• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木盆地盐下地区奥陶系火山碎屑物质特征

    侯明才 江文剑 邓敏 蔡鹏程

    侯明才, 江文剑, 邓敏, 蔡鹏程, 2019. 塔里木盆地盐下地区奥陶系火山碎屑物质特征. 地球科学, 44(3): 822-832. doi: 10.3799/dqkx.2019.001
    引用本文: 侯明才, 江文剑, 邓敏, 蔡鹏程, 2019. 塔里木盆地盐下地区奥陶系火山碎屑物质特征. 地球科学, 44(3): 822-832. doi: 10.3799/dqkx.2019.001
    Hou Mingcai, Jiang Wenjian, Deng Min, Cai Pengcheng, 2019. Characteristics of Ordovician Volcaniclastic Materials in Yanxia Area of Northern Tarim Basin and Their Geological Significance. Earth Science, 44(3): 822-832. doi: 10.3799/dqkx.2019.001
    Citation: Hou Mingcai, Jiang Wenjian, Deng Min, Cai Pengcheng, 2019. Characteristics of Ordovician Volcaniclastic Materials in Yanxia Area of Northern Tarim Basin and Their Geological Significance. Earth Science, 44(3): 822-832. doi: 10.3799/dqkx.2019.001

    塔里木盆地盐下地区奥陶系火山碎屑物质特征

    doi: 10.3799/dqkx.2019.001
    基金项目: 

    国家自然科学基金面上项目 41672102

    油气藏地质及开发工程国家重点实验室开放基金 PLC20180302

    详细信息
      作者简介:

      侯明才(1968-), 男, 教授, 博导, 主要从事大地构造沉积学和层序岩相古地理学的教学和科研工作

    • 中图分类号: P59

    Characteristics of Ordovician Volcaniclastic Materials in Yanxia Area of Northern Tarim Basin and Their Geological Significance

    • 摘要: 奥陶纪是古亚洲洋演化的关键时期,也是塔里木盆地周缘板块构造环境转换的重要时期.然而,南天山洋向北俯冲-消减的时间一直存在争议.通过对保存在塔里木盆地盐下地区奥陶系鹰山组和良里塔格组的火山碎屑物质的岩石学和地球化学特征研究,结合岩相古地理演化格局,约束了南天山洋向北俯冲削减的时间.研究表明,鹰山组碳酸盐岩中主要发育基性沉凝灰岩薄夹层,良里塔格组火山碎屑物质主要为基性火山岩屑.鹰山组和良里塔格组火山碎屑物质的Th/Yb-Ta/Yb图解指示它们来源于活动大陆边缘弧环境.U/Th-Th图解显示大部分样品落在典型弧火山岩区,且多数位于混有沉积物来源的弧火山岩与典型弧火山岩重叠区域,表明研究区火山物质源区曾受到与俯冲相关流体或熔体的改造.Ba/Th-(La/Sm)n图解进一步表明火山碎屑物质源区具有上地壳沉积物质起源的熔体混染,且良里塔格组沉积时期,火山碎屑物质源区受沉积物起源熔体混染的程度更深,改造得更加明显和强烈.上述地球化学特征表明,在早奥陶世鹰山组沉积时期南天山洋已经俯冲消减,且在晚奥陶世良里塔格组沉积时期处于强烈俯冲期.

       

    • 图  1  塔里木盆地构造分区及取样位置

      Fig.  1.  Tectonic units and sampling location of Tarim Basin

      图  2  塔里木盆地盐下地区奥陶系综合柱状图

      于炳松等(2011)修改

      Fig.  2.  Integrated stratigraphic column in the study areas during the Ordovician

      图  3  塔里木盆地及邻区早-中奥陶世(a)和晚奥陶世(b)原型盆地

      张光亚等(2015)修改

      Fig.  3.  Prototype of Tarim Basin and adjacent areas in Early-Middle Ordovician (a) and Late Ordovician (b)

      图  4  盐下地区奥陶系火山碎屑物质岩石学特征

      a.碳酸盐化玻屑沉凝灰岩, 单偏光,鹰山组,T914井,6 230.98 m;b.碳酸盐化玻屑沉凝灰岩, 玻屑边缘和内部可见毛发状、丝状的水云母粘土矿物集合体,正交光,鹰山组,T914井,6 230.98 m;c.碳酸盐化玻屑沉凝灰岩经盐酸处理后,残余的水云母粘土矿物,正交光,鹰山组,T914井,6 230.98 m;d.含玄武岩屑亮晶粒屑灰岩,玄武岩屑呈纹层状富集,单偏光,良里塔格组,S108井,5 868.03 m;e.火山岩屑显示玻基斑状结构,正交光,良里塔格组,S108井,5 869 m;f.亮晶鲕粒灰岩,鲕粒同心纹层绿泥石化,单偏光,良里塔格组,S110井,6 084.31 m

      Fig.  4.  Petrological characteristics of Ordovician volcaniclastic materials in the Yanxia area

      图  5  盐下地区火山碎屑物质CaO与SiO2含量相关性

      Fig.  5.  The correlation between CaO and SiO2 concentrations of volcaniclastic materials in the Yanxia area

      图  6  盐下地区火山碎屑物质Zr/TiO2×10-4-Nb/Y图解(a)和Zr-TiO2图解(b)

      Fig.  6.  Plots of Zr /TiO2×10-4 vs. Nb/Y (a) and Zr vs.TiO2 (b) of volcaniclastic materials in the Yanxia area

      图  7  盐下地区火山碎屑物质稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

      Fig.  7.  Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spidergram (b) of volcaniclastic materials in the Yanxia area

      图  8  盐下地区火山碎屑物质样品Th/Yb-Ta/Yb图解

      Fig.  8.  Th/Yb vs. Ta/Yb plot of volcaniclastic materials in the Yanxia area

      图  9  塔河南盐下地区玄武质火山碎屑物质样品U/Th-Th图解(a)和Ba/Th-(La/Sm)n图解(b)

      Fig.  9.  Plots of U/Th vs.Th (a) and Ba/Th vs. (La/Sm)n (b) of basaltic volcaniclastic materials in the Yanxia area

      表  1  塔里木盆地奥陶系鹰山组和良里塔格组主量(%)、微量(10-6)、稀土元素(10-6)含量及特征比值

      Table  1.   Major element (%), trace element (10-6) and rare earth element (10-6) concentrations and typical values of Yingshan Formation and Lianglitage Formation in the Tarim Basin

      取样井号T914T914S110S110S110S110S110S108S108S108S108S108
      岩性AABBBBBBBBBB
      样品号T1T2S1S3S4S5S6S9S10S7S8S11
      SiO24.7510.4411.3216.7418.3931.1534.8015.7818.162.352.802.08
      Al2O31.804.721.202.071.753.520.915.916.620.570.730.57
      TiO20.060.140.160.330.260.420.071.261.450.050.070.06
      Fe2O30.390.731.332.461.942.470.817.544.840.520.910.40
      MgO0.280.750.300.370.320.450.173.294.020.720.660.91
      K2O0.631.500.500.790.691.340.270.910.950.140.200.14
      Na2O0.050.150.040.110.080.140.030.781.220.040.050.04
      CaO51.7045.3047.4044.1043.2034.3035.3037.1034.1052.7052.6053.20
      MnO0.010.010.110.080.070.040.030.090.080.050.050.04
      P2O5<0.010.010.050.090.070.100.020.180.250.030.030.02
      BaO0.010.01<0.010.010.010.090.010.020.020.01<0.010.01
      Cr2O3<0.01<0.010.010.010.010.020.010.090.080.010.010.01
      SO30.641.352.094.393.464.101.107.010.490.441.200.21
      SrO0.030.040.040.040.040.040.040.040.040.050.050.04
      LOI40.1135.1835.7730.7631.1524.3526.9125.0728.3942.2841.0342.64
      Li2.094.434.696.837.5413.5419.1841.9748.282.112.582.59
      Be0.200.460.210.270.260.590.190.740.680.120.210.14
      Sc2.544.012.996.695.106.013.5319.8113.511.332.531.42
      V4.367.3215.9732.8325.1641.7213.94155.99159.548.1911.5210.22
      Cr1.472.0925.1961.1544.7885.7914.22533.57421.377.4714.2511.05
      Co1.661.724.877.365.497.175.8723.3419.962.452.932.67
      Ni8.097.4018.6630.9224.1025.7614.71172.42152.6115.0316.3317.79
      Cu2.921.407.7212.217.9613.277.2212.0412.692.343.311.33
      Zn6.4514.1922.9839.5331.2040.7129.6130.6447.0812.2519.7313.01
      Ga2.075.542.073.493.135.861.727.879.490.951.140.89
      Rb10.4825.1611.1916.6614.8135.7210.2019.3015.356.088.176.31
      Sr197.47292.44276.46307.07314.19236.72263.74300.65304.81399.56435.23319.07
      Y8.2619.3817.7227.6428.1724.1320.0021.9922.626.9618.449.49
      Zr30.0174.2722.7033.4428.7365.0214.10102.15130.1215.7913.959.67
      Nb1.363.204.807.656.3410.371.3725.6340.710.981.321.28
      Cs0.822.230.330.430.381.200.420.840.600.260.390.29
      Ba16.8724.3520.5582.0323.25697.5214.86112.8995.0315.2425.4930.32
      La9.9318.7012.7819.2819.3121.5312.7921.6826.714.338.455.87
      Ce23.6942.0223.5438.4237.8939.5425.9541.9649.308.4921.4111.92
      Pr2.754.852.644.524.504.352.944.995.761.112.361.43
      Nd10.7119.0910.7618.6418.1617.4911.7320.7023.314.509.395.97
      Sm2.213.872.344.123.973.682.664.674.951.112.391.27
      Eu0.490.810.550.870.840.710.461.231.360.230.530.32
      Gd1.723.102.564.324.223.962.704.374.721.162.641.32
      Tb0.260.500.390.680.690.630.480.640.660.180.420.22
      Dy1.433.092.464.184.063.633.003.753.731.052.471.33
      Ho0.310.660.460.840.810.730.590.710.730.210.490.27
      Er0.942.161.312.332.292.051.741.871.910.571.320.79
      Tm0.140.340.190.360.330.330.280.280.290.080.210.12
      岩性AABBBBBBBBBB
      样品号T1T2S1S3S4S5S6S9S10S7S8S11
      Yb1.052.431.122.102.022.001.791.631.620.511.250.63
      Lu0.180.380.160.300.270.300.270.240.230.070.170.09
      Hf0.701.820.570.860.711.660.372.983.350.390.360.25
      Ta0.100.220.330.520.430.740.121.562.230.070.100.09
      Pb2.064.354.798.676.828.574.8213.017.445.368.602.01
      Th1.653.431.452.352.094.832.884.775.751.562.201.15
      U0.831.400.300.480.450.940.581.080.931.130.861.04
      ∑REE55.80102.0061.23100.9599.35100.9167.37108.71125.2723.6053.4931.56
      (La/Yb)N6.765.528.226.576.857.735.149.5511.866.094.866.64
      Eu*0.740.690.680.620.620.570.520.820.850.610.640.74
      Nb/Y0.160.170.270.280.230.430.071.171.800.140.070.14
      Zr/TiO20.050.050.010.010.010.020.020.010.010.030.020.02
      Th/Yb1.571.411.301.121.032.421.612.933.563.061.761.82
      Ta/Yb0.100.090.300.250.210.370.070.961.380.140.080.14
      U/Th0.500.410.200.210.210.190.200.230.160.730.390.91
      Ba/Th10.207.1014.1434.8411.14144.375.1623.6516.529.7911.6026.33
      (La/Sm)n2.833.043.442.943.063.683.032.923.402.462.232.90
      注:A代表碳酸盐化玻屑沉凝灰岩;B代表火山碎屑灰岩.
      下载: 导出CSV
    • [1] Bailey, J.C., 1981.Geochemical Criteria for a Refined Tectonic Discrimination of Orogenic Andesites.Chemical Geology, 32(1-4):139-154. https://doi.org/10.1016/0009-2541(81)90135-2
      [2] Basta, F.F., Maurice, A.E., Bakhit, B.R., et al., 2011.Neoproterozoic Contaminated MORB of Wadi Ghadir Ophiolite, NE Africa:Geochemical and Nd and Sr Isotopic Constraints.Journal of African Earth Sciences, 59(2-3):227-242. https://doi.org/10.1016/j.jafrearsci.2010.10.008
      [3] Dobretsov, N.L., Berzin, N.A., Buslov, M.M., 1995.Opening and Tectonic Evolution of the Paleo-Asian Ocean.International Geology Review, 37(4):335-360. https://doi.org/10.1080/00206819509465407
      [4] Gao, H.H., He, D.F., Tong, X.G., et al., 2018.Tectonic-Depositional Environment and Petroleum Exploration of Yingshan Formation in the Tarim Basin.Earth Science, 43(2):551-565(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.509
      [5] Hallberg, J.A., 1984.A Geochemical Aid to Igneous Rock Type Identification in Deeply Weathered Terrain.Journal of Geochemical Exploration, 20(1):1-8. https://doi.org/10.1016/0375-6742(84)90085-2
      [6] Hastie, A.R., Kerr, A.C., Pearce, J.A., et al., 2007.Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements:Development of the Th-Co Discrimination Diagram.Journal of Petrology, 48(12):2341-2357. https://doi.org/10.1093/petrology/egm062
      [7] He, D.F., Zhou, X.Y., Zhang C.J., et al., 2007.Tectonic Types and Evolution of Ordovician Proto-Type Basins in the Tarim Region.Chinese Science Bulletin, 52(S1):126-135 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW2007S1016.htm
      [8] Hopsona, C., Wen, J., Tilton, G., et al., 1989.Paleozoic Plutonism in East Junggar, Bogdashan, and Eastern Tianshan, NW China.EOS.Transactions of the American Geophysical Union, 70:1403-1404.
      [9] Hou, M.C., Wan, L., Fu, H., et al., 2006.Study on the Sedimentary Environment of the Upper Ordovician Lianglitage Formation in the South of Tarim River, China.Journal of Chengdu University of Technology(Science & Technology Edition), 33(5):509-516 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200605013
      [10] Li, D.S., Liang, D.G., Jia, C.Z.1996.Hydrocarbon Accumulations in the Tarim Basin, China.AAPG Bulletin, 80(10):1587-1603. https://doi.org/10.1306/64eda0be-1724-11d7-8645000102c1865d
      [11] Lin, C.S., Liu, J.Y., Eriksson, K., et al., 2014.Late Ordovician, Deep-Water Gravity-Flow Deposits, Palaeogeography and Tectonic Setting, Tarim Basin, Northwest China.Basin Research, 26(2):297-319. https://doi.org/10.1111/bre.12028
      [12] Lin, C.S., Yang, H.J., Cai, Z.Z., et al., 2013.Evolution of Depositional Architecture of the Ordovician Carbonate Platform in the Tarim Basin and Its Response to Basin Processes.Acta Sedimentologica Sinica, 31(5):907-919 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJXB201305016.htm
      [13] Lou, X.Y., Xu, X.S., 2004.Tectonic-Sedimentary Responses of the Tarim Basin, Xinjiang during the Late Early Palaeozoic.Sedimentary Geology and Tethyan Geology, 24(3):72-79 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl200403011
      [14] Pearce, J.A., 1983.The Role of Sub-Continental Lithosphere in Magma Genesis at Destructive Plate Margins.In: Hawkesworth, C.J., Norry, M.J., eds., Continental Basalts and Mantle Xenoliths.Shiva, Nantwich.
      [15] Ramsey, M.H., Potts, P.J., Webb, P.C., et al., 1995.An Objective Assessment of Analytical Method Precision:Comparison of ICP-AES and XRF for the Analysis of Silicate Rocks.Chemical Geology, 124(1-2):1-19. https://doi.org/10.1016/0009-2541(95)00020-m
      [16] Shi, K.B., Jiang, Q.C., Liu, B., et al., 2017.Sedimentary Characteristics and Evolution of Cambrian-Ordovician in Quruqtagh Area, NE Tarim Basin, Xinjiang.Acta Petrologica Sinica, 33(4), 1204-1220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201704014
      [17] Sun, S.J., Zhang, L.P., Ding, X., 2015.Zircon U-Pb Ages, Hf Isotopes and Geochemical Characteristics of Volcanic Rocks in Nagqu Area, Tibet and Their Petrogenesis.Acta Petrologica Sinica, 31(7), 2063-2077 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507020
      [18] Tang, L.J., 1994.Evolution and Tectonic Patterns of Tarim Basin.Earth Science, 19(6):742-754 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199406005.htm
      [19] Tang, L.J., 1997a.A Discussion on Paleozoic Tectonic Evolution of Tarim Basin, Northwest China.Geoscience, 11(1):15-21 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxb-e200104004
      [20] Tang, L.J., 1997b.Major Evolutionary Stages of Tarim Basin in Phanerozoic Time.Earth Science Frontiers, 4(3-4):318-324 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY7Z2.055.htm
      [21] Tatsumi, Y., 2006.High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan:Analogy to Archean Magmatism and Continental Crust Formation?Annual Review of Earth and Planetary Sciences, 34(1):467-499. https://doi.org/10.1146/annurev.earth.34.031405.125014
      [22] Wang, S.Y., Huang, J.W., Jiang, X.Q., 2006.The Sedimentary and Palaeogeographic Characteristics of the Upper Ordovician in the Tarim Basin.Petroleum Geology & Experiment, 28(3):236-242, 248 (in Chinese with English abstract).
      [23] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [24] Xiao, X.C., Tang, Y.Q., Li, J.Y., et al., 1991.Tectonic Evolution of the Southern Margin of the Paleo-Central Asian Composite Giant Suture Belt.Beijing Science and Technology Press, Beijing (in Chinese).
      [25] Xu, Z.Q., He, B.Z., Zhang, C.L., et al., 2013.Tectonic Framework and Crustal Evolution of the Precambrian Basement of the Tarim Block in NW China:New Geochronological Evidence from Deep Drilling Samples.Precambrian Research, 235:150-162. https://doi.org/10.1016/j.precamres.2013.06.001
      [26] Yang, T.N., Li, J.Y., Sun, G.H., et al., 2006.Earlier Devonian Active Continental Arc in Central Tianshan:Evidence of Geochemical Analyses and Zircon SHRIMP Dating on Mylonitized Granitic Rock.Acta Petrologica Sinica, 22(1):41-48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200601004.htm
      [27] Yu, B.S., Lin, C.S., Fan, T.L., et al., 2011.Sedimentary Response to Geodynamic Reversion in Tarim Basin during Cambrian and Ordovician and Its Significance to Reservoir Development.Earth Science Frontiers, 18(3):221-232 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201103019
      [28] Yue, Y., Tian, J.C., Zhao, Y.Q., et al., 2018.Control of Hetian Paleo-Uplift on Hydrocarbon Accumulation of Ordovician, Tarim Basin.Earth Science, 43(11):4215-4225(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.253
      [29] Zhang, C.L., Zou, H.B., Li, H.K., et al., 2013.Tectonic Framework and Evolution of the Tarim Block in NW China.Gondwana Research, 23(4):1306-1315. https://doi.org/10.1016/j.gr.2012.05.009
      [30] Zhang, G.Y., Liu, W., Zhang, L., et al., 2015.Cambrian-Ordovician Prototypic Basin, Paleogeography and Petroleum of Tarim Craton.Earth Science Frontiers, 22(3), 269-276(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201503023
      [31] Zhang, L.J., Li, Y., Zhou, C.G., et al., 2007.Lithofacies Paleogeographical Characteristics and Reef-Shoal Distribution during the Ordovician in the Tarim Basin.Oil & Gas Geology, 28(6):731-737 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200706005
      [32] Zhao, Z.J., 2015.Indicators of Global Sea-Level Change and Research Methods of Marine Tectonic Sequences:Take Ordovician of Tarim Basin as an Example.Acta Petrolei Sinica, 36 (3):262-273 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201503003.htm
      [33] Zhao, Z.J., Wu, X.N., Pan, W.Q., et al., 2009.Sequence Lithofacies Paleogeography of Ordovician in Tarim Basin.Acta Sedimentologica Sinica, 27(5):939-955 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200905018
      [34] Zhu, Z.X., Wang, K.Z., Zheng, Y.J., et al., 2006.Zircon SHRIMP Dating of Silurian and Devonian Granitic Intrusions in the Southern Yili Block, Xinjiang and Preliminary Discussion on Their Tectonic Setting.Acta Petrologica Sinica, 22(5):1193-1200(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200605011
      [35] 高华华, 何登发, 童晓光, 等, 2018.塔里木盆地鹰山组沉积期构造-沉积环境与原型盆地特征.地球科学, 43(2):551-565. https://doi.org/10.3799/dqkx.2017.509
      [36] 何登发, 周新源, 张朝军, 等, 2007.塔里木地区奥陶纪原型盆地类型及其演化.科学通报, 52(S1):126-135. http://cdmd.cnki.com.cn/Article/CDMD-11415-1015389805.htm
      [37] 侯明才, 万梨, 傅恒, 等, 2006.塔河南盐下地区上奥陶统良里塔格组沉积环境分析.成都理工大学学报(自然科学版), 33(5):509-516. doi: 10.3969/j.issn.1671-9727.2006.05.013
      [38] 林畅松, 杨海军, 蔡振中, 等, 2013.塔里木盆地奥陶纪碳酸盐岩台地的层序结构演化及其对盆地过程的响应.沉积学报, 31(5):907-919. http://d.old.wanfangdata.com.cn/Periodical/cjxb201305016
      [39] 楼雄英, 许效松, 2004.塔里木盆地早古生代晚期构造-沉积响应.沉积与特提斯地质, 24(3):72-79. doi: 10.3969/j.issn.1009-3850.2004.03.011
      [40] 石开波, 蒋启财, 刘波, 等, 2017.塔里木盆地东北缘库鲁克塔格地区寒武纪-奥陶纪沉积特征及演化.岩石学报, 33(4):1204-1220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201704014
      [41] 孙赛军, 张丽鹏, 丁兴, 等, 2015.西藏那曲中酸性火山岩的锆石U-Pb年龄、Hf同位素和地球化学特征及岩石成因.岩石学报, 31(7):2063-2077. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507020
      [42] 汤良杰, 1994.塔里木盆地构造演化与构造样式.地球科学, 19 (6):742-754. doi: 10.3321/j.issn:1000-2383.1994.06.006
      [43] 汤良杰, 1997a.略论塔里木古生代盆地演化.现代地质, 11(1):15-21. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ701.002.htm
      [44] 汤良杰, 1997b.塔里木显生宙盆地演化主要阶段.地学前缘, 4(3-4):318-324. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z2.055.htm
      [45] 王恕一, 黄继文, 蒋小琼.2006.塔里木盆地上奥陶统沉积及古地理特征.石油实验地质, 28(3):236-242, 248. doi: 10.3969/j.issn.1001-6112.2006.03.008
      [46] 肖序常, 汤耀庆, 李锦轶, 等, 1991.古中亚复合巨型缝合带南缘构造演化.北京:北京科学技术出版社.
      [47] 杨天南, 李锦轶, 孙桂华, 等, 2006中天山早泥盆纪陆弧:来自花岗质糜棱岩的地球化学及SHRIMP-U/Pb定年的证据.岩石学报, 22(1):41-48. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200601004.htm
      [48] 于炳松, 林畅松, 樊太亮, 等, 2011.塔里木盆地寒武纪-奥陶纪区域地球动力学转换的沉积作用响应及其储层地质意义.地学前缘, 18(3):221-232. http://d.wanfangdata.com.cn/Periodical_dxqy201103019.aspx
      [49] 岳勇, 田景春, 赵应权, 等, 2018.塔里木盆地和田古隆起对奥陶系油气成藏的控制作用.地球科学, 43(11):4215-4225. https://doi.org/10.3799/dqkx.2018.253
      [50] 张光亚, 刘伟, 张磊, 等, 2015.塔里木克拉通寒武纪-奥陶纪原型盆地、岩相古地理与油气.地学前缘, 22(3):269-276. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503025.htm
      [51] 张丽娟, 李勇, 周成刚, 等, 2007.塔里木盆地奥陶纪岩相古地理特征及礁滩分布.石油与天然气地质, 28(6):731-737. doi: 10.3321/j.issn:0253-9985.2007.06.005
      [52] 赵宗举, 2015.全球海平面变化指标及海相构造层序研究方法——以塔里木盆地奥陶系为例.石油学报, 36(3):262-273. http://d.old.wanfangdata.com.cn/Conference/7931127
      [53] 赵宗举, 吴兴宁, 潘文庆, 等, 2009.塔里木盆地奥陶纪层序岩相古地理.沉积学报, 27(5):939-955. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200905018
      [54] 朱志新, 王克卓, 郑玉洁, 等, 2006.新疆伊犁地块南缘志留纪和泥盆纪花岗质侵入体锆石SHRIMP定年及其形成时构造背景的初步探讨.岩石学报, 22(5):1193-1200. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605011
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  4206
    • HTML全文浏览量:  1479
    • PDF下载量:  24
    • 被引次数: 0
    出版历程
    • 收稿日期:  2019-01-07
    • 刊出日期:  2019-03-15

    目录

      /

      返回文章
      返回