和芙蓉统排碧阶底界确定的标志.寒武纪δ13C漂移事件与海平面变化、古生态环境演化密切相关,因海侵作用导致的古生态环境扩大及海洋初始生产力的繁盛可能是海相碳酸盐岩δ13C正漂移演化的主要原因.Abstract: In order to define the base of the Drumian Stage and the base of the Paibian Stage of Cambrian in North China, carbon isotope trend is studied on the Shatan section, northern Henan. Data of carbon isotope suggest that three positive excursions and two negative excursions have been examined within the measured stratigraphical interval. Positive carbon isotope excursions occur separately in the lower part and the middle part of the Changhia Formation and in the upper part of the Chaumitien Formation, maximum δ13C values of these positive excursions reach to 2.0‰, 1.0‰ and 3.0‰ respectively. Negative δ13C excursions occur in the basal and the lower-middle part of the Changhia Formation with the minimum values of -3.4‰ and -1.0‰ respectively. Especially, the remarkable positive excursion examined in the upper part of the Chaumitien Formation commences on the base of the trilobite Chuangia zone, which corresponds to the base of the Paibian Stage in South China and is equivalent to the SPICE excursion detected in the Paibian Stage in USA, Australia, and Kazakhstan. The negative excursion examined in the basal part of the Changhia Formation is equivalent to the DICE excursion. Both the two carbon isotope excursions are not only used as tools for the regional stratigraphical classification and correlation, but also used as key indicators in defining the Drumian Stage and the Paibian Stage in North China. In addition, carbon isotope excursions are interpreted to be associated with global scale sea-level fluctuations, paleoecological environmental changes. Seawater transgression together with enlargement of paleoecological environment played an important role in positive carbon isotope excursions during the Late Miaolingian to the Early Furongian.
-
Key words:
- carbon isotope /
- base of Furongian Series /
- Cambrian /
- northern Henan /
- North China Platform /
- stratigraphy
-
图 1 华北地台寒武纪芙蓉世古地理概况
据冯增昭等(2002)修编.1.古陆;2.潮坪相;3.鲕粒滩;4.风暴砾屑灰岩;5.残余洋盆(造山带);6.深水盆地相;7.浅水碳酸盐岩台地相;8.豫北卫辉沙滩剖面
Fig. 1. Paleogeographical map of North China Platform during the Furongian Epoch of Cambrian
图 2 采自豫北沙滩剖面寒武系地层中的三叶虫化石
a~c.Chuangia tolli Resser & Endo, 1937;产于寒武系炒米店组下部. d. Pagodia sp.; e. Stephanocare richthofeni Monke, 1903; f. Eosoptychoparia sp.; g. Pseudosolenopleura pustulosa Qian, 1994. h. Sunaspis laevis Lu, 1953;产于寒武系馒头组. i~l. Bailiella lantenoisi (Mansuy, 1916),产于寒武系张夏组底部的页岩中
Fig. 2. Trilobite fossils collected from the Shatan section, northern Henan
图 4 豫北沙滩剖面寒武系排碧阶底界附近的碳、氧同位素组成演化曲线
1.白云岩;2.粗晶白云岩;3.白云质灰岩;4.生物潜穴灰岩;5.生物扰动灰岩;6.鲕粒灰岩;7.叠层石灰岩;8.条带状灰岩;9.豹皮状灰岩;10.生物碎屑灰岩;11.竹叶状灰岩;12.灰岩;13.页岩;14.“2”型层序界面;15.最大海泛面;16.高水位体系域;17.三级层序及编号;18.发生在鼓山阶底部的碳同位素组成的负漂移;19.发生在芙蓉统排碧阶的碳同位素组成的负漂移;20.碳、氧同位素样品取样位置
Fig. 4. Trends of carbon-oxygen isotopes around the base of the Paibian Stage in the Shatan section, northern Henan
图 5 豫北-山东寒武系芙蓉统排碧阶碳同位素组成演化趋势对比
a.河南卫辉沙滩剖面;b.山东莱坞黄羊山剖面,据Ng et al.(2014)修改.1.白云岩;2.白云质灰岩;3.生物潜穴灰岩;4.生物扰动灰岩;5.鲕粒灰岩;6.叠层石灰岩;7.条带状灰岩;8.砾屑灰岩;9.灰岩;10.页岩; 11.覆盖
Fig. 5. Correlation of carbon isotope trend of the Paibian Stage between northern Henan and western Shadong
图 6 世界各地寒武系芙蓉统排碧阶碳同位素组成演化趋势对比
哈萨克斯坦、澳大利亚和美国内华达据Saltzman et al.(2000)修改;中国浙西和中国湘西据Zuo et al.(2018)修改
Fig. 6. Correlation of carbon isotope trend of the Paibian Stage of Furongian Series worldwide
表 1 豫北沙滩剖面寒武系碳、氧同位素组分析结果(VPDB标准,‰)
Table 1. Data of δ13C (‰) and δ18O (‰) from the Cambrian Shatan section, northern Henan
样品位置(m) δ18O δ13C 岩性 436 -8.4 -1.6 白云岩 434 -8.9 -1.5 白云岩 432 -6.3 -0.4 白云岩 430 -7.2 0.0 白云岩 428 -8.0 -0.2 白云岩 426 -7.1 -0.4 白云岩 424 -7.8 -0.3 白云岩 422 -7.2 -0.4 白云岩 420 -7.7 -0.3 白云岩 418 -7.5 -0.2 白云岩 416 -7.6 -0.3 白云岩 414 -7.7 -0.4 白云岩 412 -9.2 -0.3 白云岩 410 -7.1 -0.2 白云岩 408 -6.9 -0.3 白云质灰岩 406 -8.0 -0.4 白云质灰岩 404 -7.9 -0.1 灰岩 402 -7.6 1.7 灰岩 400 -8.5 0.2 灰岩 398 -9.6 0.0 灰岩 396 -10.1 0.8 灰岩 394 -9.9 2.0 灰岩 392 -10.4 1.2 灰岩 390 -7.5 3.0 灰岩 388 -8.1 -0.1 灰岩 386 -9.6 0.0 灰岩 384 -10.2 -0.2 灰岩 382 -8.8 0.1 灰岩 380 -7.8 0.4 灰岩 378 -8.7 -0.2 灰岩 376 -7.2 0.6 灰岩 374 -7.9 0.1 灰岩 372 -8.8 -0.3 灰岩 370 -8.7 -0.4 灰岩 368 -8.6 -0.2 灰岩 366 -8.4 0.0 灰岩 364 -9.1 -0.3 灰岩 362 -8.5 0.4 灰岩 360 -8.7 0.1 灰岩 358 -9.3 0.4 灰岩 356 -8.8 0.1 灰岩 354 -9.5 0.3 灰岩 352 -9.9 0.2 灰岩 350 -8.2 0.4 灰岩 348 -7.2 0.3 灰岩 346 -7.1 0.1 灰岩 344 -7.3 0.1 灰岩 342 -7.2 0.1 灰岩 340 -7.4 0.2 灰岩 338 -7.8 0.3 灰岩 336 -7.9 0.5 灰岩 334 -8.2 0.6 灰岩 332 -8.2 0.6 灰岩 330 -9.1 0.1 灰岩 328 -9.9 0.7 灰岩 326 -9.0 0.6 灰岩 324 -9.9 -0.2 灰岩 322 -10.3 0.5 灰岩 320 -10.2 0.5 灰岩 318 -8.8 0.8 灰岩 316 -8.9 1.0 灰岩 314 -9.0 0.9 灰岩 312 -10.6 0.0 灰岩 310 -10.0 -0.8 灰岩 308 -9.2 -0.6 灰岩 306 -8.8 -0.6 灰岩 304 -8.9 -1.0 灰岩 302 -9.4 -0.5 灰岩 300 -9.7 -0.9 灰岩 298 -8.6 -0.2 灰岩 296 -8.9 -0.5 灰岩 294 -9.5 -0.5 灰岩 292 -9.7 -0.4 灰岩 290 -8.8 -0.4 灰岩 288 -10.1 -0.4 灰岩 286 -9.0 -0.2 灰岩 284 -8.6 -0.3 灰岩 282 -11.4 -0.4 灰岩 280 -10.0 -0.9 灰岩 278 -9.1 -0.5 灰岩 276 -9.4 -0.1 灰岩 274 -9.9 -0.4 灰岩 272 -9.3 0.4 灰岩 270 -10.1 -0.1 灰岩 268 -9.5 -0.3 灰岩 266 -11.3 -0.8 灰岩 264 -10.1 -0.2 灰岩 262 -9.8 -0.7 灰岩 260 -9.0 0.0 灰岩 258 -9.7 -0.1 灰岩 256 -9.3 -0.3 灰岩 254 -9.2 0.5 灰岩 252 -9.9 0.1 灰岩 250 -9.4 0.1 灰岩 248 -8.7 0.5 灰岩 246 -9.5 -0.1 灰岩 244 -9.1 -0.1 灰岩 242 -9.0 -0.3 灰岩 240 -10.9 0.6 灰岩 238 -9.0 1.8 灰岩 236 -9.7 2.0 灰岩 234 -8.7 1.1 灰岩 232 -9.1 0.7 灰岩 230 -8.8 1.1 灰岩 228 -8.4 1.3 灰岩 226 -8.7 1.4 灰岩 224 -9.2 1.0 灰岩 222 -9.5 1.3 灰岩 218 -11.6 0.8 灰岩 216 -11.8 -0.5 灰岩 214 -11.8 0.6 灰岩 211.4 -11.8 -0.1 灰岩 210 -11.5 -1.5 灰岩 208 -9.5 -3.4 灰岩 206 -10.2 -1.0 灰岩 204 -11.4 -1.2 灰岩 202 -10.3 -1.6 灰岩 200 -11.1 -1.6 灰岩 198 -9.4 -1.2 灰岩 196 -9.5 -0.8 灰岩 -
[1] Açıkalın, S., Ocakoğlu, F., Yılmaz, İ. Ö., et al., 2016. Stable Isotopes and Geochemistry of a Campanian– Maastrichtian Pelagic Succession, Mudurnu–Göynük Basin, NW Turkey: Implications for Palaeoceanography, Palaeoclimate and Sea-Level Fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 453-466. https://doi.org/10.1016/j.palaeo.2015.10.005 [2] Babcock, L. E., Robison, R. A., Rees, M. N., et al., 2007. The Global Boundary Stratotype Section and Point (GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA. Episodes, 30(2): 85-95. https://doi.org/10.18814/epiiugs/2007/v30i2/003 [3] Bagnoli, G., Qi, Y. P., Zuo, J. X., et al., 2014. Integrated Biostratigraphy and Carbon Isotopes from the Cambrian Tangwangzhai Section, North China. Palaeoworld, 23(2): 112-124. https://doi.org/10.1016/j.palwor.2013.12.002 [4] Banner, J. L., Hanson, G. N., 1990. Calculation of Simultaneous Isotopic and Trace Element Variations during Water-Rock Interaction with Applications to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 54(11): 3123-3137. https://doi.org/10.1016/0016-7037(90)90128-8 [5] Chavez, F. P., Messié, M., Pennington, J. T., 2011. Marine Primary Production in Relation to Climate Variability and Change. Annual Review of Marine Science, 3(1): 227-260. https://doi.org/10.1146/annurev.marine.010908.163917 [6] Chen, J. T., Chough, S. K., Lee, J. H., et al., 2012. Sequence-Stratigraphic Comparison of the Upper Cambrian Series 3 to Furongian Succession between the Shandong Region, China and the Taebaek Area, Korea: High Variability of Bounding Surfaces in an Epeiric Platform. Geosciences Journal, 16(4): 357-379. https://doi.org/10.1007/s12303-012-0040-5 [7] Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317-1329. https://doi.org/10.1016/0016-7037(92)90064-p [8] Dilliard, K. A., Pope, M. C., Coniglio, M., et al., 2007. Stable Isotope Geochemistry of the Lower Cambrian Sekwi Formation, Northwest Territories, Canada: Implications for Ocean Chemistry and Secular Curve Generation. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4): 174-194. https://doi.org/10.1016/j.palaeo.2007.02.031 [9] Du, S.X., Zhang, R.H., Zhang, G.L., et al., 2007.New Developement of Study on Lower Part of Cambrian in Cambrian Standard Profile in Zhangxia-Gushan Area in Shandong Province. Land and Resources in Shandong Province, 23(10):1-6, 14 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sddz200710001 [10] Elrick, M., Rieboldt, S., Saltzman, M., et al., 2011. Oxygen-Isotope Trends and Seawater Temperature Changes Across the Late Cambrian Steptoean Positive Carbon-Isotope Excursion (SPICE Event). Geology, 39(10): 987-990. https://doi.org/10.1130/g32109.1 [11] Feng, Z. Z., Peng, Y. M., Jin, Z. K., et al., 2002. Lithofacies Palaeogeography of the Late Cambrian in China. Journal of Palaeogeography, 4(3):1-10 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-dqkx200703002 [12] Gill, B. C., Lyons, T. W., Young, S. A., et al., 2011. Geochemical Evidence for Widespread Euxinia in the Later Cambrian Ocean. Nature, 469(7328): 80-83. https://doi.org/10.1038/nature09700 [13] Glumac, B., Mutti, L. E., 2007. Late Cambrian (Steptoean) Sedimentation and Responses to Sea-Level Change along the Northeastern Laurentian Margin: Insights from Carbon Isotope Stratigraphy. Geological Society of America Bulletin, 119(5-6): 623-636. https://doi.org/10.1130/b25897.1 [14] Howley, R. A., Jiang, G. Q., 2010. The Cambrian Drumian Carbon Isotope Excursion (DICE) in the Great Basin, Western United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(1-2): 138-150. https://doi.org/10.1016/j.palaeo.2010.07.001 [15] Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161(1-3): 37-57. https://doi.org/10.1016/s0009-2541(99)00080-7 [16] Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., 1993. The Vendian Record of Sr and C Isotopic Variations in Seawater: Implications for Tectonics and Paleoclimate. Earth and Planetary Science Letters, 120(3-4): 409-430. https://doi.org/10.1016/0012-821x(93)90254-7 [17] Kim, M.C., Yang, J.H., Peng, P., et al., 2018.Carbon Isotope Excursions of Cambrian Hwangju and Bopdong Groups in Pyongnam Basin, Korean Peninsula. Earth Science, 43(11):4096-4108 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811024 [18] Maloof, A. C., Schrag, D. P., Crowley, J. L., et al., 2005. An Expanded Record of Early Cambrian Carbon Cycling from the Anti-Atlas Margin, Morocco. Canadian Journal of Earth Sciences, 42(12): 2195-2216. https://doi.org/10.1139/e05-062 [19] Mei, M.X., Guo, R.T., Hu, Y., et al., 2011.Sedimentary Fabrics for the Stromatolitic Bioherm of the Cambrian Gushan Formation at the Xiaweidian Section in the Western Suburb of Beijing.Acta Petrologica Sinica, 27(8):2473-2486 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201108023 [20] Mei, M. X., Zhang, R., Li, Y. Y., et al., 2017. Calcified Cyanobacterias within the Stromatolotic Bioherm for the Cambrian Furongian Series in the Northeastern Margin of the North-China Platform. Acta Petrologica Sinica, 33(4):1073-1093 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201704005 [21] Montañez, I. P., Osleger, D. A., Banner, J. L., et al., 2000. Evolution of the Sr and C Isotope Composition of Cambrian Oceans. GSA Today, 10(5):1–7. [22] Ng, T. W., Yuan, J. L., Lin, J. P., 2014. The North China Steptoean Positive Carbon Isotope Excursion and Its Global Correlation with the Base of the Paibian Stage (Early Furongian Series), Cambrian. Lethaia, 47(2): 153-164. https://doi.org/10.1111/let.12027 [23] Ngia, N. R., Hu, M. Y., Gao, D., et al., 2019. Application of Stable Strontium Isotope Geochemistry and Fluid Inclusion Microthermometry to Studies of Dolomitization of the Deeply Buried Cambrian Carbonate Successions in West-Central Tarim Basin, NW China. Journal of Earth Science, 30(1): 176-193. https://doi.org/10.1007/s12583-017-0954-y [24] Pei, F., 2000. Division and Correlation of the North China Type Cambrian Biostratigraphic Units of Henan Province. Henan Geology, 18(2):97-106 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200000721763 [25] Peng, S.C., Zhao, Y.L., 2018. The Proposed Global Standard Stratotype-Section and Point (GSSP) for the Conterminous Base of Miaolingian Series and Wuliuan Stage at Balang, Jianhe, Guizhou, China was Ratified by Iugs. Journal of Stratigraphy, 42(3):325-327 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201803008 [26] Peng, S. C., Zhu, X. J., Zuo, J. X., et al., 2011. Recently Ratified and Proposed Cambrian Global Standard Stratotype-Section and Points. Acta Geologica Sinica (English Edition), 85(2): 296-308. https://doi.org/10.1111/j.1755-6724.2011.00399.x [27] Saltzman, M. R., Cowan, C. A., Runkel, A. C., et al., 2004. The Late Cambrian Spice (δ13C) Event and the Sauk Ⅱ-SAUK Ⅲ Regression: New Evidence from Laurentian Basins in Utah, Iowa, and Newfoundland. Journal of Sedimentary Research, 74(3): 366-377. https://doi.org/10.1306/120203740366 [28] Saltzman, M. R., Ripperdan, R. L., Brasier, M. D., et al., 2000. A Global Carbon Isotope Excursion (SPICE) during the Late Cambrian: Relation to Trilobite Extinctions, Organic-Matter Burial and Sea Level. Palaeogeography, Palaeoclimatology, Palaeoecology, 162(3-4): 211-223. https://doi.org/10.1016/s0031-0182(00)00128-0 [29] Saltzman, M. R., Runnegar, B., Lohmann, K. C., 1998. Carbon Isotope Stratigraphy of Upper Cambrian (Steptoean Stage) Sequences of the Eastern Great Basin: Record of a Global Oceanographic Event. Geological Society of America Bulletin, 110(3): 285-297. https://doi.org/10.1130/0016-7606(1998)110<0285:cisouc>2.3.co;2 doi: 10.1130/0016-7606(1998)110<0285:cisouc>2.3. co ;2[30] Shi, X.Y., Chen, J.Q., Mei, S.L., 1997.Cambrian Sequence Chronostratigraphic Frame Work of the North China Platform. Earth Science Frontiers, 4(3-4): 161-171 (in Chinese with English abstract). [31] Song, H.Y., Tong, J.N., Du, Y., et al., 2018. Large Perturbed Marine Carbon-Nitrogen-Sulfur Isotopes during Early Triassic.Earth Science, 43(11):3922-3931 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811010 [32] Stephens, N. P., Sumner, D. Y., 2003. Late Devonian Carbon Isotope Stratigraphy and Sea Level Fluctuations, Canning Basin, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 191(2): 203-219. https://doi.org/10.1016/s0031-0182(02)00714-9 [33] Surge, D. M., Savarese, M., Robert Dodd, J., et al., 1997. Carbon Isotopic Evidence for Photosynthesis in Early Cambrian Oceans. Geology, 25(6): 503-506. https://doi.org/10.1130/0091-7613(1997)025<0503:ciefpi>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0503:ciefpi>2.3. co ;2[34] Yuan, J. L., Li, Y., Mu, X.N., et al., 2000. Biostratigraphy of Trilobites from Changhia Stage (Late Middle Cambrian) in Shandong. Journal of Stratigraphy, 24(2): 136-143 (in Chinese with English abstract). [35] Zhang, M. S., Peng, X. D., 1998. New Trilobites from the Upper Cambrian Changshan Formation of Shandong and Liaoning. Journal of Changchun University of Science and Technology, 28(3): 241-246 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800205262 [36] Zhu, Z. L., Xiang, L. W., Zhang, S. G., et al., 2005. New Advance in the Study of the Upper Cambrian Kushanian Stage of North China. Journal of Stratigraphy, 29 (Suppl.): 462-466 (in Chinese with English abstract). [37] Zuo, J. X., Peng, S. C., Qi, Y. P., et al., 2018. Carbon-Isotope Excursions Recorded in the Cambrian System, South China: Implications for Mass Extinctions and Sea-Level Fluctuations. Journal of Earth Science, 29(3): 479-491. https://doi.org/10.1007/s12583-017-0963-x [38] Zuo, J. X., Peng, S. C., Zhu, X. J., et al., 2008.Carbon Isotope Composition of Cambrian Carbonate Rocks in Yangtze Platform, South China and Its Geological Implications.Geochimica, 37(2):118-128 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200802003 [39] 杜圣贤, 张瑞华, 张贵丽, 等, 2007.山东张夏-崮山地区华北寒武系标准剖面上寒武统研究新进展.山东国土资源, 23(10):1-6, 14. doi: 10.3969/j.issn.1672-6979.2007.10.001 [40] 冯增昭, 彭勇民, 金振奎, 等, 2002.中国晚寒武世岩相古地理.古地理学报, 4(3):1-10. doi: 10.3969/j.issn.1671-1505.2002.03.001 [41] 金明哲, 杨正赫, 彭澎, 等, 2018.朝鲜平南盆地寒武系黄州群和法洞群的碳同位素漂移事件.地球科学, 43(11):4096-4108. doi: 10.3799/dqkx.2018.107 [42] 梅冥相, 郭荣涛, 胡媛, 等, 2011.北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构.岩石学报, 27(8):2473-2486. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201108023 [43] 梅冥相, 张瑞, 李屹尧, 等, 2017.华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌.岩石学报, 33(4):1073-1093. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201704005 [44] 裴放, 2000.河南省华北型寒武纪生物地层单位划分与对比.河南地质, 18(2):97-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200000721763 [45] 彭善池, 赵元龙, 2018.全球寒武系第三统和第五阶"金钉子"正式落户我国.地层学杂志, 42(3):325-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dcxzz201803008 [46] 史晓颖, 陈建强, 梅仕龙, 1997.华北地台东部寒武系层序地层年代格架.地学前缘, 4(3-4): 161-171. http://www.cnki.com.cn/Article/CJFDTotal-DXQY7Z2.026.htm [47] 宋虎跃, 童金南, 杜勇, 等, 2018.早三叠世海洋异常的碳-氮-硫同位素记录.地球科学, 43(11):3922-3931. doi: 10.3799/dqkx.2018.334 [48] 袁金良, 李越, 穆西南, 等, 2000.山东张夏期(中寒武世晚期)三叶虫生物地层.地层学杂志, 24(2):136-143. doi: 10.3969/j.issn.0253-4959.2000.02.011 [49] 张梅生, 彭向东, 1998.山东及辽宁晚寒武世长山期新三叶虫.长春科技大学学报, 28(3):241-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800205262 [50] 朱兆玲, 项礼文, 章森柱, 等, 2005.华北上寒武统崮山阶研究新进展.地层学杂志, 29(增刊):462-466. http://d.old.wanfangdata.com.cn/Conference/7065166 [51] 左景勋, 彭善池, 朱学剑, 等, 2008.扬子地台寒武系碳酸盐岩的碳同位素组成及地质意义.地球化学, 37(2):118-128. doi: 10.3321/j.issn:0379-1726.2008.02.003