Late Triassic Beryllium and Rubidium Rare Metals Mineralization in the Central Gangdise Metallogenic Belt, Tibet, China: Evidence from Monazite U-Pb Geochronology
-
摘要: 在西藏南木林县北部地区新发现了Be-Rb±(Nb-Ta)稀有金属找矿线索,但由于含矿岩体中锆石U含量过高,导致对其进行U-Pb年代学研究不能获得可靠的岩浆结晶年龄.采用LA-ICP-MS方法对赋矿岩体的独居石进行了U-Pb年代学研究,获得了207.0±0.7 Ma(n=22,MSWD=0.101)的独居石206Pb/238U加权平均年龄和207.0±0.8 Ma(MSWD=0.107)的下交点年龄,能够更加可靠地代表赋矿岩浆岩的结晶年龄.该独居石U-Pb年龄表明,含矿岩体结晶于晚三叠世,晚于区内的花岗闪长岩形成年龄,可能代表了尚未能完全识别出的冈底斯印支期造山活动晚期一次重要的成岩事件.该期赋存稀有金属岩体的发现进一步丰富了中冈底斯成矿带的矿种和矿床类型,对更加深入地认识冈底斯成矿带中生代构造-岩浆演化与成矿作用,丰富和完善与青藏高原多岛弧盆演化有关的造山与成矿理论有重要意义.Abstract: Beryllium and rubidium mineralization is newly found in northern Namling, Tibet, China. However, the U-Pb ages are not reliable representation of magmatic emplacement age since U concentration in zircons from the mineralized pegmatitic muscovite monzogranite is too high. LA-ICP-MS is taken on monazites from this pyrogenic rock using 24 μm spot 193 nm laser, yielding reliable age. The weighted average age of 206Pb/238U is 207.0±0.7 Ma (n=22, MSWD=0.101), and the lower intercepted age is 207.0±0.8 Ma (MSWD=0.107). These ages obtained by LA-ICP-MS analysis show the mineralized pegmatitic muscovite monzogranite emplaced in Late Triassic and later than granodiorite in this region. It may represent an important diagenetic event that has not yet been fully identified in the late stage of Indosinian orogeny in Paleo-Gangdise. This new discovery may expand minerals and deposit types for further regional prospecting in the central Gangdise metallogenic belt. Furthermore, this discovery also has great importance for the re-understanding of the Mesozoic tectonic evolution, magmatic evolution and mineralization in this belt. And further enhances the orogenic and metallogenic theories related to the evolution of multi-island-arc-basin in the Qinghai-Tibet Plateau.
-
图 1 冈底斯弧背断隆带Be矿化产出的大地构造位置及区内主要矿产分布概况
据Zhu et al.(2011)和李应栩等(2018)修改
Fig. 1. Tectonic setting and simplified geological and mineral resources map of the beryllium mineralization in the Gangdise back-arc uplift zone
图 2 南木林北铍铷矿化点区域地质概图
Fig. 2. Sketched regional geological map of the beryllium and rubidium mineralization site in northern Namling
表 1 南木林北剥土NBT01白云母二长花岗岩脉刻槽样品分析结果(10-6)
Table 1. Analysis result of muscovite monzogranite samples from NBT01 in northern Namling (10-6)
样号 Li2O BeO Rb2O Cs2O Nb2O5 Ta2O5 样长(m) H1 29.11 716.2 581.8 62.13 123.5 20.47 1.35 H2 40.04 660.6 1159 191.3 164.5 26.63 1.70 注:分析结果据中国冶金地质总局山东局测试中心检测报告HF2017-205-2. -
[1] Aleinikoff, J. N., Schenck, W. S., Plank, M. O., et al., 2006. Deciphering Igneous and Metamorphic Events in High-Grade Rocks of the Wilmington Complex, Delaware: Morphology, Cathodoluminescence and Backscattered Electron Zoning, and SHRIMP U-Pb Geochronology of Zircon and Monazite. Geological Society of America Bulletin, 118(1-2): 39-64. https://doi.org/10.1130/b25659.1 [2] Chen, T. Y., Wei, Q. R., Zhou, J. Y., et al., 2018. Analysis on Sedimentary Epoch and Depositional Environment of Yunzhug Formation in Gamba-East Asia Area, Tibet. Earth Science, 43(8): 2893-2910 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.200 [3] Cherniak, D.J, Watson, E.B., 2003. Diffusion in Zircon.Reviews in Mineralogy and Geochemistry, 53(1): 113-143. https://doi.org/10.2113/0530113 [4] Corfu, F., Hanchar, J.M, Hoskin, P.W.O., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469 [5] Cui, Y. R., Zhou, H. Y., Geng, J. Z., et al., 2012. In Situ LA-MC-ICP-MS U-Pb Isotopic Dating of Monazite. Acta Geoscientica Sinica, 33(6): 865-876 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201206004.htm [6] Evans, J. A., Zalasiewicz, J. A., 1996. U-Pb, Pb-Pb and Sm-Nd Dating of Authigenic Monazite: Implications for the Diagenetic Evolution of the Welsh Basin. Earth and Planetary Science Letters, 144(3-4): 421-433. https://doi.org/10.1016/s0012-821x(96)00177-x [7] Evans, J. A., Zalasiewicz, J. A., Fletcher, I., et al., 2002. Dating Diagenetic Monazite in Mudrocks: Constraining the Oil Window?.Journal of the Geological Society, 159(6): 619-622. https://doi.org/10.1144/0016-764902-066 [8] Geng, Q. R., Wang, L. Q., Pan, G. T., et al., 2007. Carboniferous Marginal Rifting in Gangdese: Volcanic Rocks and Stratigraphic Constraints, Xizang (Tibet), China. Acta Geologica Sinica, 81(9):1259-1276 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=93e281b103ccf683e9556e85b9f4e1db&encoded=0&v=paper_preview&mkt=zh-cn [9] Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi.org/10.1016/j.gca.2004.07.006 [10] Hou, Z. Q., 2010. Metallogensis of Continental Collision. Acta Geologica Sinica, 84(1):30-58 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=0b633ff821fe932e1b135544a98d2a42&encoded=0&v=paper_preview&mkt=zh-cn [11] Ji, W. Q., Wu, F. Y., Liu, C. Z., et al., 2009. Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet. Science China: Earth Sciences, 52(9): 1240-1261. https://doi.org/10.1007/s11430-009-0131-y [12] Ji, X. F., Wei, Q. R., Li, S. J., et al., 2018. Geochronology, Geochemistry and Tectonic Settings of Granodiorite in Lalong Area, Namling, Tibet. Earth Science, 43 (13): 4566-4585 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.271 [13] Lee, J. K. W., Williams, I. S., Ellis, D. J., 1997. Pb, U and Th Diffusion in Natural Zircon. Nature, 390(6656): 159-162. https://doi.org/10.1038/36554 [14] Li, C., Wang, T. W., Li, H. M., et al., 2003. Discovery of Indosinian Megaporphyritic Granodiorite in the Gangdise Area: Evidence for the Existence of Paleo-Gangdise. Regional Geology of China, 22(5):364-366 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b945a3b2493a7371bb3d226294dd3c09&encoded=0&v=paper_preview&mkt=zh-cn [15] Li, G. M., Zhang, L. K., Jiao, Y. J., et al., 2017. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704014 [16] Li, J. K., Zou, T. R., Wang, D. H., et al., 2017. A Review of Beryllium Metallogenic Regularity in China. Mineral Deposits, 36(4):951-978 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201704011 [17] Li, P., Zhang, C., Liu, X. Y., et al., 2017. The Metamorphic Processes of the Xindaduo Eclogite in Tibet and Its Constrain on the Evolutionary of the Paleo-Tethys Subduction Zone. Acta Petrologica Sinica, 33(12):3753-3765 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201712005 [18] Li, Q. L., 2016 "High-U Effect" during SIMS Zircon U-Pb Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3):405-412 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb201603001 [19] Li, Y., Zhang, S. Z., Li, F. Q., et al., 2018. Zircon U-Pb Ages and Implications of the Dianzhong Formation in Chazi Area, Middle Lhasa Block, Tibet. Earth Science, 43(8):2755-2766 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.593 [20] Li, Y. X., Li, G. M., Xie, Y. L., et al., 2018. Properties and Evolution Path of Ore-Forming Fluid in Qiagong Polymetallic Deposit of Middle Gangdese in Tibet, China. Earth Science, 43(8): 2684-2700 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.170 [21] Liu, X. H., Ju, Y. T., Wei, L. J., et al., 2010a. An Alternative Tectonic Model for the Yarlung Zangbo Suture Zone. Science China: Earth Sciences, 53(1): 27-41. https://doi.org/10.1007/s11430-009-0177-x [22] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [23] Mezger, K., Krogstad, E. J., 1997. Interpretation of Discordant U-Pb Zircon Ages: An Evaluation. Journal of Metamorphic Geology, 15(1): 127-140. https://doi.org/10.1111/j.1525-1314.1997.00008.x [24] Pan, G. T., Mo, X. X., Hou, Z. Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001 [25] Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Model of Archipelagic Arc-Basin Systems: The Key to the Continental Geology. Sedimentary Geology and Tethyan Geology, 32(3):1-20 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e053bb34f93c746a793a9623d6bd9dc1&encoded=0&v=paper_preview&mkt=zh-cn [26] Pei, R. F., Wu, L. S., 1993. Advances of Metallogenetic Province Evolution and Mineralization Geochronology. Mineral Deposits, 12(3): 285-286 (in Chinese). http://cn.bing.com/academic/profile?id=caca50ff5b010a822e5ae3876b8c76da&encoded=0&v=paper_preview&mkt=zh-cn [27] Spear, F. S., Parrish, R. R., 1996. Petrology and Cooling Rates of the Valhalla Complex, British Columbia, Canada. Journal of Petrology, 37(4): 733-765. https://doi.org/10.1093/petrology/37.4.733 [28] Suzuki, K., Adachi, M., Kajizuka, I., 1994. Electron Microprobe Observations of Pb Diffusion in Metamorphosed Detrital Monazites. Earth and Planetary Science Letters, 128(3-4): 391-405. https://doi.org/10.1016/0012-821x(94)90158-9 [29] Tomascak, P. B., Krogstad, E. J., Walker, R. J., 1996. U-Pb Monazite Geochronology of Granitic Rocks from Maine: Implications for Late Paleozoic Tectonics in the Northern Appalachians. The Journal of Geology, 104(2): 185-195. https://doi.org/10.1086/629813 [30] Wang, C., Wei, Q. R., Liu, X. N., et al., 2014. Post-Collision Related Late Indosinian Granites of Gangdise Terrane: Evidences from Zircon U-Pb Geochronology and Petrogeochemistry. Earth Science, 39(9): 1277-1288, 1300 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.109 [31] Wang, C. L., Qin, K. Z., Tang, D. M., et al., 2015. Geochronology and Hf Isotope of Zircon for the Arskartor Be-Nb-Mo Deposit in Altay and Its Geological Implications. Acta Petrologica Sinica, 31(8): 2337-2352 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201508015 [32] Wang, H. Z., 1983. On the Geotectonic Units of Xizang (Tibet) Region. Earth Science, (1):3-10 (in Chinese with English abstract). [33] Wu, Y., Chen, S. Y., Qin, M. K., et al., 2018. Zircon U-Pb Ages of Dongcuo Ophiolite in Western Bangonghu-Nujiang Suture Zone and Their Geological Significance. Earth Science, 43(4):1070-1084 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.710 [34] Yong, Y. Y., 2007. Tin and Tungsten: Potential Dominant Mineral Species in the Gangdise Belt, Xizang. Sedimentary Geology and Tethyan Geology, 27(1):1-8 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a10bd88a12feb7cbcd00cb91a3186333&encoded=0&v=paper_preview&mkt=zh-cn [35] Zhang, L. X., Wang, Q., Zhu, D. C., et al., 2013. Mapping the Lhasa Terrane through Zircon Hf Isotopes: Constraints on the Nature of the Crust and Metallogenic Potential. Acta Petrologica Sinica, 29(11):3681-3688 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311003 [36] Zhou, J. Y., Wei, Q. R., Wang, J., et al., 2018. Depositional Filling and Tectonic Settings of Provenance of Paleotethys Remnant Oceanic Basin in Zexue District, Tibet, China. Earth Science, 43 (6): 2116-2132 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.551 [37] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [38] Zhu, D. C., Pan, G. T., Wang, L. Q., et al., 2008. Spatial-Temporal Distribution and Tectonic Setting of Jurassic Magmatism in the Gangdise Belt, Tibet, China. Geological Bulletin of China, 27(4): 458-468 (in Chinese with English abstract). doi: 10.1039-c0cc02534h/ [39] 陈泰一, 魏启荣, 周江羽, 等, 2018.西藏岗巴-东亚地区永珠组沉积时代及沉积环境分析.地球科学, 43(8): 2893-2910. http://earth-science.net/WebPage/Article.aspx?id=3919 [40] 崔玉荣, 周红英, 耿建珍, 等, 2012. LA-MC-ICP-MS独居石微区原位U-Pb同位素年龄测定.地球学报, 33(6): 865-876. http://d.old.wanfangdata.com.cn/Periodical/dqxb201206006 [41] 耿全如, 王立全, 潘桂棠, 等, 2007.西藏冈底斯带石炭纪陆缘裂陷作用:火山岩和地层学证据.地质学报, 81(9):1259-1276. doi: 10.3321/j.issn:0001-5717.2007.09.011 [42] 侯增谦, 2010.大陆碰撞成矿论.地质学报, 84(1): 30-58. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201001002 [43] 吉雪峰, 魏启荣, 李世杰, 等, 2018.西藏南木林县拉隆地区花岗闪长岩体的时代、岩石地球化学特征及构造背景.地球科学, 43(13): 4566-4585. http://earth-science.net/WebPage/Article.aspx?id=4077 [44] 李才, 王天武, 李惠民, 等, 2003.冈底斯地区发现印支期巨斑花岗闪长岩―古冈底斯造山的存在证据.地质通报, 22(5):364-366. doi: 10.3969/j.issn.1671-2552.2003.05.011 [45] 李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014 [46] 李建康, 邹天人, 王登红, 等, 2017.中国铍矿成矿规律.矿床地质, 36(4): 951-978. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704011 [47] 李鹏, 张聪, 刘晓瑜, 等, 2017.西藏新达多地区榴辉岩的变质过程研究及其对古特提斯俯冲带演化的限定意义.岩石学报, 33(12): 3753-3765. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201712005 [48] 李秋立, 2016.离子探针锆石U-Pb定年的"高U效应".矿物岩石地球化学通报, 35(3):405-412. doi: 10.3969/j.issn.1007-2802.2016.03.001 [49] 李勇, 张士贞, 李奋其, 等, 2018.拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义.地球科学, 43 (8): 2755-2766. http://earth-science.net/WebPage/Article.aspx?id=3910 [50] 李应栩, 李光明, 谢玉玲, 等, 2018.西藏冈底斯中段恰功多金属矿床成矿流体性质与演化.地球科学, 43(8): 2684-2700. http://earth-science.net/WebPage/Article.aspx?id=3905 [51] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 [52] 潘桂棠, 王立全, 李荣社, 等, 2012.多岛弧盆系构造模式:认识大陆地质的关键.沉积与特提斯地质, 32(3): 1-20. doi: 10.3969/j.issn.1009-3850.2012.03.001 [53] 裴荣富, 吴良士, 1993.金属成矿省的地质历史演化和成矿年代学研究新进展.矿床地质, 12(3): 285-286. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199303012.htm [54] 王程, 魏启荣, 刘小念, 等, 2014.冈底斯印支晚期后碰撞花岗岩:锆石U-Pb年代学及岩石地球化学证据.地球科学, 39(9): 1277-1288, 1300. http://earth-science.net/WebPage/Article.aspx?id=2935 [55] 王春龙, 秦克章, 唐冬梅, 等, 2015.阿尔泰阿斯喀尔特Be-Nb-Mo矿床年代学、锆石Hf同位素研究及其意义.岩石学报, 31(8): 2337-2352. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201508015 [56] 王鸿祯, 1983.试论西藏地质构造分区问题.地球科学, (1):3-10. doi: 10.1109-TVT.2011.2163194/ [57] 武勇, 陈松永, 秦明宽, 等, 2018.西藏班公湖-怒江缝合带西段洞错蛇绿岩中的辉长岩锆石U-Pb年代学及地质意义.地球科学, 43(4): 1070-1084. http://earth-science.net/WebPage/Article.aspx?id=3793 [58] 雍永源, 2007.锡和钨:西藏冈底斯带潜在的优势矿种.沉积与特提斯地质, 27(1):1-8. doi: 10.3969/j.issn.1009-3850.2007.01.001 [59] 张立雪, 王青, 朱弟成, 等, 2013.拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束.岩石学报, 29(11):3681-3688. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311003 [60] 周江羽, 魏启荣, 王健, 等, 2018.西藏则学地区古特提斯残留洋盆沉积充填及源区构造背景.地球科学, 43(6): 2116-2132. http://earth-science.net/WebPage/Article.aspx?id=3869 [61] 朱弟成, 潘桂棠, 王立全, 等, 2008.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报, 27(4): 458-468. doi: 10.3969/j.issn.1671-2552.2008.04.003