Primary Research of High Flux Engineering Test Reactor(HFETR) for Irradiation of 40Ar-39Ar Dating Samples
-
摘要: 国内目前用于40Ar-39Ar定年样品辐照的反应堆较少且开堆频率低,样品辐照周期长,且不同类型样品辐照条件缺乏系统研究.首次对高通量试验堆(HFETR)用于40Ar-39Ar定年样品的辐照工作进行了研究.通过辐照一定质量的黑云母标准物质ZBH-25,确定了辐照孔道39ArK产率,为不同年龄和不同含钾量样品的辐照时间提供了参考依据.辐照孔道轴向中子通量梯度仅为3.3%/cm,且均呈二次曲线特征分布(R2>0.99),中子通量在径向上存在差异,最大差异达到7.1%/cm;通过辐照纯的钾盐和钙盐,得出辐照孔道内校正因子(36Ar/37Ar)Ca的值为(3.52±0.11)×10-4,且在样品辐照罐内不同位置基本一致,而校正因子(40Ar/39Ar)K和(39Ar/37Ar)Ca的值在辐照样品罐内存在明显的差异;Cd皮对于降低校正因子(40Ar/39Ar)K的影响在样品罐底部更加明显,而在样品罐顶部几乎没有影响,这可能是由辐照孔道内中子能谱的差异造成的;以FCs透长石为中子通量监测物质,对标准物质ZBH-25黑云母和BSP-1角闪石进行了年龄测定,ZBH-25黑云母获得了理想的坪年龄,证明此反应堆满足40Ar-39Ar定年样品辐照的要求;BSP-1角闪石的坪年龄准确度和精度较差,与样品本身异常老的年龄和较低的K/Ca比有关,对于此类样品,准确确定干扰校正因子并合理延长照射时间对获得高精度40Ar-39Ar定年结果非常重要.Abstract: The domestic reactors which could be utilized for the irradiation of 40Ar-39Ar dating samples are not only rare but the operation frequency is very low, which makes the period of the irradiation for samples extremely long.Besides, the optimized parameters of irradiation for different kinds of samples are short of systematic research.To solve the above-mentioned problems, primary research was done on the HFETR in the application of the irradiation of 40Ar-39Ar dating samples for the first time.Through the irradiation of certain amount of biotite standard ZBH-25, the production efficiency of 39ArK is determined, which could provide the basis for the irradiation time for samples with different ages or potassium contents.The axial neutron flux gradient of the irradiation channel, which shows approximative conic function (R2>0.99), is only 3.3%/cm.However, the radial flux gradient is much more obvious, which is as high as 7.1%/cm.The interference factors are determined through the irradiation of pure potassium salt and calcium salt.It is found that the (36Ar/37Ar)Ca factor is uniform with the value (3.52±0.11)×10-4, but the interference factors (40Ar/39Ar)K and (36Ar/37Ar)Ca are scattered at different positions of the irradiation channel.The shielding effect of cadmium for the decrease of the interference factor of (40Ar/39Ar)K is prominent at the bottom of the sample vessel but negligible at the top of the sample vessel, which may result from the difference of the neutron spectrum along the axial direction of the irradiation channel.Taking the international standard sanidine FCs as neutron flux monitor, the domestic standards biotite ZBH-25 and hornblende BSP-1 are dated.Excellent plateau age is obtained for the ZBH-25 biotite standard, indicating that the HFETR could satisfy the requirement of the sample irradiation.However, the precision and accuracy of the plateau age of the BSP-1 hornblende is somewhat worse, which maybe has something to do with the relatively old age and low ratio of the K/Ca.Precise determination of the interference factors and proloning of the irradiation time are necessary for the improvement of the age quality for such kind of sample.
-
Key words:
- HFETR /
- 40Ar-39Ar dating /
- sample irradiation /
- neutron flux gradient /
- interference factor /
- geochronology
-
表 1 不同类型辐照样品测试的接收器配置
Table 1. The detector configuration for the different kinds of irradiated samples
接收器 H2 H1 AX L1 L2 CDD 钙盐 40Ar 39Ar 38Ar 37Ar 36Ar - - 40Ar 39Ar 38Ar 37Ar 36Ar - - - - - 39Ar 钾盐 40Ar 39Ar 38Ar 37Ar 36Ar - - 40Ar 39Ar 38Ar 37Ar 36Ar 监测物质 40Ar 39Ar 38Ar 37Ar 36Ar - - 40Ar 39Ar 38Ar 37Ar 36Ar - - - - - 37Ar 注:H2、H1、AX、L1和L2为法拉第杯, 其中H2放大器高阻为1011 Ω,其余4个法拉第杯的放大器高阻为1012 Ω;CDD为二次电子倍增器.采用表中加粗的接收杯强度值. 表 2 BSP-1角闪石40Ar-39Ar年龄测试数据
Table 2. The 40Ar-39Ar dating data of hornblende BSP-1
温度(℃) $ {{\left(\frac{^{40}\text{Ar}}{^{39}\text{Ar}} \right)}_{\text{m}}}$ $ {{\left(\frac{^{36}\text{Ar}}{^{39}\text{Ar}} \right)}_{\text{m}}}$ ${{\left(\frac{^{37}\text{Ar}}{^{39}\text{Ar}} \right)}_{\text{m}}} $ 39ArK×10mol-14 $ \frac{^{40}\text{A}{{\text{r}}^{*}}}{^{39}\text{Ar}}$ 39ArK(%) $ \frac{\text{K}}{\text{Ca}}\pm 1\sigma $ 视年龄(Ma, 1σ) 900 577.126 0.152 0.484 0.085 532.370 0.43 0.20±0.03 2 176.83±10.48 1 000 1 795.387 0.070 0.374 0.083 1 775.423 0.45 0.22±0.04 3 936.52±10.58 1 100 613.571 0.063 1.121 0.152 595.495 0.81 0.08±0.01 2 321.51±7.05 1 200 474.078 0.009 0.954 6.360 471.955 34.69 0.10±0.01 2 026.69±6.15 1 300 453.681 0.004 0.961 1.050 452.899 57.68 0.09±0.01 1 976.65±6.05 1 400 427.166 0.105 0.937 0.109 424.479 5.95 0.09±0.01 1 899.36±5.94 注:表中下标m表示测试值,下标mol表示摩尔值.样品质量为0.02 g,辐照参数J=0.004 33±0.000 02. -
[1] Brereton, N. R., 1970.Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method.Earth and Planetary Science Letters, 8(6):427-433. https://doi.org/10.1016/0012-821x(70)90146-9 [2] Clauer, N., Zwingmann, H., Liewig, N., et al., 2012.Comparative 40Ar/39Ar and K-Ar Dating of Illite-Type Clay Minerals:A Tentative Explanation for Age Identities and Differences.Earth-Science Reviews, 115(1-2):76-96. https://doi.org/10.1016/j.earscirev.2012.07.003 [3] Coble, M.A., Grove, M., Calvert, A.T., 2011.Calibration of Nu-Instruments Noblesse Multicollector Mass Spectrometers for Argon Isotopic Measurements Using a Newly Developed Reference Gas.Chemical Geology, 290(1-2):75-87. https://doi.org/10.1016/j.chemgeo.2011.09.003 [4] Dalrymple, G.B., Alexander, E.C., Lamphere, M.A., et al., 1981.Irradiation of Samples for 40Ar/39Ar Dating Using the Geological Survey TRIGA Reactor.U.S.Geological Survey, Professional Papers 1176, 18. [5] Dalrymple, G.B., Lanphere, M.A., 1971.40Ar/39Ar Technique of K-Ar Dating:A Comparison with the Conventional Technique.Earth and Planetary Science Letters, 12(3):300-308. https://doi.org/10.1016/0012-821x(71)90214-7 [6] Kellett, D., Joyce, N., 2014.Analytical Details of Single-and Multi-Collection 40Ar/39Ar Measurements for Conventional Step-Heating and Total-Fusion Age Calculation Using the Nu Noblesse at the Geological Survey of Canada.Geological Survey of Canada, Technical Note 8, 1-21. [7] Koppers, A.A.P., 2002.ArArCALC-Software for 40Ar/39Ar Age Calculations.Computers & Geosciences, 28(5):605-619. https://doi.org/10.1016/s0098-3004(01)00095-4 [8] Mark, D.F., Barfod, D., Stuart, F.M., et al., 2009.The ARGUS Multi-Collector Noble Gas Mass Spectrometer:Performance for 40Ar/39Ar Geochronology.Geochemistry, Geophysics, Geosystems, 10, Q0AA02. https://doi.org/10.1029/2009gc002643 [9] Mei, S.L., Zhang, K.X., Wardlaw, B.R., 1998.A Refined Succession of Changhsingian and Griesbachian Neogondolellid Conodonts from the Meishan Section, Candidate of the Global Stratotype Section and Point of the Permian-Triassic Boundary.Palaeogeography, Palaeoclimatology, Palaeoecology, 143(4):213-226. https://doi.org/10.1016/s0031-0182(98)00112-6 [10] Merrihue, C., Turner, G., 1966.Potassium-Argon Dating by Activation with Fast Neutrons.Journal of Geophysical Research, 71(11):2852-2857. https://doi.org/10.1029/jz071i011p02852 [11] Mitchell, J.G., 1968.The Argon-40/Argon-39 Method for Potassium-Argon Age Determination.Geochimica et Cosmochimica Acta, 32(7):781-790. https://doi.org/10.1016/0016-7037(68)90012-4 [12] Podosek, F.A., 1971.Neutron-Activation Potassium-Argon Dating of Meteorites.Geochimica et Cosmochimica Acta, 35(2):157-173. https://doi.org/10.1016/0016-7037(71)90055-x [13] Renne, P.R., Balco, G., Ludwig, K.R., et al., 2011.Response to the Comment by W.H.Schwarz et al. on "Joint Determination of 40K Decay Constants and 40Ar*/40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology" by P.R.Renne et al. (2010).Geochimica et Cosmochimica Acta, 75(17): 5097-5100.https://doi.org/ 10.1016/j.gca.2011.06.021 [14] Renne, P.R., Knight, K.B., Nomade, S., et al., 2005.Application of Deuteron-Deuteron (D-D) Fusion Neutrons to 40Ar/39Ar Geochronology.Applied Radiation and Isotopes, 62(1):25-32. https://doi.org/10.1016/j.apradiso.2004.06.004 [15] Renne, P.R., Swisher, C.C., Deino, A.L., et al., 1998.Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating.Chemical Geology, 145(1-2):117-152. https://doi.org/10.1016/s0009-2541(97)00159-9 [16] Rutte, D., Pfänder, J.A., Koleška, M., et al., 2015.Radial Fast-Neutron Fluence Gradients during Rotating 40Ar/39Ar Sample Irradiation Recorded with Metallic Fluence Monitors and Geological Age Standards.Geochemistry, Geophysics, Geosystems, 16(1):336-345. https://doi.org/10.1002/2014gc005611 [17] Sang, H.Q., Wang, F., He, H.Y., et al., 2006.Intercalibration of ZBH-25 Biotite Reference Material Untilized for K-Ar and 40Ar-39Ar Age Determination.Acta Petrologica Sinica, 22(12):3059-3078 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200612022 [18] Scaillet, S., 2000.Numerical Error Analysis in 40Ar-39Ar Dating.Chemical Geology, 162(3-4):269-298. https://doi.org/10.1016/s0009-2541(99)00149-7 [19] Stacey, J.S., Sherrill, N.D., Dalrymple, G.B., et al., 1981.A Five-Collector System for the Simultaneous Measurement of Argon Isotope Ratios in a Static Mass Spectrometer.International Journal of Mass Spectrometry and Ion Physics, 39(2):167-180. https://doi.org/10.1016/0020-7381(81)80031-9 [20] Turner, G., 1971.Argon 40-Argon 39 Dating:The Optimization of Irradiation Parameters.Earth and Planetary Science Letters, 10(2):227-234. https://doi.org/10.1016/0012-821x(71)90010-0 [21] Vermeesch, P., 2015.Revised Error Propagation of 40Ar/39Ar Data, Including Covariances.Geochimica et Cosmochimica Acta, 171:325-337. https://doi.org/10.1016/j.gca.2015.09.008 [22] Wang, H., Xiang, Y.X., Xu, T.Z., et al., 2017.Verification of Neutron Flux Calculation Method for HFETR.Nuclear Power Engineering, 38(S1):154-156 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdlgc2017z1037 [23] Wang, S.S., Hu, S, L., Sang, H.Q., et al., 1992.BSP-1 Hornblende, a 2 Ga Age Standard as Flux Monitor of 40Ar-39Ar Dating.Acta Petrologica Sinica, 8(2):103-127 (in Chinese with English abstract). [24] Yang, L.K., Wang, F., He, H.Y., et al., 2009.Achievements and Limitations of 40Ar/39Ar Dating on Young Volcanic Rocks.Seismology and Geology, 31(1):174-185 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200901016 [25] 桑海清, 王非, 贺怀宇, 等, 2006.K-Ar法地质年龄国家一级标准物质ZBH-25黑云母的研制.岩石学报, 22(12):3059-3078. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200612022 [26] 王皓, 向玉新, 徐涛忠, 等, 2017.高通量工程试验堆(HFETR)材料辐照中子注量率计算方法验证.核动力工程, 38(S1):154-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hdlgc2017z1037 [27] 王松山, 胡世玲, 桑海清, 等, 1992.氩-氩定年法国际标准物质BSP-1角闪石的研制.岩石学报, 8(2):103-127. doi: 10.3321/j.issn:1000-0569.1992.02.001 [28] 杨列坤, 王非, 贺怀宇, 等, 2009.年轻火山岩氩同位素体系定年技术最新进展及问题.地震地质, 31(1):174-185. doi: 10.3969/j.issn.0253-4967.2009.01.016