Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Age of the Azhalang Intrusion in Sumdo, Southern Tibet
-
摘要: 阿扎朗岩体位于冈底斯岩浆弧中东部的松多地区.岩体的锆石U-Pb定年和全岩地球化学分析结果表明,阿扎朗岩体岩性为石英二长斑岩,形成时代为中新世(17.9±0.2 Ma),地球化学上表现高Sr(1 052×10-6~1 150×10-6)、低Y(8.51×10-6~9.04×10-6)和Yb(0.85×10-6~0.94×10-6),高的Sr/Y(118~128)和La/Yb(30.9~40.8)比值,无明显的Eu异常,同时具有较高的K2O(3.17%~3.84%)含量和较低的Cr(6.46×10-6~7.78×10-6)和Ni(5.41×10-6~7.45×10-6)含量,较高的Rb/Sr比值,较高的Mg#值(43.8~49.8),大离子亲石元素的含量,如Rb、Ba、Th和U明显比LREE高.这些地球化学特征表明其岩石成因可能为增厚的下地壳部分熔融形成,形成于印度-欧亚大陆碰撞造山的后碰撞构造背景下,可能有一定的幔源物质参与.该研究为揭示冈底斯成矿带中新世埃达克岩的成因及成矿地质背景提供重要的制约.Abstract: The Azhalang pluton is located in the Sumdo area in the east-central part of the Gangdise magmatic arc. Zircon U-Pb dating and geochemical analysis of the whole rock indicate that the Azhalang intrusion is quartz monzonite porphyry and the formation period is Miocene (17.9±0.2 Ma). Geochemical characteristics show high Sr (1 052×10-6-1 150×10-6), low Y (8.51×10-6-9.04×10-6) and Yb (0.85×10-6-0.94×10-6), high Sr/Y (118-128) and La/Yb (30.9-40.8) ratios, no obvious Eu anomalies, high K2O (3.17%-3.84%) content, low Cr (6.46×10-6-7.78×10-6) and Ni (5.41×10-6-7.45×10-6) content, high Mg# value (43.8-49.8), high Rb/Sr ratio, large ion lithophile element content, such as Rb, Rb, Rb. Ba, Th and U were significantly higher than LREE.These geochemical characteristics indicate that the petrogenesis of the rocks may be formed by partial melting of the thicker lower crust and formed in the post-collisional tectonic setting of the India-Eurasia collision orogeny, and some mantle-derived materials may be involved.This study provides important constraints for revealing the genesis and metallogenic geological setting of the Miocene adakite in the Gangdise metallogenic belt.
-
Key words:
- Tibetan Plateau /
- Cenozoic /
- adakite /
- geochemistry
-
图 1 西藏冈底斯东段中新世斑岩体及斑岩型矿床分布简图及研究区阿扎朗岩体地质简图
据秦克章等(2008)修改;图a中:LSSZ.龙木措-双湖-澜沧江板块缝合带;BNSZ.班公湖-怒江板块缝合带;JSSZ.西金乌兰-金沙江板块缝合带,IYZSZ.印度河-雅鲁藏布江板块缝合带;图c中:1.中新世达弄多组;2.早侏罗世叶巴组;3.中新世石英二长斑岩;4.中新世二长花岗岩;5.中新世石英斑岩;6.早侏罗世二长花岗岩;7.早侏罗世花岗闪长岩;8.推测断层;9.角岩化带;10.铜钼矿床(点);11.钼矿化点;12.采样位置
Fig. 1. The simplified distribution map of Miocene porphyry and porphyry deposits of eastern Gangdise and simplified geological map of Azhalang pluton in researched area, Tibet
图 4 阿扎朗岩浆岩主微量判别图解
a. (Na2O+K2O)-SiO2图解,据Middlemost(1994);b. SiO2-K2O图解,据Peccerillo and Taylor(1976);c. (La/Yb)N-(Yb);d. Sr/Y-Y图解,据Drummond and Defant(1990)
Fig. 4. Distinction diagrams of primary and trace elements of Azhalang magmatite
图 5 石英二长斑岩球粒陨石标准化稀土配分曲线及原始地幔标准化微量元素蛛网图
标准化数据引自Sun and McDonough(1989);冈底斯带不含矿埃达克岩数据胡永斌(2015);冈底斯成矿带中东部埃达克岩数据曲晓明等(2010)
Fig. 5. Chondrite-normalized REE patterns and primitive mantle-normalized trace element spidergrams for the quartz-monzonite porphyry
图 6 中新世埃达克岩判别图解
a. SiO2-Sr/Y;b. SiO2-Dy/Yb图解(Castillo et al., 1999);c. La/Ce-Rb/Sr;d. Nb/U-Rb/Sr图解,据侯增谦等(2004),Cook岛弧埃达克岩数据引自Stern and Kilian(1996),新生代埃达克岩(n=140)、埃达克岩和高铝TTG(n=394)和太古宙高铝TTG(n=174)数据引自Drummond et al.(1996)
Fig. 6. Distinction diagrams of Miocene adakite
图 7 SiO2-主微量元素埃达克岩判别图解
a.SiO2-Ni;b.SiO2-Cr;c.SiO2-MgO;d.SiO2-TFeO/MgO图解,据Wang et al.(2006)
Fig. 7. Distinction diagrams of SiO2-primary and trace elements of adakite
图 8 中新世埃达克岩源区判别图解
a. Th/Yb-Th/Sm,据Zhu et al.(2009);b. SiO2-Mg#图解,据Wang et al.(2006)
Fig. 8. Distinction diagrams of Miocene adakite source region
图 9 中新世埃达克质岩构造环境判别图解
a. Th-Th/Ce图解,据Wang et al.(2006);b. Rb-Y+Nb图解,据Pearce et al.(1984);ORG.大洋脊花岗岩;WPG.板内花岗岩;VAG.火山弧花岗岩;syn-COLG.同碰撞花岗岩;post-COLG.后碰撞花岗岩
Fig. 9. Distinction diagrams of Miocene adakite tectonic setting
图 10 中酸性侵入岩的R1-R2构造判别图解
R1=4Si-11(Na+K)-2(Fe+Ti), R2=6Ca+2Mg+Al; 据Batchelor and Bowden (1985)
Fig. 10. R1-R2 diagram intermediate-acid intrusive rocks
表 1 阿扎朗岩体石英二长岩锆石稀土元素(10-6)分析结果
Table 1. Analytical results of the quartz-monzonite porphyry zircon REE elements(10-6)of Azhalang pluton
点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu S17T26-01 0.19 24.83 0.09 0.66 1.72 0.57 2.96 2.15 24.28 10.30 48.74 13.59 168.82 29.78 S17T26-02 0.07 60.52 0.29 5.72 10.02 4.01 20.10 9.88 97.31 32.68 134.02 30.50 340.36 52.03 S17T26-03 4.24 42.01 1.19 7.17 2.73 1.02 8.13 4.03 49.47 20.48 93.88 24.27 296.07 51.27 S17T26-04 0.09 28.21 0.07 1.21 2.00 0.60 4.60 3.01 33.18 13.02 62.77 16.49 201.88 35.98 S17T26-05 0.58 59.38 0.23 1.64 3.18 1.34 8.79 5.62 66.42 25.92 124.96 32.34 394.41 67.86 S17T26-06 4.97 64.73 1.44 8.23 4.07 1.47 12.51 5.58 63.71 24.74 114.93 29.28 351.50 61.09 S17T26-07 0.11 33.98 0.04 0.45 1.74 0.81 5.12 3.78 49.38 22.23 115.22 31.08 406.98 74.39 S17T26-08 0.08 34.19 0.04 0.89 1.72 0.71 5.31 3.37 39.92 15.99 77.89 19.96 243.98 42.01 S17T26-09 0.53 24.98 0.17 1.37 1.73 0.59 3.37 2.13 26.88 11.11 55.72 15.54 200.60 37.26 S17T26-10 0.11 28.93 0.04 0.71 2.09 0.77 4.32 2.96 35.54 14.61 76.40 20.03 249.53 45.64 表 2 阿扎朗岩体LA-ICP-MS锆石U-Pb定年结果
Table 2. LA-ICP-MS zircon U-Pb dating results of Azhalang pluton
样品及测点 Th(10-6) U(10-6) Th/U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U (Ma) 1σ (Ma) 206Pb/238U (Ma) 1σ (Ma) NEST610 450.9 457.1 0.1 25.262 0.344 59 0.204 73 0.002 85 3 318.5 13 1 201.3 15.0 91500 20.5 58.0 0.4 1.850 20 0.039 81 0.179 20 0.002 67 1 064.2 14 1 063.5 15.0 Ple 43.4 480 0.1 0.408 20 0.007 57 0.055 09 0.000 78 348.2 5.0 346.1 5.0 S17T26-01 367.4 357.1 1.0 0.017 65 0.001 62 0.002 76 0.000 05 17.8 1.6 17.8 0.3 S17T26-02 1 087.9 367.7 3.0 0.017 68 0.001 96 0.002 77 0.000 07 17.8 2.0 17.8 0.4 S17T26-03 458.9 497.23 1.0 0.017 72 0.002 25 0.002 78 0.000 05 17.8 2.3 17.9 0.3 S17T26-04 442.2 407.5 1.1 0.017 81 0.001 38 0.002 79 0.000 06 17.9 1.4 18.0 0.4 S17T26-05 1 940.2 1 230.3 1.6 0.017 94 0.001 06 0.002 80 0.000 04 18.1 1.1 18.0 0.2 NEST610 20.0 58.3 0.3 1.850 2 0.037 69 0.179 20 0.002 65 1 064.2 13.0 1 063.4 14.0 S17T26-06 1 345.3 1 034.6 1.3 0.018 54 0.001 35 0.002 78 0.000 04 18.7 1.4 17.9 0.2 S17T26-07 539.0 620.0 0.9 0.017 48 0.001 28 0.002 73 0.000 05 17.6 1.3 17.6 0.3 S17T26-08 467.3 466.9 1.0 0.017 80 0.001 37 0.002 79 0.000 05 17.9 1.4 17.9 0.3 S17T26-09 390.8 429.5 0.9 0.017 80 0.001 58 0.002 78 0.000 06 17.9 1.6 17.9 0.4 S17T26-10 396.9 375.9 1.1 0.017 53 0.003 90 0.002 74 0.000 06 17.6 3.9 17.7 0.4 NEST610 20.5 58.6 0.3 1.850 20 0.041 44 0.179 20 0.002 70 1 064.2 15.0 1 063.5 15.0 91500 450.9 457.1 1.0 25.300 0.348 08 0.201 43 0.002 81 3 320.3 13.0 1 183.4 15.0 表 3 阿扎朗岩体主量元素(%)和微量元素(10-6)分析结果
Table 3. Analytical results of major (%) and trace elements (10-6) for Azhalang pluton
样品 S17T26H1 S17T26H2 S17T26H3 S17T26H4 S17T26H5 R1 AGV-2 GSR-1 GSR-3 SiO2 59.4 62.9 57.3 59.2 62.7 73.5 TiO2 0.5 0.5 0.5 0.5 0.4 0.3 Al2O3 19.9 17.6 20.7 19.9 18.5 12.6 TFe2O3 3.6 3.4 4.5 3.5 3.2 2.1 MnO 0.1 0.1 0.1 0.1 0.1 0.1 MgO 1.5 1.4 1.5 1.5 1.3 0.4 CaO 3.7 4.0 4.0 3.7 3.6 1.5 Na2O 6.1 5.5 6.1 5.7 5.4 3.0 K2O 3.3 3.3 3.7 3.8 3.1 5.3 P2O5 0.3 0.2 0.3 0.3 0.2 0.1 LOI 1.2 0.8 1.0 1.4 0.9 0.70 Total 99.5 99.4 99.5 99.5 99.4 TFeO 3.3 3.1 4.1 3.2 2.9 Mg# 49.3 48.6 43.8 49.8 49.3 A/CNK 1.0 0.9 1.0 1.0 1.0 Li 32.7 29.7 36.3 37.7 24.0 10.7 130.0 10.4 P 1 009.8 811.2 1 114.0 997.2 677.2 2 162.0 400.8 4 290.0 K 22 920.0 22 140.0 25 240.0 25 900.0 20 700.0 24 160.0 41 200.0 19 766.0 Sc 3.8 3.6 4.0 4.1 3.5 12.1 6.0 14.1 Ti 2 624.0 2 478.0 2 536.0 2 602.0 2 270.0 6 252.0 1 752.8 14 858.0 V 62.5 55.7 62.5 60.5 50.9 125.8 24.5 187.6 Cr 7.2 6.5 7.8 6.7 6.5 17.0 3.8 133.5 Mn 527.6 468.2 553.4 520.2 416.6 757.2 467.4 1 426.4 Co 7.7 6.8 8.1 7.4 6.0 16.4 3.1 45.1 Ni 6.8 6.3 7.4 6.6 5.4 19.4 2.3 147.0 Cu 20.8 13.8 14.3 17.1 23.5 52.9 3.0 50.0 Zn 57.0 57.1 56.0 56.7 50.6 91.5 30.6 154.2 Ga 23.0 20.7 23.0 22.3 20.0 20.4 19.8 25.0 Rb 96.2 87.8 105.0 112.8 94.5 74.4 489.6 37.4 Sr 1 125.0 1 060.7 1 052.1 1 149.8 1 070.8 686.4 106.7 1 122.0 Y 9.0 9.0 8.7 9.0 8.5 19.0 63.9 21.6 Zr 143.6 132.7 158.2 160.8 120.2 234.4 171.7 295.0 Nb 7.8 7.7 7.6 7.8 6.9 15.6 42.6 90.8 Cs 3.2 2.8 3.3 3.9 3.0 1.1 41.6 0.7 Ba 1 127.5 1 223.0 1 112.5 1 210.0 1 163.4 1 044.8 351.4 531.6 La 36.7 29.1 26.3 30.8 29.4 38.5 53.5 57.4 Ce 71.6 57.3 54.9 63.0 58.3 73.5 108.3 108.0 Pr 7.5 6.7 6.1 6.8 6.7 8.5 12.5 12.8 Nd 25.7 24.5 21.5 23.9 24.2 31.7 44.5 51.3 Sm 4.0 4.0 3.5 3.9 4.0 5.8 9.8 10.3 Eu 0.9 1.0 0.9 0.9 1.0 1.6 0.8 3.2 Gd 2.8 2.9 2.5 2.7 2.8 5.0 9.2 9.1 Tb 0.3 0.3 0.3 0.3 0.3 0.6 1.5 1.1 Dy 1.8 1.8 1.6 1.7 1.8 3.6 10.1 5.6 Ho 0.3 0.3 0.3 0.3 0.3 0.7 2.1 0.9 Er 0.9 0.9 0.8 0.9 0.9 1.8 6.4 1.9 Tm 0.1 0.1 0.1 0.1 0.1 0.3 1.1 0.3 Yb 0.9 0.9 0.9 0.9 0.9 1.7 7.5 1.4 Lu 0.1 0.1 0.1 0.1 0.1 0.3 1.2 0.2 Hf 3.5 3.2 3.7 3.6 2.9 4.7 6.1 6.4 Ta 0.4 0.4 0.5 0.5 0.5 0.9 7.3 4.3 Pb 42.0 43.1 39.2 43.2 43.5 12.5 35.7 6.5 Th 17.9 17.1 15.0 17.0 17.6 6.0 54.8 5.9 U 3.6 3.8 2.7 3.8 3.1 1.9 19.1 1.4 Eu/Eu* 0.9 0.9 0.9 0.9 0.9 Sr/Y 124.0 118.0 122.0 128.0 126.0 表 4 冈底斯成矿带中新世岩浆岩形成时代
Table 4. Age of Miocene magmatic rocks of Gangdise metallogenic belt
地区 岩性 测试方法 测试对象 年龄(Ma) 资料来源 驱龙 斑状花岗闪长岩 LA-ICP-MS U-Pb 锆石 17.2±0.5 郑有业等,2012 驱龙 高镁闪长斑岩 LA-ICP-MS U-Pb 锆石 15.7±0.2 Lu et al., 2017 冲江 花岗闪长斑岩 SHRIMP U-Pb 锆石 12.9±0.3 林武等,2004 吉如 二长花岗斑岩 SHRIMP U-Pb 锆石 16.0±0.4 Zheng et al., 2014 厅宫 二长斑岩 LA-ICP-MS U-Pb 锆石 15.5±0.3 Chen et al., 2014 厅宫 闪长斑岩 LA-ICP-MS U-Pb 锆石 15.0±0.2 Chen et al., 2014 马攸木 花岗闪长斑岩 Ar- Ar 黑云母 17.7±0.15 江思宏等,2006 知不拉 花岗闪长岩 SHRIMP U-Pb 锆石 16.9±0.3 Xu et al., 2016 知不拉 二长花岗岩 SHRIMP U-Pb 锆石 17.0±0.2 Xu et al., 2016 岗讲 花岗闪长斑岩 LA-ICP-MS U-Pb 锆石 16.6±0.3 杨震等,2017 甲玛 花岗斑岩 LA-ICP-MS U-Pb 锆石 16.7±0.3 孟元库等,2018 甲玛 花岗闪长斑岩 LA-ICP-MS U-Pb 锆石 14.4±0.3 孟元库等,2018 达布 花岗闪长斑岩 LA-ICP-MS U-Pb 锆石 16.5±0.3 李世杰等,2018 拉抗俄 花岗闪长斑岩 LA-ICP-MS U-Pb 锆石 13.6±0.4 冷秋锋等,2016 汤不拉 花岗斑岩 LA-ICP-MS U-Pb 锆石 19.7±0.2 王保弟等,2010 朱诺 黑云母花岗闪长岩 LA-ICP-MS U-Pb 锆石 14.1±0.3 黄勇等,2015 阿扎朗 石英二长斑岩 LA-ICP-MS U-Pb 锆石 17.9±0.2 本文 -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416): 144-146. https://doi.org/10.1038/362144a0 [3] Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [4] Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467 [5] Chen, R., Liu, Y. L., Guo, L. S., et al., 2014. Geochronology and Geochemistry of the Tinggong Porphyry Copper Ore Deposit, Tibet. Acta Geologica Sinica (English Edition), 88(3): 780-800. https://doi.org/10.1111/1755-6724.12238 [6] Chung, S. L., Chu, M. F., Ji, J. Q., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 477(1-2): 36-48. https://doi.org/10.1016/j.tecto.2009.08.008 [7] Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth Via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research, 95(B13): 21503. https://doi.org/10.1029/jb095ib13p21503 [8] Drummond, M. S., Defant, M. J., Kepezhinskas, P. K., 1996. Petrogenesis of Slab-Derived Trondhjemite-Tonalite- Dacite/Adakite Magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2): 205-215. https://doi.org/10.1017/s0263593300006611 [9] Gao, Y. F., Yang, Z. S., Santosh, M., et al., 2010. Adakitic Rocks from Slab Melt-Modified Mantle Sources in the Continental Collision Zone of Southern Tibet. Lithos, 119(3-4): 651-663. https://doi.org/10.1016/j.lithos.2010.08.018 [10] Hou, Z. Q., Gao, Y. F., Meng, X. J., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2):239-248 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200402006 [11] Hou, Z. Q., Zhao, Z. D., Gao, Y. F., et al., 2006. Tearing and Dischronal Subduction of the Indian Continental Slab: Evidence from Cenozoic Gangdese Volcano-Magmatic Rocks in South Tibet. Acta Petrologica Sinica, 22(4):761-774 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=239e9e4351186a4fced2935b590008e6&encoded=0&v=paper_preview&mkt=zh-cn [12] Hu, Y. B., 2015. Petrogenesis and Metallogenetic Implications of Aadakites in the Gangdese Porphyry Copper Belt (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract). [13] Huang, Y., Ding, J., Li, G. M., et al., 2015. U-Pb Dating, Hf Isotopic Characteristics of Zircons from Intrusions in the Zhuluo Porphyry Cu-Mo-Au Deposit and Its Mineralization Significance. Acta Geologica Sinica, 89(1):99-108 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201501008 [14] Jiang, S. H., Nie, F. J., Hu, P., et al., 2006.40Ar-39Ar Age and Geochemical Features of the Mayum Adakitic Porphyry in Tibet. Acta Petrologica Sinica, 22(3):603-611 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603009 [15] Kadioglu, Y. K., Dilek, Y., 2010. Structure and Geochemistry of the Adakitic Horoz Granitoid, Bolkar Mountains, South-Central Turkey, and Its Tectonomagmatic Evolution. International Geology Review, 52(4-6): 505-535. https://doi.org/10.1080/09507110902954847 [16] Leng, Q. F., Tang, J. X., Zheng, W. B., et al., 2016. Geochronology, Petrogeochemistry and Petrogenesis of Ore-Bearing Rock Massif in Dabu Mining Area, Tibet. Earth Science, 41(6): 999-1015 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.083 [17] Li, J. X., Qin, K. Z., Li, G. M., et al., 2011. Post-Collisional Ore-Bearing Adakitic Porphyries from Gangdese Porphyry Copper Belt, Southern Tibet: Melting of Thickened Juvenile Arc Lower Crust. Lithos, 126(3-4): 265-277. https://doi.org/10.1016/j.lithos.2011.07.018 [18] Li, S. J., Wei, Q. R., Ci, Q., et al., 2018. Geochronology, Petrogeochemistry and Petrogenesis of Ore-Bearing Rock Massif in Dabu Mining Area, Tibet. Earth Science, 43(9):3218-3233 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.231 [19] Lin, W., Liang, H. Y., Zhang, Y. Q., et al., 2004. Petrochemistry and SHRIMP U-Pb Zircon Age of the Chongjiang Ore-Bearing Porphyry in the Gangdese Porphyry Copper Belt. Geochimica, 33(6):585-592 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200406006 [20] Long, X. P., Wilde, S. A., Wang, Q., et al., 2015. Partial Melting of Thickened Continental Crust in Central Tibet: Evidence from Geochemistry and Geochronology of Eocene Adakitic Rhyolites in the Northern Qiangtang Terrane. Earth and Planetary Science Letters, 414: 30-44. https://doi.org/10.1016/j.epsl.2015.01.007 [21] Lu, Y. J., Hou, Z. Q., Yang, Z. M., et al., 2017. Porphyry Cu Fertility in the Lhasa Terrane, Southern Tibet: Insights from Terrane-Scale Whole-Rock Geochemistry and Zircon Trace Element and Hf-O Isotopes. SEG 2017: Ore Deposits of Asia: China and Beyond, Beijing. [22] Ma, L., Wang, Q., Wyman, D. A., et al., 2013. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese: Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Tibet. Lithos, 175-176: 315-332. https://doi.org/10.1016/j.lithos.2013.04.006 [23] Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/s0024-4937(98)00076-0 [24] Meng, Y. K., Ma, S. W., Xu, Z. Q., et al., 2018. Geochronology, Geochemistry and Petrogenesis of the Granitoid Porphyries from Jiama Ore Deposit in Gangdese Belt. Earth Science, 43(4):1142-1163 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.713 [25] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [26] Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956 [27] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 [28] Qin, K. Z., Li, G. M., Zhao, J. X., 2008. Discovery of Sharang Large-Scale Porphyry Molybdenum Deposit, the First Single Mo Deposit in Tibet and Its Significance. Geology in China, 35(6):1101-1112 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200806007 [29] Qu, X. M., Hou, Z. Q., Huang, W., 2001. Is Gangdese Porphyry Copper Belt the Second "Yulong" Copper Belt?. Mineral Deposits, 20(4):355-366 (in Chinese with English abstract). https://www.researchgate.net/publication/284665935_Is_Gangdese_porphyry_copper_belt_the_second_Yulong_copper_belt [30] Qu, X. M., Hou, Z. Q., Li, Y., 2004. Melt Components Derived from a Subducted Slab in Late Orogenic Ore-Bearing Porphyries in the Gangdese Copper Belt, Southern Tibetan Plateau. Lithos, 74(3-4): 131-148. https://doi.org/10.1016/s0024-4937(04)00027-1 [31] Qu, X. M., Jiang, J. H., Xin, H. B., et al., 2010. A Study of Two Groups of Adakite almost Simulteneously Formed in Gangdese Collisional Orogen, Tibet: Why does One Group Contain Copper Mineralization and the Other not?. Mineral Deposits, 29(3):381-394 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b3572a8516e1edf7f1174a01d257964b&encoded=0&v=paper_preview&mkt=zh-cn [32] Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/S0009-2541(99)00106-0 [33] Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891 [34] Stern, C. R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281. https://doi.org/10.1007/s004100050155 [35] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [36] Tang, G. J., Wang, Q., Wyman, D. A., et al., 2010. Ridge Subduction and Crustal Growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous Adakites and High-Mg Diorites in the Western Junggar Region, Northern Xinjiang (West China). Chemical Geology, 277(3-4): 281-300. https://doi.org/10.1016/j.chemgeo.2010.08.012 [37] Wang, B. D., Xu, J. F., Chen, J. L., et al., 2010. Petrogenesis and Geochronology of the Ore-Beating Porphyritic Rocks in Tangbula Porphyry Molybdenum-Copper Deposit in the Eastern Segment of the Gangdese Metalloganic Belt. Acta Petrologica Sinica, 26(6):1820-1832(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006016 [38] Wang, L. L., Mo, X. X., Li, B., et al., 2006. Geochronology and Geochemistry of the Ore-Bearing Porphyry in Qulong Cu(Mo) Ore Deposit, Tibet. Acta Petrologica Sinica, 22(4):1001-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200604023 [39] Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070 [40] Wei, Y. Q., Zhao, Z. D., Niu, Y. L., et al., 2017. Geochronology and Geochemistry of the Early Jurassic Yeba Formation Volcanic Rocks in Southern Tibet: Initiation of Back-Arc Rifting and Crustal Accretion in the Southern Lhasa Terrane. Lithos, 278-281: 477-490. https://doi.org/10.1016/j.lithos.2017.02.013 [41] Whalen, J. B., 1985. Geochemistry of an Island-Arc Plutonic Suite: The Uasilau-Yau Yau Intrusive Complex, New Britain, P.N.G. Journal of Petrology, 26(3): 603-632. https://doi.org/10.1093/petrology/26.3.603 [42] Wu, H., Li, C., Hu, P. Y., et al., 2015. Early Cretaceous (100-105 Ma) Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet: Implications for the Bangong–Nujiang Ocean Subduction and Slab Break-Off. International Geology Review, 57(9-10): 1172-1188. https://doi.org/10.1080/00206814.2014.886152 [43] Xia, B. B., Xia, B., Wang, B. D., et al., 2007. Ore-Bearing Adakitic Porphyry in the Middle of Gangdese: Thickened Lower Crustal Melting and the Genesis of Porphyry Cu-Mo Deposit. Geological Science and Technology Intelligence, 26(4):19-26 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=db9f87d1b8676bef7770caec0005334e&encoded=0&v=paper_preview&mkt=zh-cn [44] Xu, J., Zheng, Y. Y., Sun, X., et al., 2016. Geochronology and Petrogenesis of Miocene Granitic Intrusions Related to the Zhibula Cu Skarn Deposit in the Gangdese Belt, Southern Tibet. Journal of Asian Earth Sciences, 120: 100-116. https://doi.org/10.1016/j.jseaes.2016.01.026 [45] Xu, W. C., Zhang, H. F., Guo, L., et al., 2010. Miocene High Sr/Y Magmatism, South Tibet: Product of Partial Melting of Subducted Indian Continental Crust and Its Tectonic Implication. Lithos, 114(3-4): 293-306. https://doi.org/10.1016/j.lithos.2009.09.005 [46] Yang, Z., Jiang, H., Yang, M. G., et al., 2017. Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance. Earth Science, 42(3): 339-356 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.026 [47] Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., et al., 1994. Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, far Western Aleutians. Journal of Petrology, 35(1): 163-204. https://doi.org/10.1093/petrology/35.1.163 [48] Yu, H., 2011. Mineral Geochemical Characteristics and Genetic Mechanism of Olivine Rocks in Shangnan, Shanxi (Dissertation). China University of Geosciences, Beijing, 22-25 (in Chinese with English abstract). [49] Zhang, Z. M., Zhao, G. C., Santosh, M., et al., 2010. Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet: Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction?. Gondwana Research, 17(4): 615-631. https://doi.org/10.1016/j.gr.2009.10.007 [50] Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79, B42-B57. https://doi.org/10.1016/j.jseaes.2013.03.029 [51] Zheng, Y. Y., Sun, X., Zheng, H. T., et al., 2012. Magma Evolution of Small Intrusion and Mineralization in Gangdese, Tibet. Northwestern Geology, 45(4):165-174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201204015 [52] Zhu, D. C., Zhao, Z. D., Pan, G. T., et al., 2009. Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt–peridotite Interaction?. Journal of Asian Earth Sciences, 34(3): 298-309. https://doi.org/10.1016/j.jseaes.2008.05.003 [53] 侯增谦, 高永丰, 孟祥金, 等, 2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报, 20(2):239-248. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200402006 [54] 侯增谦, 赵志丹, 高永丰, 等, 2006.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据.岩石学报, 22(4):761-774. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604001 [55] 胡永斌, 2015.冈底斯斑岩铜矿带埃达克岩成因及成矿启示(博士学位论文).广州: 中国科学院广州地球化学研究所. http://cdmd.cnki.com.cn/Article/CDMD-80165-1015361478.htm [56] 黄勇, 丁俊, 李光明, 等, 2015.西藏朱诺斑岩铜-钼-金矿区侵入岩锆石U-Pb年龄、Hf同位素组成及其成矿意义.地质学报, 89(1):99-108. doi: 10.3969/j.issn.1006-0995.2015.01.022 [57] 江思宏, 聂凤军, 胡朋, 等, 2006.西藏马莜木埃达克质斑岩的40Ar-39Ar年龄与地球化学特征.岩石学报, 22(3), 603-611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603009 [58] 冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015. http://earth-science.net/WebPage/Article.aspx?id=3312 [59] 李世杰, 魏启荣, 次琼, 等, 2018.西藏达布矿区含矿岩体的时代、岩石地球化学特征及岩石成因.地球科学, 43(9):3218-3233. http://earth-science.net/WebPage/Article.aspx?id=3934 [60] 林武, 梁华英, 张玉泉, 等, 2004.冈底斯铜矿带冲江含矿斑岩的岩石化学及锆石SHRIMP年龄特征.地球化学, 33(6):585-592. doi: 10.3321/j.issn:0379-1726.2004.06.006 [61] 孟元库, 马士委, 许志琴, 等, 2018.冈底斯带甲玛矿区花岗斑岩类年代学、地球化学及岩石成因.地球科学, 43(4):1142-1163. http://earth-science.net/WebPage/Article.aspx?id=3787 [62] 秦克章, 李光明, 赵俊兴, 等, 2008.西藏首例独立钼矿-冈底斯沙让大型斑岩钼矿的发现及其意义.中国地质, 35(6):1101-1112. doi: 10.3969/j.issn.1000-3657.2008.06.007 [63] 曲晓明, 侯增谦, 黄卫, 2001.冈底斯斑岩铜矿(化)带:西藏第二条"玉龙"铜矿带?.矿床地质, 20(4):355-366. doi: 10.3969/j.issn.0258-7106.2001.04.009 [64] 曲晓明, 江军华, 辛洪波, 等, 2010.西藏冈底斯造山带几乎同时形成的两套埃达克岩为什么一套含矿一套不含矿?.矿床地质, 29(3):381-394. doi: 10.3969/j.issn.0258-7106.2010.03.001 [65] 王保弟, 许继峰, 陈建林, 等, 2010.冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究.岩石学报, 26(6):1820-1832. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006016 [66] 王亮亮, 莫宣学, 李冰, 等, 2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学.岩石学报, 22(4):1001-1008. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200604023 [67] 夏抱本, 夏斌, 王保弟, 等, 2007.冈底斯中段达布埃达克质含矿斑岩:增厚下地壳熔融与斑岩铜钼矿成因.地质科技情报, 26(4):19-26. doi: 10.3969/j.issn.1000-7849.2007.04.005 [68] 杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356. http://earth-science.net/WebPage/Article.aspx?id=3545 [69] 于红, 2011.陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪(硕士学位论文).北京: 中国地质大学, 22-25. http://cdmd.cnki.com.cn/Article/CDMD-11415-1011078082.htm [70] 郑有业, 孙祥, 郑海涛, 等, 2012.西藏冈底斯小斑岩体演化与成矿.西北地质, 45(4):165-174. doi: 10.3969/j.issn.1009-6248.2012.04.015