LA-ICP-MS Zircon U-Pb Age and Whole-Rock Geochemistry of the Triassic Intrusive Rocks in the Solon Obo Area, Inner Mongolia and Its Geological Significance
-
摘要: 内蒙古索伦山地区朱恩道欧恩呼尔新识别出一套早中生代侵入岩,主要由角闪二长岩和二长闪长岩组成.通过LA-ICP-MS锆石U-Pb定年确定,角闪二长岩的结晶年龄为248±1 Ma(MSWD=1.1),表明该岩体形成于早三叠世.它们的SiO2含量介于51.82%~60.17%之间,具有高镁(Mg#=53.17~59.03)、富碱(K2O+Na2O=7.36%~9.83%)、富钠(K2O/Na2O=0.25~0.53)特征,属于准铝质碱性岩.样品稀土总量变化范围为117.52×10-6~160.89×10-6,表现出一致的稀土元素和微量元素配分型式,即呈现出轻稀土元素相对于重稀土元素富集((La/Yb)N=9.57~15.42)的右倾曲线,且无明显Eu异常(δEu=0.76~1.00),并富集Ba、Sr等大离子亲石元素,亏损Nb、Ta、Ti、Y等高场强元素,高Sr、低Y、高Sr/Y比值,具有高镁埃达克质闪长岩的地球化学特征.综合岩石地球化学特征及区域构造背景,朱恩道欧恩呼尔早中生代高镁埃达克质闪长岩类是由残余俯冲洋壳部分熔融形成的熔体与地幔橄榄岩相互作用而形成.朱恩道欧恩呼尔富碱侵入岩的形成与华北板块与西伯利亚板块碰撞后的伸展作用有关,这些新的年龄和岩石地球化学数据表明古亚洲洋闭合早于248 Ma.Abstract: The Early Mesozoic Zhuendaoouenhuer intrusion is located in Solon Obo area,Inner Mongolia. It mainly consists of hornblende monzonite and monzodiorite.LA-ICP-MS zircon U-Pb dating yields the Early-Triassic age of 248±1 Ma for the hornblende monzonite. Both the hornblende monzonite and monzodiorite are rich in silica (SiO2=51.82%-60.17%),MgO(Mg#=53.17-59.03),alkali (K2O+Na2O=7.36%-9.83%) and Na(K2O/Na2O=0.25-0.53),suggesting a typical alkaline series with the metaluminous feature (A/CNK=0.53-0.75).The rocks are poor in rare earth elements(ΣREE=117.52×10-6-160.89×10-6),enriched in LREE[(La/Yb)N=9.57-15.42] and LILEs (Ba、Sr),and depleted in HFSE,especially Nb,Ta,Ti,Y,and insignificant Eu anomalies(δEu=0.76-1.00),and had high Sr,low Y,high Sr/Y ratio,suggesting geochemical characteristics of high-Mg adakite diorite. The combination of geological setting and geochemical characteristics of the Zhuendaoouenhuer high-Mg adakitic rocks were most probably derived from partial melting of the remnant Paleo-Asian oceanicsubducted slabs and subsequently hybridized by mantle peridotite. The formation of the Zhuendaoouenhueradakitic intrusive rocks is related to the extension of the collision between the North China plate and the Siberian plate. These new age and rock geochemical data indicate that the ancient Asian Ocean closed earlier than 248 Ma.
-
Key words:
- post collision /
- Early Ttriassic epoch /
- LA-ICP-MS /
- U-Pb dating /
- Solon Obo /
- geochemistry
-
图 1 内蒙古乌拉特中旗朱恩道欧恩呼尔地区大地构造位置(a)及岩体分布(b)
Fig. 1. Simplified geology of the Zhuendaoouenhuer area in Urad Middle Banner, Inner Mongolia, showing distribution of the plutons
图 5 朱恩道欧恩呼尔侵入岩TAS图解、AR-SiO2和A/CNK-A/NK图解
底图据a. Middlemost(1994);b. Wright(1969);c. Maniar and Piccoli(1989);图a中横纵坐标单位为%;图b中纵坐标单位为%
Fig. 5. TAS, AR-SiO2 and A/CNK-A/NK diagrams of the Zhuendaoouenhuer intrusive rocks
图 6 朱恩道欧恩呼尔侵入岩球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)
Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns of the Zhuendaoouenhuer intrusive rocks
图 7 朱恩道欧恩呼尔侵入岩Sr/Y-Y图解
Fig. 7. Sr/Y-Y diagrams of the Zhuendaoouenhuer intrusive rocks
图 8 朱恩道欧恩呼尔侵入岩源区判别图解
CC.大陆地壳;PM.原始地幔;OIB.洋岛玄武岩;MORB.洋中脊玄武岩; 底图据Jahn et al.(1999)(b)和汤艳杰等(2014)(a)
Fig. 8. Source discrimination diagrams of the Zhuendaoouenhuer intrusive rocks
表 1 朱恩道欧恩呼尔角闪二长岩(SL1-5)LA-ICP-MS锆石U-Pb定年分析结果
Table 1. LA-ICP-MS U-Pb age data of zircons separated from the hornblende monzonite (SL1-5) of the Zhuendaoouenhuer intrusive rocks
分析点 含量(10-6) Th/U 同位素比值 年龄(Ma) Th U $\frac{{^{207}{\rm{Pb}}/}}{{^{206}{\rm{Pb}}}} $ 1σ $\frac{{^{207}{\rm{Pb}}/}}{{^{235}{\rm{U}}}} $ 1σ $\frac{{^{206}{\rm{Pb}}/}}{{^{238}{\rm{U}}}} $ 1σ rho $\frac{{^{207}{\rm{Pb}}/}}{{^{206}{\rm{Pb}}}} $ 1σ $\frac{{^{207}{\rm{Pb}}/}}{{^{235}{\rm{U}}}} $ 1σ $\frac{{^{206}{\rm{Pb}}/}}{{^{238}{\rm{U}}}} $ 1σ 1 526 465 1.13 0.051 4 0.001 7 0.276 0.009 0.038 9 0.000 5 0.380 1 261 51 247 7 246 3 2 428 400 1.07 0.051 4 0.002 2 0.274 0.011 0.038 6 0.000 6 0.350 1 260 68 246 9 244 3 3 592 549 1.08 0.050 5 0.001 5 0.272 0.008 0.039 0 0.000 5 0.402 0 219 45 244 6 247 3 4 178 254 0.70 0.052 2 0.002 6 0.280 0.014 0.038 9 0.000 6 0.318 5 293 82 251 11 246 4 5 204 230 0.89 0.051 2 0.002 6 0.284 0.014 0.040 2 0.000 6 0.310 4 251 85 254 11 254 4 6 798 736 1.08 0.050 7 0.001 3 0.266 0.007 0.038 1 0.000 4 0.432 4 228 38 240 5 241 3 7 515 464 1.11 0.050 2 0.001 9 0.256 0.009 0.036 9 0.000 5 0.357 3 205 59 231 7 234 3 8 664 636 1.04 0.052 3 0.001 5 0.266 0.007 0.037 0 0.000 4 0.424 4 297 40 240 6 234 3 9 572 540 1.06 0.052 8 0.001 6 0.267 0.008 0.036 7 0.000 4 0.399 9 318 44 240 6 232 3 10 379 373 1.01 0.054 0 0.002 0 0.273 0.010 0.036 7 0.000 5 0.356 8 369 58 245 8 232 3 11 429 432 0.99 0.052 1 0.001 8 0.278 0.009 0.038 7 0.000 5 0.373 8 289 53 249 7 245 3 12 830 721 1.15 0.053 1 0.002 0 0.273 0.010 0.037 3 0.000 5 0.391 5 333 54 245 8 236 3 13 494 517 0.96 0.052 5 0.001 6 0.278 0.008 0.038 5 0.000 5 0.390 3 309 47 249 7 243 3 14 523 493 1.06 0.049 7 0.001 6 0.274 0.008 0.040 0 0.000 5 0.374 6 183 50 246 7 253 3 15 297 304 0.98 0.050 6 0.002 4 0.273 0.013 0.039 1 0.000 6 0.329 7 222 78 245 10 247 4 16 710 565 1.26 0.051 6 0.001 6 0.282 0.008 0.039 5 0.000 5 0.403 2 270 46 252 7 250 3 17 475 478 0.99 0.049 6 0.001 6 0.267 0.008 0.039 0 0.000 5 0.392 3 178 49 240 7 247 3 18 437 409 1.07 0.050 9 0.001 7 0.277 0.009 0.0394 0.000 5 0.370 7 234 53 248 7 249 3 19 589 545 1.08 0.053 2 0.001 6 0.292 0.008 0.039 8 0.000 5 0.411 3 339 43 260 6 251 3 20 762 632 1.21 0.049 9 0.001 3 0.260 0.007 0.037 8 0.000 4 0.432 4 188 38 234 5 239 3 21 353 389 0.91 0.048 3 0.001 7 0.260 0.009 0.039 0 0.000 5 0.364 0 114 55 234 7 247 3 22 552 541 1.02 0.049 4 0.001 4 0.268 0.007 0.039 3 0.000 4 0.410 5 166 43 241 6 248 3 23 467 771 0.61 0.050 6 0.001 1 0.275 0.006 0.039 5 0.000 4 0.489 3 221 29 247 5 250 2 24 1063 838 1.27 0.050 8 0.001 1 0.274 0.006 0.039 1 0.000 4 0.492 7 229 29 246 4 247 2 25 685 582 1.18 0.050 0 0.001 3 0.259 0.007 0.037 5 0.000 4 0.426 6 193 38 233 5 237 2 表 2 朱恩道欧恩呼尔早三叠世侵入岩主量元素(%)分析结果
Table 2. Whole rock major element compositions of the Zhuendaoouenhuer intrusive rocks
样号 WL1836-1 WL1836-2 WL1836-3 WL1836-4 WL1837 WL1837-1 WL1837-2 岩性 二长闪长岩 二长闪长岩 角闪二长岩 角闪二长岩 角闪二长岩 角闪二长岩 角闪二长岩 SiO2 51.82 54.46 56.74 56.03 55.35 57.01 60.17 Al2O3 13.22 13.23 12.42 12.70 12.89 12.73 13.62 Fe2O3 8.55 8.02 7.33 8.07 7.58 6.87 6.60 CaO 6.25 7.43 4.27 6.08 5.90 5.14 1.71 MgO 5.87 4.90 5.28 5.01 5.18 3.90 4.16 K2O 1.66 2.03 2.17 2.15 2.88 3.16 2.14 Na2O 6.61 5.50 6.01 5.21 6.08 5.99 7.69 MnO 0.14 0.12 0.11 0.12 0.11 0.10 0.09 TiO2 1.41 1.29 1.04 1.31 1.25 1.11 0.86 P2O5 0.52 0.50 0.39 0.49 0.45 0.47 0.33 烧失量(%) 2.61 1.02 2.62 2.01 2.01 2.41 2.61 Mg# 57.86 54.99 59.03 55.39 57.75 53.17 55.76 表 3 朱恩道欧恩呼尔早三叠世侵入岩微量元素(10-6)分析结果
Table 3. Whole rock trace element compositions of the Zhuendaoouenhuer intrusive rocks
样号 WL1836-1 WL1836-2 WL1836-3 WL1836-4 WL1837 WL1837-1 WL1837-2 岩性 二长闪长岩 二长闪长岩 角闪二长岩 角闪二长岩 角闪二长岩 角闪二长岩 角闪二长岩 Li 29.34 24.28 39.10 30.34 22.90 27.00 31.00 Sc 7.16 7.16 7.16 7.16 7.16 7.16 7.16 V 117.32 123.34 109.40 125.82 119.06 106.50 101.94 Cr 102.48 122.34 141.18 119.42 119.00 81.28 113.68 Co 16.71 15.66 13.59 17.17 15.20 11.94 16.55 Ni 25.74 19.87 35.48 23.04 20.70 12.30 54.78 Cu 18.95 19.64 22.30 21.04 18.43 12.92 37.18 Zn 96.02 80.96 78.68 89.56 79.12 76.18 77.56 Ga 20.14 20.74 17.73 19.74 19.11 20.04 19.68 Rb 30.96 35.20 38.04 31.38 54.34 44.88 39.76 Sr 1 598.40 1 267.20 1 154.00 1 699.80 1 039.00 1 607.00 1 545.40 Y 19.37 19.11 16.05 18.02 20.14 16.38 11.16 Zr 173.02 198.62 124.42 132.04 161.86 218.80 123.32 Nb 10.60 10.12 7.76 9.86 10.03 10.31 7.35 Cs 1.62 1.40 1.46 1.59 0.92 0.89 1.70 Ba 1 274.20 526.80 619.40 1 326.40 557.40 655.80 1 476.40 La 25.92 25.54 23.36 26.00 30.16 33.76 25.02 Ce 57.30 56.82 49.42 55.72 64.56 69.24 50.34 Pr 6.98 6.80 5.75 6.68 7.44 7.80 5.62 Nd 28.70 27.94 22.96 27.62 29.74 29.88 21.66 Sm 5.63 5.47 4.54 5.41 5.69 5.15 3.86 Eu 1.69 1.53 1.18 1.65 1.43 1.34 1.25 Gd 5.41 5.35 4.47 5.27 5.65 5.04 3.64 Tb 0.73 0.70 0.59 0.69 0.74 0.62 0.45 Dy 4.04 4.01 3.39 3.88 4.17 3.34 2.39 Ho 0.73 0.73 0.61 0.71 0.77 0.62 0.44 Er 2.15 2.17 1.84 2.07 2.28 1.90 1.34 Tm 0.29 0.29 0.24 0.27 0.30 0.25 0.18 Yb 1.94 1.88 1.63 1.78 2.03 1.70 1.16 Lu 0.27 0.27 0.24 0.26 0.29 0.25 0.17 Hf 4.03 4.82 3.34 3.16 4.09 5.31 3.30 Ta 0.70 0.69 0.54 0.59 0.72 0.69 0.47 Pb 12.58 12.78 13.56 12.52 13.75 16.31 15.58 Bi 0.19 0.13 0.18 0.11 0.13 0.18 0.20 Th 5.02 6.58 8.06 4.41 9.35 10.78 7.12 U 1.46 1.61 1.18 1.13 2.26 2.67 1.38 ΣREE 141.78 139.49 120.24 138.00 155.25 160.89 117.52 (La/Yb)N 9.57 9.73 10.27 10.47 10.65 14.24 15.42 δEu 0.92 0.85 0.79 0.93 0.76 0.80 1.00 δCe 1.02 1.04 1.01 1.01 1.03 1.01 1.00 注:球粒陨石标准值据Sun and McDonough(1989). -
[1] Anderson, T., 2002. Correction of Common Lead in U–Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7 [3] Chen, B., Chen, C.J., He, J.B., et al., 2013. Origin of Mesozoic High-Mg Adakitic Rocks from Northeastern China: Petrological and Nd-Sr-Os Isotopic Constraints. Chinese Science Bull., 58(20): 1941-1953(in Chinese with English abstract). doi: 10.1360/972012-1254 [4] Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 [5] Eizenhofer, P. R., Zhao, G. C., Zhang, J., et al., 2014. Final Closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from Geochronological and Geochemical Data of Permian Volcanic and Sedimentary Rocks. Tectonics, 33(4): 441-463. https://doi.org/10.1002/2013tc003357 [6] Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162 [7] Hong, D. W., Huang, H. Z., Xiao, Y. J., et al., 1994. The Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance. Acta Geologica Sinica, 68(3): 219-230 (in Chinese with English abstract). http://www.cqvip.com/QK/86253X/199501/1004938168.html [8] Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119-146. https://doi.org/10.1016/s0009-2541(98)00197-1 [9] Jian, P., Liu, D. Y., Kröner, A., et al., 2008. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 101(3/4): 233-259. https://doi.org/10.1016/j.lithos.2007.07.005 [10] Jian, P., Liu, D. Y., Kröner, A., et al., 2010. Evolution of a Permian Intraoceanic Arc-Trench System in the Solonker Suture Zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1/2): 169-190. https://doi.org/10.1016/j.lithos.2010.04.014 [11] Kelemen, P. B., 1995. Genesis of High Mg# Andesites and the Continental Crust. Contributions to Mineralogy and Petrology, 120(1): 1-19. https://doi.org/10.1007/s004100050054 [12] Kepezhinskas, P. K., Defant, M. J., Drummond, M. S., 1995. Na Metasomatism in the Island-Arc Mantle by Slab Melt-Peridotite Interaction: Evidence from Mantle Xenoliths in the North Kamchatka Arc. Journal of Petrology, 36(6):1505-1527. https://doi.org/10.1093/oxfordjournals.petrology.a037263 [13] Li, G. Z., Wang, Y. J., Li, C. Y., et al., 2017. Discovery of Early Permian Radiolarian Fauna in the Solon Oboophiolite Belt, Inner Mongolia and Its Geological Significance. Chinese Science Bull, 62(5): 400-406 (in Chinese with English abstract). doi: 10.1360/N972016-00703 [14] Li, J. Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3/4): 207-224. https://doi.org/10.1016/j.jseaes.2005.09.001 [15] Li, J.Y., Gao, L.M., Sun, G.H., et al., 2007. Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Granite in the East Inner Mongolia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates. Acta Petrologica Sinica, 23(3): 565-582 (in Chinese with English abstract). http://www.researchgate.net/publication/279908280_Shuangjingzi_middle_Triassic_syn-collisional_crust-derived_granite_in_the_east_Inner_Mongolia_and_its_constraint_on_the_timing_of_collision_between_Siberian_and_Sino-Korean_paleo-plates?ev=auth_pub [16] Li, J.Y., Zhang, J., Yang, T. N., et al., 2009. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas. Journal of Jilin University(Earth Science Edition), 39(4): 584-605 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200904002.htm [17] Li, P. W., Gao, R., Guan, Y., et al., 2006. Palaeomagnetic Constraints on the Final Closure Time of Solonker Linxi Suture. Journal of Jilin University(Earth Science Edition), 36(5): 744-758 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200605014.htm [18] Ludwig, K.R., 2001. Squid 1.02: A User's Manual. Berkeley Geochronology Centre, Special Publication, Berkeley, 1-19. [19] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3. co ;2[20] Miao, L., Zhang, F., Fan, W. M., et al., 2007. Phanerozoic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt in North China: Constraints from Geochronology of Ophiolites and Associated Formations. Geological Society, London, Special Publications, 280(1): 223-237. https://doi.org/10.1144/sp280.11 [21] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [22] Pan, G. T., Lu, S. N., Xiao, Q. H., et al., 2016. Division of Tectonic Stages and Tectonic Evolution in China. Earth Science Frontiers, 23(6): 1-23 (in Chinese with English abstract). http://www.researchgate.net/publication/316514059_Division_of_tectonic_stages_and_tectonic_evolution_in_China [23] Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0 [24] Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8~32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891 [25] Sengor, A. M. C., Natal'in, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthensis. In: Yin, A., Harrison, M., eds. The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, 486-640. [26] Sengor, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0 [27] Shao, J. A., 1991. Crust Evolution in the Middle Part of the Northern Margin of Sino-Korean Plate. Peking University Press, Beijing, 1-91 (in Chinese). [28] Shi, Y. R., Liu, D. Y., Jian, P., et al., 2007. SHRIMP U-Pb Zircon Dating of Triassic A-Type Granites in Sonid Zuoqi, Central Inner Mongolia, China and Its Tectonic Implications. Geological Bulletin of China, 26(2): 183-189 (in Chinese with English abstract). http://www.researchgate.net/publication/279549609_SHRIMP_U-Pb_zircon_dating_of_Triassic_A-type_granites_in_Sonid_Zuoqi_Central_Inner_Mongolia_China_and_its_tectonic_implications [29] Sun, D. Y., Wu, F. Y., Li, H. M., 2000. Emplacement Age of the Postorogenic A-Type Granites in Northwestern Lesser Xing'an Ranges, and Its Relationship to the Eastward Extension of Suolunshan-Hegenshan-Zhalaite Collisional Suture Zone. Chinese Science Bull, 45(20): 2217-2222 (in Chinese). doi: 10.1360/csb2000-45-20-2217 [30] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [31] Tang, K. D., 1990. Tectonic Development of Paleozoic Foldbelts at the North Margin of the Sino-Korean Craton. Tectonics, 9(2): 249-260. https://doi.org/10.1029/tc009i002p00249 [32] Tang, Y. J., Zhang, H. F., Ying, J. F., 2014. Genetic Significance of Triassic Alkali-Rich Intrusive Rocks in the Yinshan and Neighboring Areas. Acta Petrologica Sinica, 30(7): 2031-2040. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201407016.htm [33] Tong, Y., Hong, D. W., Wang, T., et al., 2010. Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications. Acta Geoscientica Sinica, 31(3): 395-412(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201003016.htm [34] Wang, D. B., Liu, Y. S., Zong, K. Q., et al., 2009. Early Mesozoic O-Type High-Mg Adakitic Andesites from Linxi Area, Inner Mongolia and Its Implication. Geological Science and Technology Information, 28(6): 31-38(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200906005.htm [35] Wang, Q., McDermott, F., Xu, J. F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intercontinental Setting. Geology, 33(6): 465. https://doi.org/10.1130/g21522.1 [36] Wang, S. Q., Hu, X. J., Yang, Z. L., et al., 2018. Geochronology, Geochemistry, Sr-Nd-Hf Isotopic Characteristics and Geological Significance of Carboniferous Yuejin Arc Intrusive Rocks of Xilinhot, Inner Mongolia. Earth Science, 43(3): 672-695(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201803004.htm [37] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 [38] Wright, J. B., 1969. A Simple Alkalinity Ratio and Its Application to Questions of Non-Orogenic Granite Genesis. Geological Magazine, 106(4): 370-384. https://doi.org/10.1017/s0016756800058222 [39] Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on their Petrogenesis. Chemical Geology, 187(1/2): 143-173. https://doi.org/10.1016/s0009-2541(02)00018-9 [40] Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1-18. https://doi.org/10.1029/2002tc001484 [41] Xiao, W. J., Windley, B. F., Huang, B. C., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98(6): 1189-1217. https://doi.org/10.1007/s00531-008-0407-z [42] Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43(1): 477-507. https://doi.org/10.1146/annurev-earth-060614-105254 [43] Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. doi: 10.1016/j.gr.2012.05.015 [44] Xu, B., Zhao, P., Bao, Q. Z., et al., 2014. Preliminary study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 30(7):1841-1857 (in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=661910910 [45] Xu, J. F., Shinjo, R., Defant, M. J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust? Geology, 30(12): 1111. https://doi.org/10.1130/0091-7613(2002)030 < 1111:oomair > 2.0.co; 2 doi: 10.1130/0091-7613(2002)030<1111:oomair>2.0. co ;2[46] Xue, J. P., Liu, M. Y., Li, G. Z., et al., 2018. Zircon Geochronology and Geochemistry of Haer Bogetuoer TTG Rock, Solonker Zone, Inner Mongolia and Their Tectonic Implications. Earth Science Frontiers, 25(3), 230-239 (in Chinese with English abstract). http://www.researchgate.net/publication/327766407_Zircon_geochronology_and_geochemistry_of_Haer_Bogetuoer_TTG_rock_Solonker_zone_Inner_Mongolia_and_their_tectonic_implications [47] Yan, G. H., Mu, B. L., Xu, B. L., et al., 2000. Triassic Alkaline Intrusives in the Yanliao-Yinshan Area: Their Chronology, Sr, Nd and Pb Isotopic Characteristics and Their Implication. Science in China Series D: Earth Sciences, 30(4): 383-387(in Chinese with English abstract). [48] Zhang, Y. Q., Xu, L. Q., Kang, X. L., et al., 2009. Age Dating of Alkali Granite in Jingesitai Area of Dong Ujimqin Banner, Inner Mongolia, and Its Significance. Geology in China, 36(9): 988-995 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DIZI200905006.htm [49] Zhang, M. D., Ma, C. Q., Wang, L. Q., et al., 2018. Subduction-Type Magmatic Rocks in Post-Collision Stage: Evidence from Late Triassic Diorite-Porphyrite of Naomuhungou Area, East Kunlunorogeny. Earth Science, 43(4): 1183-1206(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201804016.htm [50] Zhang, S. H., Gao, R., Li, H. Y., et al., 2014. Crustal Structures Revealed from a Deep Seismic Reflection Profile Across the Solonker Suture Zone of the Central Asian Orogenic Belt, Northern China: An Integrated Interpretation. Tectonophysics, 612-613: 26-39. https://doi.org/10.1016/j.tecto.2013.11.035 [51] Zhang, S. H., Zhao, Y., Kröner, A., et al., 2009. Early Permian Plutons from the Northern North China Block: Constraints on Continental Arc Evolution and Convergent Margin Magmatism Related to the Central Asian Orogenic Belt. International Journal of Earth Sciences, 98(6): 1441-1467. https://doi.org/10.1007/s00531-008-0368-2 [52] Zhang, S. H., Zhao, Y., Liu, J. M., et al., 2010. Geochronology, Geochemistry and Tectonic Setting of the Late Paleozoic-Early Mesozoic Magmatism in the Northern Margin of the North China Block:A Preliminary Review. Acta Petrologica et Mineralogica, 29(6): 824-842 (in Chinese with English abstract). http://www.researchgate.net/publication/281629857_Geochronology_geochemistry_and_tectonic_setting_of_the_Late_Paleozoic-Early_Mesozoic_magmatism_in_the_northern_margin_of_the_North_China_block_A_preliminary_review [53] Zhang, W. Y., Nie, F. J., Gao, Y. G., et al., 2012. Geochemical Characteristics and Genesis of Triassic Chagan Obo Alkalinequartz Diorites in Inner Mongolia. Acta Petrologica Sinica. 28(2): 525-534 (in Chinese with English abstract). http://www.oalib.com/paper/1473777 [54] Zhang, W., Jian, P., 2012. SHRIMP Dating of the Permian Guyang Diorite-Quartz Diorite-Tonalite Suite in the Northern Margin of the North China Craton. Geology in China, 39(6): 1593-1603 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgdizhi201206009 [55] 陈斌, 陈长健, 贺敬博, 等, 2013.华北东部中生代高镁埃达克质岩浆的起源:岩石学和Nd-Sr-Os同位素证据.科学通报, 58(20): 1941-1953. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320009.htm [56] 洪大卫, 黄怀曾, 肖怡君, 等, 1994.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义.地质学报, 68(3):219-230. doi: 10.3321/j.issn:0001-5717.1994.03.001 [57] 李钢柱, 王玉净, 李成元, 等, 2017.内蒙古索伦山蛇绿岩带早二叠世放射虫动物群的发现及其地质意义.科学通报, 62(5): 400-406. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201705008.htm [58] 李锦轶, 高立明, 孙桂华, 等, 2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报, 23(3):565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm [59] 李锦轶, 张进, 杨天南, 等, 2009.北亚造山区南部及其毗邻地区地壳构造分区与构造演化.吉林大学学报(地球科学版), 39(4): 584-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm [60] 李朋武, 高锐, 管烨, 等, 2006.内蒙古中部索伦林西缝合带封闭时代的古地磁分析.吉林大学学报(地球科学版), 36(5):744-758. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200605014.htm [61] 潘桂棠, 陆松年, 肖庆辉, 等, 2016.中国大地构造阶段划分和演化.地学前缘, 23(6):1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606006.htm [62] 邵济安, 1991.中朝板块北缘中段地壳演化.北京:北京大学出版社, 1-91. [63] 石玉若, 刘敦一, 简平, 等, 2007.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩SHRIMP U-Pb年龄及其区域构造意义.地质通报, 26(2):183-189. doi: 10.3969/j.issn.1671-2552.2007.02.009 [64] 孙德有, 吴福元, 李惠民, 等, 2000.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系.科学通报, 45(20):2217-2222. doi: 10.3321/j.issn:0023-074X.2000.20.019 [65] 汤艳杰, 张宏福, 英基丰, 2014.阴山及邻区三叠纪富碱侵入岩的成因意义.岩石学报, 30(7):2031-2040. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407016.htm [66] 童英, 洪大卫, 王涛, 等, 2010.中蒙边境中段花岗岩时空分布特征及构造和找矿意义.地球学报, 31(3):395-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003016.htm [67] 王冬兵, 刘勇胜, 宗克清, 等, 2009.内蒙古林西早中生代O型高镁埃达克质安山岩的发现及其意义.地质科技情报, 28(6): 31-38. doi: 10.3969/j.issn.1000-7849.2009.06.005 [68] 王树庆, 胡晓佳, 杨泽黎, 等, 2018.兴蒙造山带中段锡林浩特跃进地区石炭纪岛弧型侵入岩:年代学、地球化学、Sr-Nd-Hf同位素特征及其地质意义.地球科学, 43(3): 672-695. doi: 10.3799/dqkx.2017.510 [69] 徐备, 赵盼, 鲍庆中, 等, 2014.兴蒙造山带前中生代构造单元划分初探.岩石学报, 30(7):1841-1857. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm [70] 薛建平, 刘美玉, 李钢柱, 等, 2018.内蒙古索伦山地区哈尔博格托尔TTG岩锆石年代学、岩石地球化学及大地构造意义.地学前缘, 25(3): 230-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803024.htm [71] 阎国翰, 牟保磊, 许保良, 等, 2000.燕辽-阴山三叠纪碱性侵入岩年代学和Sr-Nd-Pb同位素特征及意义.中国科学D辑(地球科学), 30(4):383-387. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004005.htm [72] 张明东, 马昌前, 王连训, 等, 2018.后碰撞阶段的"俯冲型"岩浆岩:来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据.地球科学, 43(4): 1183-1206. doi: 10.3799/dqkx.2018.715 [73] 张拴宏, 赵越, 刘建民, 等, 2010.华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景.岩石矿物学杂志, 29(6): 824-842. doi: 10.3969/j.issn.1000-6524.2010.06.017 [74] 张万益, 聂凤军, 高延光, 等, 2012.内蒙古查干敖包三叠纪碱性石英闪长岩的地球化学特征及成因.岩石学报, 28(2):525-534. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202015.htm [75] 张维, 简平, 2012.华北北缘固阳二叠纪闪长岩-石英闪长岩-英云闪长岩套SHRIMP年代学.中国地质, 39(6): 1593-1603. doi: 10.3969/j.issn.1000-3657.2012.06.009 [76] 张玉清, 许立权, 康小龙, 等, 2009.内蒙古东乌珠穆沁旗京斯台碱性花岗岩年龄及意义.中国地质, 36(9): 988-995. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200905006.htm