Composition Characteristics and Provenance Implication of Modern Dust in the West Philippine Sea
-
摘要: 为识别西菲律宾海现代风尘物质的具体来源及其携带动力,本次研究于2015年冬季对西菲律宾海上空风尘进行了采集,并系统分析了碎屑态组分的矿物组成和常、微量元素组合特征.西菲律宾海现代风尘沉积物中碎屑矿物成分主要有石英、伊利石、斜长石和石膏等,矿物形态均呈次棱角状,具有明显的风成沉积特征.所研究样品的Al2O3-TiO2投影主要与鄂尔多斯沙漠和巴丹吉林沙漠物质相似,而其微量元素Zr-Th-Sc组成则表现为鄂尔多斯沙漠和塔克拉玛干沙漠物质的两端元混合,说明鄂尔多斯沙漠是西菲律宾海现代风尘的主要源区,而塔克拉玛干沙漠和巴丹吉林沙漠的风尘输入对该区的影响较小.后向轨迹分析表明,西菲律宾海冬季的风尘携带动力主要是东亚冬季风.Abstract: To discriminate the provenances and the transport mechanism of modern eolian sediments in the West Philippine Sea,mineral compositions as well as major and trace elements in the detrital phase of modern dust samples collected from the sea in the winter of 2015 were analyzed. Quartz,illite,plagioclase and gypsum are the most common detrital minerals,which are subangular and show obvious characteristics of aeolian deposits. The samples in our study show similar characteristics with the eolian dust from the Ordos Desert and the Badain Jaran Desert in the TiO2 versus Al2O3 diagram. Furthermore,the Zr-Th-Sc compositions of our samples display a binary mixing of the sediments from the Ordos Desert and the Taklimakan Desert. These results indicate that the Ordos Desert is the dominant source of the modern dust input to the Philippine Sea,whereas the contributions of the Taklimakan Desert and the Badain Jaran Desert are relatively small. In terms of the backward trajectory analysis,the modern eolian dust in the Philippine Sea is dominantly transported by the Eastern Asian Winter Monsoon.
-
Key words:
- the West Philippine Sea /
- modern dust /
- mineralogy /
- major and trace elements /
- provenance
-
图 3 西菲律宾海现代风尘Al2O3-TiO2物源判别图解
作为对比的潜在源区包括:鄂尔多斯沙漠(Liu et al., 2015; Wen et al., 2016);巴丹吉林沙漠(Hu and Yang, 2016);塔克拉玛干沙漠(Yang et al., 2007);中国黄土(张虎才等, 1997; Ding et al., 2001; Qiao et al., 2011);阴影部分代表不同区域风尘物质的Al2O3-TiO2分布特征,其中蓝色代表本研究中现代风尘样品,红色代表塔克拉玛干沙漠物质,绿色代表亚洲东部沙漠(鄂尔多斯沙漠和巴丹吉林沙漠)物质,浅黄色代表中国南、北方黄土-古土壤
Fig. 3. TiO2 versus Al2O3 diagram for the modern dust samples in the West Philippine Sea
图 4 西菲律宾海现代风尘Zr-Th-Sc三角图
作为对比的潜在源区包括:鄂尔多斯沙漠(Rao et al., 2011);巴丹吉林沙漠(Hu and Yang, 2016);塔克拉玛干沙漠(Yang et al., 2007);中国黄土(张虎才等, 1997; Ding et al., 2001; Qiao et al., 2011);阴影部分代表不同区域风尘物质的Zr-Th-Sc变化范围,其中蓝色代表本研究中现代风尘样品,红色代表塔克拉玛干沙漠物质,绿色代表亚洲东部沙漠(鄂尔多斯沙漠和巴丹吉林沙漠)物质,浅黄色代表中国南、北方黄土-古土壤
Fig. 4. Zr-Th-Sc discrimination diagram for the modern dust samples in the West Philippine Sea
表 1 西菲律宾海现代风尘物质及潜在源区相关物质的常量元素组成对比(%)
Table 1. Comparison on compositions of major elements between modern aeolian sediments and related materials (%)
西菲律宾海现代风尘 深海沉积物 全球标准物质 陆源风尘物质 平均值1 MD06-30472 上陆壳3 塔克拉玛干沙漠4 鄂尔多斯沙漠5 巴丹吉林沙漠6 中国黄土7 Al2O3 9.72 14.06 15.20 9.98 9.47 9.87 11.88 CaO 9.88 11.75 4.20 9.05 1.32 4.59 7.80 Fe2O3 1.32 5.99 5.00 3.38 1.70 4.36 4.18 K2O 0.53 1.54 3.40 1.87 2.31 1.99 2.25 MgO 2.63 2.84 2.20 2.49 0.49 2.13 2.36 MnO 0.01 0.20 0.08 0.07 - - 0.06 Na2O 1.67 3.37 3.90 2.33 2.33 2.16 1.77 P2O5 0.18 0.03 - 0.11 - - 0.15 TiO2 0.45 0.59 0.50 0.54 0.16 0.27 0.60 注:1.为本次研究结果;2.引自 Xu et al. (2012) ;3.引自Taylor and Mclennan(1985);4.引自Yang et al.(2007) ;5.引自Shu et al.(2016) ;6.引自Hu and Yang(2016);7.引自Ding et al.(2001) ,Qiao et al.(2011) -
[1] Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/bf00375292 [2] Chen, J., Li, G. J., Yang, J. D., et al., 2007. Nd and Sr Isotopic Characteristics of Chinese Deserts: Implications for the Provenances of Asian Dust. Geochimica et Cosmochimica Acta, 71(15): 3904-3914. https://doi.org/10.1016/j.gca.2007.04.033 [3] Ding, Z. L., Sun, J. M., Yang, S. L., et al., 2001. Geochemistry of the Pliocene Red Clay Formation in the Chinese Loess Plateau and Implications for its Origin, Source Provenance and Paleoclimate Change. Geochimica et Cosmochimica Acta, 65(6): 901-913. https://doi.org/10.1016/s0016-7037(00)00571-8 [4] Doornkamp, J. C., Krinsley, D., 1971. Electron Microscopy Applied to Quartz Grains from a Tropical Environment. Sedimentology, 17(1-2):89-101. https://doi.org/10.1111/j.1365-3091.1971.tb01133.x [5] Draxler, R. R., Hess, G. D., 1998. An Overview of the Hysplit_4 Modeling System for Trajectories. Australian Meteorological Magazine, 47(4):295-308. [6] Ferrat, M., Weiss, D. J., Strekopytov, S., et al., 2011. Improved Provenance Tracing of Asian Dust Sources Using Rare Earth Elements and Selected Trace Elements for Palaeomonsoon Studies on the Eastern Tibetan Plateau. Geochimica et Cosmochimica Acta, 75(21): 6374-6399. https://doi.org/10.1016/j.gca.2011.08.025 [7] Hao, Q. Z., Guo, Z. T., Qiao, Y. S., et al., 2010. Geochemical Evidence for the Provenance of Middle Pleistocene Loess Deposits in Southern China. Quaternary Science Reviews, 29(23/24): 3317-3326. https://doi.org/10.1016/j.quascirev.2010.08.004 [8] Honda, M., Yabuki, S., Shimizu, H., 2004. Geochemical and Isotopic Studies of Aeolian Sediments in China. Sedimentology, 51(2): 211-230. https://doi.org/10.1111/j.1365-3091.2004.00618.x [9] Hu, F. G., Yang, X. P., 2016. Geochemical and Geomorphological Evidence for the Provenance of Aeolian Deposits in the Badain Jaran Desert, Northwestern China. Quaternary Science Reviews, 131: 179-192. https://doi.org/10.1016/j.quascirev.2015.10.039 [10] Jiang, F. Q., Frank, M., Li, T. G., et al., 2013. Asian Dust Input in the Western Philippine Sea: Evidence from Radiogenic Sr and Nd Isotopes. Geochemistry, Geophysics, Geosystems, 14(5): 1538-1551. https://doi.org/10.1002/ggge.20116 [11] Jickells, T. D., An, Z. S., Andersen, K. K., et al., 2005. Global Iron Connections between Desert Dust, Ocean Biogeochemistry, and Climate. Science, 308(5718): 67-71. https://doi.org/10.1126/science.1105959 [12] Jin, N., Li, A. C., Liu, H. Z., et al., 2007. Clay Minerals in Surface Sediment of the Northwest Parece Vela Basin: Distribution and Provennace. Oceanol Limnol Sin, 38(6): 504-511 (in Chinese with English abstract). [13] Liu, B., Jin, H. L., Sun, L. Y., et al., 2015. Geochemical Evidence for Holocene Millennial-Scale Climatic and Environmental Changes in the South-Eastern Mu us Desert, Northern China. International Journal of Earth Sciences, 104(7): 1889-1900. https://doi.org/10.1007/s00531-015-1161-7 [14] Liu, Z. F., Zhao, Y. L., Colin, C., et al., 2009. Chemical Weathering in Luzon, Philippines from Clay Mineralogy and Major-Element Geochemistry of River Sediments. Applied Geochemistry, 24(11): 2195-2205. https://doi.org/10.1016/j.apgeochem.2009.09.025 [15] Maher, B. A., Prospero, J. M., Mackie, D., et al., 2010. Global Connections between Aeolian Dust, Climate and Ocean Biogeochemistry at the Present Day and at the Last Glacial Maximum. Earth-Science Reviews, 99(1/2): 61-97. https://doi.org/10.1016/j.earscirev.2009.12.001 [16] Mao, X., Liu, L.J., Li, C. A., et al., 2017. Elemental Composition Features of Loess-Paleosol Profile in Fengning, Hebei Province. Journal of Earth Science, 42(10): 1750-1759. (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201710010 [17] McLennan, S. M., Taylor, S. R., Kröner, A., 1983. Geochemical Evolution of Archean Shales from South Africa. I. The Swaziland and Pongola Supergroups. Precambrian Research, 22(1/2): 93-124. https://doi.org/10.1016/0301-9268(83)90060-8 [18] Qiao, Y. S., Hao, Q. Z., Peng, S. S., et al., 2011. Geochemical Characteristics of the Eolian Deposits in Southern China, and their Implications for Provenance and Weathering Intensity. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(3/4): 513-523. https://doi.org/10.1016/j.palaeo.2011.06.003 [19] Rao, W. B., Tan, H. B., Jiang, S. Y., et al., 2011. Trace Element and Ree Geochemistry of Fine- and Coarse-Grained Sands in the Ordos Deserts and Links with Sediments in Surrounding Areas. Chemie Der Erde-Geochemistry, 71(2): 155-170. https://doi.org/10.1016/j.chemer.2011.02.003 [20] Rea, D. K., 1994. The Paleoclimatic Record Provided by Eolian Deposition in the Deep Sea: The Geologic History of Wind. Reviews of Geophysics, 32(2): 159. https://doi.org/10.1029/93rg03257 [21] Seo, I., Lee, Y. I., Yoo, C. M., et al., 2014. Sr-Nd Isotope Composition and Clay Mineral Assemblages in Eolian Dust from the Central Philippine Sea over the last 600 Kyr: Implications for the Transport Mechanism of Asian Dust. Journal of Geophysical Research: Atmospheres, 119(19):11, 492-11, 504. [22] Shao, L.Y., Wang, W.H., Xing, J.P., et al., 2018. Physicochemical Characteristics and Effects of Airborne Particles: Research Progress and Prospects. Journal of Earth Science, 43(5):1691-1708(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201805029 [23] Shao, Y. P., Wyrwoll, K. H., Chappell, A., et al., 2011. Dust Cycle: An Emerging Core Theme in Earth System Science. Aeolian Research, 2(4): 181-204. https://doi.org/10.1016/j.aeolia.2011.02.001 [24] Shi, X. F., Chen, L. R., Li, K. Y., et al., 1995. Study On Minerageny of the Clay Sediment in the West of Philippine Sea. Marine Geology and Quanternary Geology, 15(2):61-72(in Chinese with English abstract). [25] Shi, Z. G., Liu, X. D., 2011. Distinguishing the Provenance of Fine-Grained Eolian Dust over the Chinese Loess Plateau from a Modelling Perspective. Tellus B, 63(5): 959-970. https://doi.org/10.3402/tellusb.v63i5.16429 [26] Shu, P. X., Li, B. S., Wang, H., et al., 2016. Geochemical Characteristics of Surface Dune Sand in the Mu Us Desert, Inner Mongolia, and Implications for Reconstructing the Paleoenvironment. Quaternary International, 479:106-116. https://doi.org/10.1016/j.quaint.2017.05.053 [27] Sun, J. M., 2002. Provenance of Loess Material and Formation of Loess Deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 203(3/4):845-859. https://doi.org/10.1016/s0012-821x(02)00921-4 [28] Sun, Y. B., An, Z. S., 2000.Sedimentary Interpretation of Surface Textures of Quartz Grains from the Eolian Deposits. Acta Sedimentologica Sinica, 18(4):506-509, 652(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200004004 [29] Taylor, S. R., Mclennan, S. M. 1985. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Pub, London. [30] Wan, S. M., Yu, Z. J., Clift, P. D., et al., 2012. History of Asian Eolian Input to the West Philippine Sea over the Last One Million Years. Palaeogeography, Palaeoclimatology, Palaeoecology, 326-328: 152-159. https://doi.org/10.1016/j.palaeo.2012.02.015 [31] Wehausen, R., Tian, J., Brumsack, H. J., et al., 2003. Geochemistry of Pliocene Sediments from ODP Site 1143 (Southern South China Sea). Scientific Results, 184:1-25. [32] Wen, X. H., Li, B. S., Zheng, Y. M., et al., 2016. Early Holocene Multi-Centennial Moisture Change Reconstructed from Lithology, Grain-Size and Chemical Composition Data in the Eastern Mu Us Desert and Potential Driving Forces. Palaeogeography, Palaeoclimatology, Palaeoecology, 459:440-452. https://doi.org/10.1016/j.palaeo.2016.07.035 [33] Xu, Z. K., Li, T. G., Colin, C., et al., 2018. Seasonal Variations in the Siliciclastic Fluxes to the Western Philippine Sea and Their Impacts on Seawater εNd Values Inferred from 1 Year of in Situ Observations above Benham Rise. Journal of Geophysical Research: Oceans, 123:6688-6702. https://doi.org/10.1029/2018JC014274 [34] Xu, Z. K., Li, T. G., Wan, S. M., et al., 2014. Geochemistry of Rare Earth Elements in the Mid-Late Quaternary Sediments of the Western Philippine Sea and Their Paleoenvironmental Significance. Science China Earth Sciences, 57(4): 802-812. https://doi.org/10.1007/s11430-013-4786-z [35] Xu, Z. K., Li, T. G., Yu, X. K., et al., 2012. Sediment Provenance and Evolution of the East Asian Winter Monsoon since 700 Ka Recorded by Major Elements in the West Philippine Sea. Chinese Science Bulletin, 58(9): 1044-1052. https://doi.org/10.1007/s11434-012-5538-8 [36] Yang, X. P., Zhu, B. Q., White, P. D., 2007. Provenance of Aeolian Sediment in the Taklamakan Desert of Western China, Inferred from REE and Major-Elemental Data. Quaternary International, 175(1): 71-85. https://doi.org/10.1016/j.quaint.2007.03.005 [37] Yu, Z. J., Wan, S. M., Colin, C., et al., 2016. Co-Evolution of Monsoonal Precipitation in East Asia and the Tropical Pacific ENSO System since 2.36 Ma New Insights from High-Resolution Clay Mineral Records in the West Philippine Sea. Earth and Planetary Science Letters, 446: 45-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cbdcbe87b7f2f18c63cf07f5d9245132 [38] Zhang, H. C., Li, J. J., Ma, Y. Z. et al., 1997. A Study on Elemental Geochemical Characters of the Wuwei Loess Section in the South Vicinity of Tengger Desert. Acta Sedimentologica Sinica, 15(4):154-160 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700005944 [39] Zhao, W. C., Sun, Y. B., Balsam, W., et al., 2014. Hf-Nd Isotopic Variability in Mineral Dust from Chinese and Mongolian Deserts: Implications for Sources and Dispersal. Scientific Reports, 4(1):5837. https://doi.org/10.1038/srep05837 [40] 靳宁, 李安春, 刘海志, 等, 2007.帕里西维拉海盆西北部表层沉积物中粘土矿物的分布特征及物源分析.海洋与湖沼, 38(6):504-511. http://d.old.wanfangdata.com.cn/Periodical/hyyhz200706004 [41] 毛欣, 刘林敬, 李长安, 等, 2017.丰宁黄土-古土壤剖面常量元素地球化学特征.地球科学, 42(10):1750-1759. doi: 10.3799/dqkx.2017.538 [42] 邵龙义, 王文华, 幸娇萍, 等, 2018.大气颗粒物理化特征和影响效应的研究进展及展望.地球科学, 43(5):1691-1708. doi: 10.3799/dqkx.2018.422 [43] 石学法, 陈丽蓉, 李坤业, 等, 1995.西菲律宾海西部海域粘土沉积物的成因矿物学研究.海洋地质与第四纪地质, 15(2):61-72. [44] 孙有斌, 安芷生, 2000.风尘堆积物中石英颗粒表面微结构特征及其沉积学指示.沉积学报, 18(4):506-509, 652. http://d.old.wanfangdata.com.cn/Periodical/cjxb200004004 [45] 张虎才, 李吉均, 马玉贞, 等, 1997.腾格里沙漠南缘武威黄土沉积元素地球化学特征.沉积学报, 15(4):154-160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700005944