• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青藏高原申扎-双湖剖面岩石圈电性结构特征及其含义

    金胜 盛跃 梁宏达 魏文博 叶高峰 卢占武

    金胜, 盛跃, 梁宏达, 魏文博, 叶高峰, 卢占武, 2019. 青藏高原申扎-双湖剖面岩石圈电性结构特征及其含义. 地球科学, 44(6): 1773-1783. doi: 10.3799/dqkx.2019.015
    引用本文: 金胜, 盛跃, 梁宏达, 魏文博, 叶高峰, 卢占武, 2019. 青藏高原申扎-双湖剖面岩石圈电性结构特征及其含义. 地球科学, 44(6): 1773-1783. doi: 10.3799/dqkx.2019.015
    Jin Sheng, Sheng Yue, Liang Hongda, Wei Wenbo, Ye Gaofeng, Lu Zhanwu, 2019. Lithospheric Electrical Structure along Shenzha-Shuanghu Profile in Tibetan Plateau and Its Significance. Earth Science, 44(6): 1773-1783. doi: 10.3799/dqkx.2019.015
    Citation: Jin Sheng, Sheng Yue, Liang Hongda, Wei Wenbo, Ye Gaofeng, Lu Zhanwu, 2019. Lithospheric Electrical Structure along Shenzha-Shuanghu Profile in Tibetan Plateau and Its Significance. Earth Science, 44(6): 1773-1783. doi: 10.3799/dqkx.2019.015

    青藏高原申扎-双湖剖面岩石圈电性结构特征及其含义

    doi: 10.3799/dqkx.2019.015
    基金项目: 

    国家重点研发计划资助 2016YFC0600301

    国家自然基金项目 41704099

    中央高校基本科研业务费 181gpy15

    详细信息
      作者简介:

      金胜(1970-), 男, 教授, 从事深部地球物理探测及电法勘探的研究与教学工作

    • 中图分类号: P319

    Lithospheric Electrical Structure along Shenzha-Shuanghu Profile in Tibetan Plateau and Its Significance

    • 摘要: 为了研究班公湖-怒江缝合带的壳幔电性结构及构造特征,并为其俯冲极性提供电性约束,对青藏高原中部申扎-双湖大地电磁测深剖面进行全面数据处理分析,获得了可靠的二维电性结构模型,研究表明:沿剖面上地壳分布的是规模不等的高阻体,底面埋深在10~25 km变化,高阻层之下发现由不连续的高导体构成的中下地壳高导层.通过对电性结构的分析,认为班公湖-怒江特提斯洋的俯冲消亡极性可能是双向的,随后拉萨-羌塘地体碰撞带处的上地壳高阻体发生拆沉,以上两次动力学事件可能共同作用于缝合带处的壳幔高导体,同时北拉萨地体的壳幔高导体还可能体现了构造作用、岩浆活动和成矿作用之间的关系.

       

    • 图  1  (a) 研究区点位图和(b)青藏高原及邻区地形图

      a图包括主要大地构造和MT测点.黑色圆点表示宽频大地电磁测深测点,红色圆点表示长周期大地电磁测深测点,蓝色圆圈表示典型测点;b图红色矩形为研究区.TH.特提斯-喜马拉雅地体;LS.拉萨地体;QT.羌塘地体;SPGZ.松潘-甘孜地体;QD.柴达木盆地;TB.塔里木盆地;IYS.印度-雅鲁藏布江缝合带;LMF.洛巴堆-米拉山断裂;SNMZ.狮泉河-纳木错蛇绿岩带;BNS.班公湖-怒江缝合带;JRS.金沙江缝合带;AMS.阿尼玛卿缝合带

      Fig.  1.  (a) Topography map showing major tectonic structures, (b) topography of the Tibetan Plateau and its adjacent areas

      图  2  宽频(点号530、SD39)及长周期(点号504、554、SD16、SD28)典型数据曲线

      Fig.  2.  Data curves of broad⁃band (station 530, SD39) and long⁃period (stations 504, 554, SD16, SD28)

      图  3  2017线和500线Bahr二维偏离度拟断面

      Fig.  3.  Pseudo section of Bahr skewness of line 2017 and line 500

      图  4  阻抗张量分解图

      (a)0.1~1 s,(b)1~10 s,(c)10~100 s,(d)100~1 000 s.玫瑰花图显示相应频段的走向分析结果

      Fig.  4.  Impedance tensor maps

      图  5  二维反演模型粗糙度、拟合误差随正则化因子变化的曲线

      Fig.  5.  L⁃curve of RMS values and roughness corresponding to different tau values of 2⁃D inversion model

      图  6  二维TM模式反演模型

      a.2017线二维反演单点RMS;b.2017线二维电性模型,RMS=1.34;c.500线二维电性模型,RMS=1.47;BNS.班公湖-怒江缝合带;C1和C2为高导体;R1为高阻体.莫霍面深度引自Gao et al.(2013)Lu et al.(2015)

      Fig.  6.  2⁃D electrical structure models using TM data

      图  7  班公湖-怒江特提斯洋双向俯冲、羌塘-拉萨地体碰撞期带上地壳高阻块体拆沉示意图

      Fig.  7.  Sketch map showing the divergent double⁃sided subduction of the BNT along our profile and the detachment of the upper crustal resistor within the collision zone of Lhasa⁃Qiangtang terrane

    • [1] Bahr, K., 1991. Geological Noise in Magnetotelluric Data:A Classification of Distortion Types. Physics of the Earth and Planetary Interiors, 66(1-2):24-38. https://doi.org/10.1016/0031-9201(91)90101
      [2] Cai, J.T., Chen, X.B., 2010.Refined Techniques for Data Processing and Two-Dimensional Inversion in Magnetotelluric Ⅱ:Which Data Polarization Mode Should be Used in 2D Inversion.Chinese Journal Geophysics, 53(11):2703-2714(in Chinese with English abstract).
      [3] Chen, J. L., Xu, J. F., Yu, H. X., et al., 2015. Late Cretaceous High-Mg# Granitoids in Southern Tibet:Implications for the Early Crustal Thickening and Tectonic Evolution of the Tibetan Plateau? Lithos, 232:12-22. https://doi.org/10.1016/j.lithos.2015.06.020
      [4] Chen, W.W., Yang, T.S., Zhang, S.H., et al., 2012.Paleomagnetic Results from the Early Cretaceous Zenong Group Volcanic Rocks, Cuoqin, Tibet, and Their Paleogeographic Implications. Gondwana Research, 22(2):461-469. https://doi.org/10.1016/j.gr.2011.07.019
      [5] Chen, Y., Zhu, D. C., Zhao, Z. D., et al., 2014. Slab Breakoff Triggered ca.113 Ma Magmatism around Xainza Area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2):449-463. https://doi.org/10.1016/j.gr.2013.06.005
      [6] Ding, S., Tang, J.X., Zheng, W.B., et al., 2017.Geochronology and Geochemistry of Naruo Porphyry Cu(Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance. Earth Science, 42(1):1-23(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.001
      [7] Gao, R., Chen, C., Lu, Z.W., et al., 2013.New Constraints on Crustal Structure and Moho Topography in Central Tibet Revealed by SinoProbe Deep Seismic Reflection Profiling. Tectonophysics, 606:160-170. https://doi.org/10.1016/j.tecto.2013.08.006
      [8] Groom, R.W., Bailey, R.C., 1989.Decomposition of Magnetotelluric Impedance Tensors in the Presence of Local Three-Dimensional Galvanic Distortion. Journal of Geophysical Research, 94(B2):1913-1925. doi: 10.1029/JB094iB02p01913
      [9] Guynn, J.H., Kapp, P., Pullen, A., et al., 2006.Tibetan Basement Rocks near Amdo Reveal "Missing" Mesozoic Tectonism along the Bangong Suture, Central Tibet.Geology, 34(6):505-508. https://doi.org/10.1130/g22453.1
      [10] Hao, L. L., Wang, Q., Wyman, D. A., et al., 2016. Underplating of Basaltic Magmas and Crustal Growth in a Continental Arc:Evidence from Late Mesozoic Intermediate-Felsic Intrusive Rocks in Southern Qiangtang, Central Tibet. Lithos, 245:223-242. https://doi.org/10.1016/j.lithos.2015.09.015
      [11] Hou, Z.Q., Yang, Z.M., Lu, Y.J., et al., 2015.A Genetic Linkage between Subduction-and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3):247-250. https://doi.org/10.1130/g36362.1
      [12] Jin, S., Wei, W. B., Wang, S., et al., 2010. Discussion of the Formation and Dynamic Signification of the High Conductive Layer in Tibetan Crust. Chinese Journal of Geophysics, 53(10):2376-2385(in Chinese with English ab-stract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201010011
      [13] Jin, S., Wei, W.B., Ye, G.F., et al., 2009.The Electrical Structure of Bangong-Nujiang Suture:Results from Magnetotelluric Sounding Detection.Chinese Journal Geophysics, 52(10):2666-2675(in Chinese with English abstract).
      [14] Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2010.Qushenla Formation Volcanic Rocks in North Lhasa Block; Products of Bangong Co-Nujiang Tethy's Southward Subduction.Acta Petrologica Sinica, 26(10):3106-3116(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201010022
      [15] Lai, W., Hu, X. M., Zhu, D. C., et al., 2017. Discovery of the Early Jurassic Gajia Mélange in the Bangong-Nujiang Suture Zone:Southward Subduction of the Bangong-Nu-jiang Ocean? International Journal of Earth Sciences, 106(4):1277-1288. https://doi.org/10.1007/s00531-016-1405-1
      [16] Liu, M., Bai, D.H., Xiao, P.F., 2010.The Electrical Conductivity Structure of the Eastern Tibetan Plateau and Its Tectonic Implications. Seismology and Geology, 32(1):51-58(in Chinese with English abstract).
      [17] Lu, Z. W., Gao, R., Li, H. Q., et al., 2015. Variation of Moho Depth across Bangong-Nujiang Suture in Central Tibet:Results from Deep Seismic Reflection Data.Internation-al Journal of Geosciences, 6(8):821-830. https://doi.org/10.4236/ijg.2015.68066
      [18] Luo, M., Pang, F. C., Li, J. C., et al., 2015. Great Gangdise Northern Tibet Metallogenic Series Study of Ore Deposits. Acta Geologica Sinica, 89(4):715-730(in Chinese with English abstract).
      [19] McNeice, G.W., Jones, A.G., 2001. Multisite, Multifrequency Tensor Decomposition of Magnetotelluric Data. Geophysics, 66(1), 158-173. doi: 10.1190/1.1444891
      [20] Rodi, W., MacKie, R.L., 2001.Nonlinear Conjugate Gradients Algorithm for 2-D Magnetotelluric Inversion. Geophysics, 66(1):174-187. https://doi.org/10.1190/1.1444893
      [21] Sui, Q. L., Wang, Q., Zhu, D. C., et al., 2013. Compositional Diversity of ca.110 Ma Magmatism in the Northern Lhasa Terrane, Tibet:Implications for the Magmatic Origin and Crustal Growth in a Continent-Continent Collision Zone. Lithos, 168-169:144-159. https://doi.org/10.1016/j.lithos.2013.01.012
      [22] Swift, C.M., 1967.A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the Southern United States.Massachusetts Institute of Technology, Cambridge.
      [23] Unsworth, M. J., Jones, A. G., Wei, W., et al., 2005. Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data.Nature, 438:78-81. https://doi.org/10.1038/nature04154
      [24] Wei, W. B., Jin, S., Ye, G. F., et al., 2009. The Conductivity Structure and Rheology of the Lithosphere in the Southern Tibet:The Result of the Study of Ultra-Wide Band Magnetotelluric Sounding.Science in China(Series D), 39(11), 1591-1606(in Chinese).
      [25] Wei, W.B., Unsworth, M., Jones, A., et al., 2001.Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies.Science, 292(5517), 716-718. doi: 10.1126/science.1010580
      [26] Wessel, P., Smith, W.H.F., 1998.New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47):579. https://doi.org/10.1029/98eo00426
      [27] Xie, C. L., Jin, S., Wei, W. B., et al., 2016. Crustal Electrical Structures and Deep Processes of the Eastern Lhasa Terrane in the South Tibetan Plateau as Revealed by Magnetotelluric Data.Tectonophysics, 675:168-180. https://doi.org/10.1016/j.tecto.2016.03.017
      [28] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [29] Zeng, S. H., Hu, X. Y., Li, J. H., et al., 2015. Detection of the Deep Crustal Structure of the Qiangtang Terrane Using Magnetotelluric Imaging.Tectonophysics, 661:180-189. https://doi.org/10.1016/j.tecto.2015.08.038
      [30] Zhang, L.T., Jin, S., Wei, W.B., et al., 2012.Electrical Structure of Crust and Upper Mantle beneath the Eastern Margin of the Tibetan Plateau and the Sichuan Basin.Chinese Journal of Geophysics, 55(12):4126-4137(in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201212025
      [31] Zhao, W., Mechie, J., Brown, L.D., et al., 2001.Crustal Structure of Central Tibet as Derived from Project Indepth Wide-Angle Seismic Data.Geophysical Journal International, 145(2):486-498. https://doi.org/10.1046/j.0956-540x.2001.01402.x
      [32] Zhao, Y. Y., Cui, Y. B., Lv, L. N., et al., 2011. Chronology, Geochemical Characteristics and the Significance of Shesuo Copper Polymetallic Deposit, Tibet.Acta Petrologica Sinica, 27(7):2132-2142(in Chinese with English ab-stract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107020
      [33] Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.109
      [34] Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016.Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction.Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023
      [35] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      [36] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      [37] 蔡军涛, 陈小斌, 2010.大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择.地球物理学, 53(11):2703-2714. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201011018
      [38] 丁帅, 唐菊兴, 郑文宝, 等, 2017.西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义.地球科学, 42(1):1-23. https://doi.org/10.3799/dqkx.2017.001
      [39] 金胜, 魏文博, 汪硕, 等, 2010.青藏高原地壳高导层的成因及动力学意义探讨:大地电磁探测提供的证据.地球物理学报, 53(10):2376-2385. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201010011
      [40] 金胜, 魏文博, 叶高峰, 等, 2009.班公-怒江构造带的电性结构特征:大地电磁探测结果.地球物理学报, 52(10):2666-2675. doi: 10.3969/j.issn.0001-5733.2009.10.027
      [41] 康志强, 许继峰, 王保弟, 等, 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?岩石学报, 26(10):3106-3116. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010022
      [42] 刘美, 白登海, 肖鹏飞, 2010.青藏高原东部岩石圈电性结构特征及其构造意义.地震地质, 32(1):51-58. doi: 10.3969/j.issn.0253-4967.2010.01.005
      [43] 罗梅, 潘凤雏, 李巨初, 等, 2015.西藏大冈底斯北部金属矿床成矿系列研究.地质学报, 89(4):715-730. doi: 10.3969/j.issn.0001-5717.2015.04.005
      [44] 魏文博, 金胜, 叶高峰, 等, 2009.藏南岩石圈导电性结构与流变性——超宽频带大地电磁测深研究结果.中国科学(D辑), 39(11):1591-1606. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200911011.htm
      [45] 张乐天, 金胜, 魏文博, 等, 2012.青藏高原东缘及四川盆地的壳幔导电性结构研究.地球物理学报, 55(12):4126-4137. doi: 10.6038/j.issn.0001-5733.2012.12.025
      [46] 赵元艺, 崔玉斌, 吕立娜, 等, 2011.西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义.岩石学报, 27(7):2132-2142. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107020
      [47] 郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. https://doi.org/10.3799/dqkx.2017.109
    • dqkx-44-6-1773-Fulu.pdf
    • 加载中
    图(7)
    计量
    • 文章访问数:  4410
    • HTML全文浏览量:  1572
    • PDF下载量:  38
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-08-17
    • 刊出日期:  2019-06-15

    目录

      /

      返回文章
      返回