• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高通量试验堆(HFETR)辐照40Ar-39Ar定年样品条件初探

    李军杰 刘汉彬 张佳 金贵善 张建锋 韩娟 石晓

    李军杰, 刘汉彬, 张佳, 金贵善, 张建锋, 韩娟, 石晓, 2019. 高通量试验堆(HFETR)辐照40Ar-39Ar定年样品条件初探. 地球科学, 44(3): 727-737. doi: 10.3799/dqkx.2019.006
    引用本文: 李军杰, 刘汉彬, 张佳, 金贵善, 张建锋, 韩娟, 石晓, 2019. 高通量试验堆(HFETR)辐照40Ar-39Ar定年样品条件初探. 地球科学, 44(3): 727-737. doi: 10.3799/dqkx.2019.006
    Li Junjie, Liu Hanbin, Zhang Jia, Jin Guishan, Zhang Jianfeng, Han Juan, Shi Xiao, 2019. Primary Research of High Flux Engineering Test Reactor(HFETR) for Irradiation of 40Ar-39Ar Dating Samples. Earth Science, 44(3): 727-737. doi: 10.3799/dqkx.2019.006
    Citation: Li Junjie, Liu Hanbin, Zhang Jia, Jin Guishan, Zhang Jianfeng, Han Juan, Shi Xiao, 2019. Primary Research of High Flux Engineering Test Reactor(HFETR) for Irradiation of 40Ar-39Ar Dating Samples. Earth Science, 44(3): 727-737. doi: 10.3799/dqkx.2019.006

    高通量试验堆(HFETR)辐照40Ar-39Ar定年样品条件初探

    doi: 10.3799/dqkx.2019.006
    基金项目: 

    国家重点研发计划项目 2017YFC0602600

    详细信息
      作者简介:

      李军杰(1986-), 男, 工程师, 博士研究生, 主要从事40Ar-39Ar同位素定年技术方法研究

      通讯作者:

      刘汉彬

    • 中图分类号: P597

    Primary Research of High Flux Engineering Test Reactor(HFETR) for Irradiation of 40Ar-39Ar Dating Samples

    • 摘要: 国内目前用于40Ar-39Ar定年样品辐照的反应堆较少且开堆频率低,样品辐照周期长,且不同类型样品辐照条件缺乏系统研究.首次对高通量试验堆(HFETR)用于40Ar-39Ar定年样品的辐照工作进行了研究.通过辐照一定质量的黑云母标准物质ZBH-25,确定了辐照孔道39ArK产率,为不同年龄和不同含钾量样品的辐照时间提供了参考依据.辐照孔道轴向中子通量梯度仅为3.3%/cm,且均呈二次曲线特征分布(R2>0.99),中子通量在径向上存在差异,最大差异达到7.1%/cm;通过辐照纯的钾盐和钙盐,得出辐照孔道内校正因子(36Ar/37Ar)Ca的值为(3.52±0.11)×10-4,且在样品辐照罐内不同位置基本一致,而校正因子(40Ar/39Ar)K和(39Ar/37Ar)Ca的值在辐照样品罐内存在明显的差异;Cd皮对于降低校正因子(40Ar/39Ar)K的影响在样品罐底部更加明显,而在样品罐顶部几乎没有影响,这可能是由辐照孔道内中子能谱的差异造成的;以FCs透长石为中子通量监测物质,对标准物质ZBH-25黑云母和BSP-1角闪石进行了年龄测定,ZBH-25黑云母获得了理想的坪年龄,证明此反应堆满足40Ar-39Ar定年样品辐照的要求;BSP-1角闪石的坪年龄准确度和精度较差,与样品本身异常老的年龄和较低的K/Ca比有关,对于此类样品,准确确定干扰校正因子并合理延长照射时间对获得高精度40Ar-39Ar定年结果非常重要.

       

    • 图  1  石英管内辐照样品位置示意图

      Fig.  1.  The position of the irradiated sample in the quartz tube

      图  2  铝板平面图(a)和辐照样品罐结构(b)

      Fig.  2.  Ichnography of the aluminum plate (a) and structure of the irradiated sample vessel (b)

      图  3  39ArK产率曲线(a)和不同年龄样品的辐照时间与40Ar*/39ArK值关系(b)

      Fig.  3.  The 39ArK production efficiency (a) and relationship of the 40Ar*/39ArK value and irradiation time to the samples with different age (b)

      图  4  不同径向位置的轴向方向中子通量梯度变化曲线

      Fig.  4.  Curves about the neutron flux gradient along with the axial direction at different radial positions

      图  5  中子通量径向平面分布

      Fig.  5.  The position of the irradiated sample in the quartz tube

      图  6  辐照孔道不同位置校正因子变化

      Fig.  6.  The interference factor changes at different position of the irradiation channel

      图  7  ZBH-25黑云母和BSP-1角闪石坪年龄谱图

      Fig.  7.  Plateau age of biotite ZBH-25 and hornblende BSP-1

      表  1  不同类型辐照样品测试的接收器配置

      Table  1.   The detector configuration for the different kinds of irradiated samples

      接收器 H2 H1 AX L1 L2 CDD
      钙盐 40Ar 39Ar 38Ar 37Ar 36Ar -
      - 40Ar 39Ar 38Ar 37Ar 36Ar
      - - - - - 39Ar
      钾盐 40Ar 39Ar 38Ar 37Ar 36Ar -
      - 40Ar 39Ar 38Ar 37Ar 36Ar
      监测物质 40Ar 39Ar 38Ar 37Ar 36Ar -
      - 40Ar 39Ar 38Ar 37Ar 36Ar
      - - - - - 37Ar
        注:H2、H1、AX、L1和L2为法拉第杯, 其中H2放大器高阻为1011 Ω,其余4个法拉第杯的放大器高阻为1012 Ω;CDD为二次电子倍增器.采用表中加粗的接收杯强度值.
      下载: 导出CSV

      表  2  BSP-1角闪石40Ar-39Ar年龄测试数据

      Table  2.   The 40Ar-39Ar dating data of hornblende BSP-1

      温度(℃) $ {{\left(\frac{^{40}\text{Ar}}{^{39}\text{Ar}} \right)}_{\text{m}}}$ $ {{\left(\frac{^{36}\text{Ar}}{^{39}\text{Ar}} \right)}_{\text{m}}}$ ${{\left(\frac{^{37}\text{Ar}}{^{39}\text{Ar}} \right)}_{\text{m}}} $ 39ArK×10mol-14 $ \frac{^{40}\text{A}{{\text{r}}^{*}}}{^{39}\text{Ar}}$ 39ArK(%) $ \frac{\text{K}}{\text{Ca}}\pm 1\sigma $ 视年龄(Ma, 1σ)
      900 577.126 0.152 0.484 0.085 532.370 0.43 0.20±0.03 2 176.83±10.48
      1 000 1 795.387 0.070 0.374 0.083 1 775.423 0.45 0.22±0.04 3 936.52±10.58
      1 100 613.571 0.063 1.121 0.152 595.495 0.81 0.08±0.01 2 321.51±7.05
      1 200 474.078 0.009 0.954 6.360 471.955 34.69 0.10±0.01 2 026.69±6.15
      1 300 453.681 0.004 0.961 1.050 452.899 57.68 0.09±0.01 1 976.65±6.05
      1 400 427.166 0.105 0.937 0.109 424.479 5.95 0.09±0.01 1 899.36±5.94
        注:表中下标m表示测试值,下标mol表示摩尔值.样品质量为0.02 g,辐照参数J=0.004 33±0.000 02.
      下载: 导出CSV
    • [1] Brereton, N. R., 1970.Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method.Earth and Planetary Science Letters, 8(6):427-433. https://doi.org/10.1016/0012-821x(70)90146-9
      [2] Clauer, N., Zwingmann, H., Liewig, N., et al., 2012.Comparative 40Ar/39Ar and K-Ar Dating of Illite-Type Clay Minerals:A Tentative Explanation for Age Identities and Differences.Earth-Science Reviews, 115(1-2):76-96. https://doi.org/10.1016/j.earscirev.2012.07.003
      [3] Coble, M.A., Grove, M., Calvert, A.T., 2011.Calibration of Nu-Instruments Noblesse Multicollector Mass Spectrometers for Argon Isotopic Measurements Using a Newly Developed Reference Gas.Chemical Geology, 290(1-2):75-87. https://doi.org/10.1016/j.chemgeo.2011.09.003
      [4] Dalrymple, G.B., Alexander, E.C., Lamphere, M.A., et al., 1981.Irradiation of Samples for 40Ar/39Ar Dating Using the Geological Survey TRIGA Reactor.U.S.Geological Survey, Professional Papers 1176, 18.
      [5] Dalrymple, G.B., Lanphere, M.A., 1971.40Ar/39Ar Technique of K-Ar Dating:A Comparison with the Conventional Technique.Earth and Planetary Science Letters, 12(3):300-308. https://doi.org/10.1016/0012-821x(71)90214-7
      [6] Kellett, D., Joyce, N., 2014.Analytical Details of Single-and Multi-Collection 40Ar/39Ar Measurements for Conventional Step-Heating and Total-Fusion Age Calculation Using the Nu Noblesse at the Geological Survey of Canada.Geological Survey of Canada, Technical Note 8, 1-21.
      [7] Koppers, A.A.P., 2002.ArArCALC-Software for 40Ar/39Ar Age Calculations.Computers & Geosciences, 28(5):605-619. https://doi.org/10.1016/s0098-3004(01)00095-4
      [8] Mark, D.F., Barfod, D., Stuart, F.M., et al., 2009.The ARGUS Multi-Collector Noble Gas Mass Spectrometer:Performance for 40Ar/39Ar Geochronology.Geochemistry, Geophysics, Geosystems, 10, Q0AA02. https://doi.org/10.1029/2009gc002643
      [9] Mei, S.L., Zhang, K.X., Wardlaw, B.R., 1998.A Refined Succession of Changhsingian and Griesbachian Neogondolellid Conodonts from the Meishan Section, Candidate of the Global Stratotype Section and Point of the Permian-Triassic Boundary.Palaeogeography, Palaeoclimatology, Palaeoecology, 143(4):213-226. https://doi.org/10.1016/s0031-0182(98)00112-6
      [10] Merrihue, C., Turner, G., 1966.Potassium-Argon Dating by Activation with Fast Neutrons.Journal of Geophysical Research, 71(11):2852-2857. https://doi.org/10.1029/jz071i011p02852
      [11] Mitchell, J.G., 1968.The Argon-40/Argon-39 Method for Potassium-Argon Age Determination.Geochimica et Cosmochimica Acta, 32(7):781-790. https://doi.org/10.1016/0016-7037(68)90012-4
      [12] Podosek, F.A., 1971.Neutron-Activation Potassium-Argon Dating of Meteorites.Geochimica et Cosmochimica Acta, 35(2):157-173. https://doi.org/10.1016/0016-7037(71)90055-x
      [13] Renne, P.R., Balco, G., Ludwig, K.R., et al., 2011.Response to the Comment by W.H.Schwarz et al. on "Joint Determination of 40K Decay Constants and 40Ar*/40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology" by P.R.Renne et al. (2010).Geochimica et Cosmochimica Acta, 75(17): 5097-5100.https://doi.org/ 10.1016/j.gca.2011.06.021
      [14] Renne, P.R., Knight, K.B., Nomade, S., et al., 2005.Application of Deuteron-Deuteron (D-D) Fusion Neutrons to 40Ar/39Ar Geochronology.Applied Radiation and Isotopes, 62(1):25-32. https://doi.org/10.1016/j.apradiso.2004.06.004
      [15] Renne, P.R., Swisher, C.C., Deino, A.L., et al., 1998.Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating.Chemical Geology, 145(1-2):117-152. https://doi.org/10.1016/s0009-2541(97)00159-9
      [16] Rutte, D., Pfänder, J.A., Koleška, M., et al., 2015.Radial Fast-Neutron Fluence Gradients during Rotating 40Ar/39Ar Sample Irradiation Recorded with Metallic Fluence Monitors and Geological Age Standards.Geochemistry, Geophysics, Geosystems, 16(1):336-345. https://doi.org/10.1002/2014gc005611
      [17] Sang, H.Q., Wang, F., He, H.Y., et al., 2006.Intercalibration of ZBH-25 Biotite Reference Material Untilized for K-Ar and 40Ar-39Ar Age Determination.Acta Petrologica Sinica, 22(12):3059-3078 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200612022
      [18] Scaillet, S., 2000.Numerical Error Analysis in 40Ar-39Ar Dating.Chemical Geology, 162(3-4):269-298. https://doi.org/10.1016/s0009-2541(99)00149-7
      [19] Stacey, J.S., Sherrill, N.D., Dalrymple, G.B., et al., 1981.A Five-Collector System for the Simultaneous Measurement of Argon Isotope Ratios in a Static Mass Spectrometer.International Journal of Mass Spectrometry and Ion Physics, 39(2):167-180. https://doi.org/10.1016/0020-7381(81)80031-9
      [20] Turner, G., 1971.Argon 40-Argon 39 Dating:The Optimization of Irradiation Parameters.Earth and Planetary Science Letters, 10(2):227-234. https://doi.org/10.1016/0012-821x(71)90010-0
      [21] Vermeesch, P., 2015.Revised Error Propagation of 40Ar/39Ar Data, Including Covariances.Geochimica et Cosmochimica Acta, 171:325-337. https://doi.org/10.1016/j.gca.2015.09.008
      [22] Wang, H., Xiang, Y.X., Xu, T.Z., et al., 2017.Verification of Neutron Flux Calculation Method for HFETR.Nuclear Power Engineering, 38(S1):154-156 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdlgc2017z1037
      [23] Wang, S.S., Hu, S, L., Sang, H.Q., et al., 1992.BSP-1 Hornblende, a 2 Ga Age Standard as Flux Monitor of 40Ar-39Ar Dating.Acta Petrologica Sinica, 8(2):103-127 (in Chinese with English abstract).
      [24] Yang, L.K., Wang, F., He, H.Y., et al., 2009.Achievements and Limitations of 40Ar/39Ar Dating on Young Volcanic Rocks.Seismology and Geology, 31(1):174-185 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200901016
      [25] 桑海清, 王非, 贺怀宇, 等, 2006.K-Ar法地质年龄国家一级标准物质ZBH-25黑云母的研制.岩石学报, 22(12):3059-3078. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200612022
      [26] 王皓, 向玉新, 徐涛忠, 等, 2017.高通量工程试验堆(HFETR)材料辐照中子注量率计算方法验证.核动力工程, 38(S1):154-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdlgc2017z1037
      [27] 王松山, 胡世玲, 桑海清, 等, 1992.氩-氩定年法国际标准物质BSP-1角闪石的研制.岩石学报, 8(2):103-127. doi: 10.3321/j.issn:1000-0569.1992.02.001
      [28] 杨列坤, 王非, 贺怀宇, 等, 2009.年轻火山岩氩同位素体系定年技术最新进展及问题.地震地质, 31(1):174-185. doi: 10.3969/j.issn.0253-4967.2009.01.016
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  4288
    • HTML全文浏览量:  1669
    • PDF下载量:  62
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-16
    • 刊出日期:  2019-03-15

    目录

      /

      返回文章
      返回