Evapotranspiration Characteristics of Apple Forest in Hilly-Gully Region of the Loess Plateau
-
摘要: 以黄土丘陵沟壑区的典型代表米脂为研究区,选取苹果林地生态系统为研究对象,揭示苹果林地的蒸腾蒸发耗散规律及其影响机制,为指导有限水资源条件下苹果产业发展科学布局、优化管理措施及充分挖掘苹果林地的生产潜力提供科学依据.运用热扩散茎流计(TDP)、小型蒸发皿测定了组成苹果林地蒸散的果树蒸腾量和土壤蒸发量,运用水量平衡公式计算了冠层截留量,分析了各气象因子与蒸腾速率的关系,并评估了苹果林地的蒸散量,以期正确认识和评价苹果林地生态水文效应.不同生育期的日均蒸腾速率大小依次为果实膨大期>果实着色期>新梢生长及幼果发育期>萌芽开花期,小时尺度下,不同生育期蒸腾速率到达峰值的时间不同.不同天气条件下,晴天状况下树干蒸腾量明显大于阴天,影响苹果林地蒸腾速率的主要气象因子为太阳辐射和空气温度.果实膨大期及果实着色期为果树耗水的主要时期.降水对蒸腾的影响表现出滞后效应.植被蒸腾量、土壤蒸发量、冠层截留量对蒸散的贡献率由大到小依次为58.9%、26.8%、14.3%.试验期间,降水量大于蒸散量,果园水分收支略有盈余,不同月份土壤水分收支情况不同,应加强萌芽开花期、新梢生长及幼果发育期果园的水分管理.Abstract: In this paper, Mizhi County, a typical example of hill-gully region in the Loess Plateau, was selected as the study area to analyze the water balance and evapotranspiration characteristics of apple forestland. The purpose was to understand correctly and evaluate the eco-hydrological effect of apple forest. A thermal dissipation probe (TDP) and micro-lysimeter were used to measure various components of evapotranspiration such as plant transpiration and soil evaporation, and canopy interception was calculated by water balance formula. This study analyzed the relationship between meteorological factors and transpiration rate, evaluated condition of the evapotranspiration of 7-years apple forest. The results show that the average daily transpiration rate in the different growth periods ranked in the order of fruit growth period > fruit coloring stage > new shoots growth and young fruit growth period > germination and flowering period. The time of peak which the transpiration rate reached at different growth stages was different at the hour scale. Under the different weather conditions, the main meteorological factors affecting the transpiration rate of apple forest were solar radiation and air temperature, and the transpiration in sunny days were significantly larger than that of the rainy days. The main periods of water consumption of apple trees were fruit growth period and fruit coloring period. Precipitation shows significant lagging effect on transpiration. The contribution of plant transpiration, soil evaporation and canopy interception to evapotranspiration in the apple forestland ranked in the order of 58.9% > 26.8% > 14.3%, respectively. During the experiment period, the precipitation was more than the evapotranspiration, and the water of apple forest was surplus. The water management of apple forest should be strengthened in germination and flowering period, new shoots growth and young fruit growth periods.
-
Key words:
- the hilly appleforest /
- transpiration rate /
- evapotranspiration characteristics /
- TDP /
- hydrogeololgy
-
表 1 不同天气条件下果树蒸腾速率与各气象因子的相关性分析(n=192)
Table 1. Pearson correlation coefficient of evapotranspiration rate to meteorological factors under different weather conditions
天气 太阳辐射 风速 温度 相对湿度 饱和水汽压差 晴天 0.777** -0.007 0.433** -0.292** 0.370** 阴天 0.757** 0.443** 0.466** -0.280** 0.406** 注:**表示在0.01水平(双侧)上显著相关. 表 2 不同天气条件下蒸腾速率与气象因子的逐步回归模型
Table 2. Multivariable regression models for relationships between evapotranspiration rate and meteorological factors relative to weather conditions
天气 回归方程 决定系数 显著水平 晴天 Q=-0.351+0.002Ra+0.048T-0.366VPD 0.856 0.000 阴天 Q=0.155+0.001Ra+0.013T 0.746 0.000 表 3 果树冠层截留观测值
Table 3. The observed canopy interception of apple trees during growth season
月份 降雨量P(mm) 穿透雨量Ts(mm) 树干茎流量F (mm) 冠层截留Ic(mm) Ts/P F/P Ic/P (%) (%) (%) 4 13.2 11.2 0.1 1.8 85.1 1.0 13.9 5 30.2 25.6 0.2 4.3 85.0 0.8 14.2 6 45.7 36.2 0.4 9.0 79.3 0.9 19.8 7 130.3 116.4 1.2 12.7 89.4 0.9 9.8 8 56.5 49.2 0.7 6.6 87.1 1.2 11.6 9 22.5 18.4 0.1 3.9 81.9 0.6 17.5 总计 298.3 257.1 2.8 38.4 / / / 注:Ts/P表示穿透雨量占林外降雨量的百分比;F/P表示树干茎流量占林外降雨量的百分比;Ic/P表示冠层截留量占林外降雨量的百分比. -
[1] Duan, C.F., Miao, Q.L., Cao, W., 2011. Changing Characteristics of Reference Crop Evapotranspiration and Main Causes in the Northwest China. Transactions of the Chinese Society of Agricultural Engineering, 27(8): 77-83(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201108013 [2] Fan, J., Hao, M.D., Shao, M.A., 2004. Water Consumption of Deep Soillayers and Eco-Environmental Effects of Agricultural Ecosystemin the Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering, 20(1): 61-64(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NYGU200401014.htm [3] Fan, S.P., 2018. Variation Tendency of Potential Evapotranspiration and Aridity Index in Central Gansu Province in Recent 55 Years. Journal of Earth Environment, 9(2): 172-181(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqhjxb201802006 [4] Gan, Z.T., Liu, W.Z., 2006. Evapotranspiration of Winter Wheat Field on Loess Plateau Tableland. Chinese Journal of Applied Ecology, 17(8): 1435-1438(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb200608015 [5] Granier, A., 1985. A New Method of Sap Flow Measurement in Tree Stems. Annals of Forest Science, 42: 193-200. doi: 10.1051/forest:19850204 [6] Granier, A., Huc, R., Barigah, S. T., 1996. Transpiration of Natural Rain Forest and its Dependence on Climatic Factors. Agricultural and Forest Meteorology, 78(1/2): 19-29. https://doi.org/10.1016/0168-1923(95)02252-x [7] Guo, Y., Dong, Y., Dang, H.H., et al., 2014. Evapotranspiration and Transpiration of Maize in Two Time Scales and the Environmental Effects. Resources Science, 36(7): 1501-1508(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zykx201407021 [8] Han, X., Wang, L., Wang, Y.P., 2014. Canopy Interception of Summer Corn and Its Influencing Factors under Natural Rainfall. Scientia Agricultura Sinica, 47(8): 1541-1549(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgnykx201408010 [9] Han, Y.W., Gao, J.X., Wang, B.L., et al., 2012. Evaluation of Soil Conservation Function and Its Values in Major Eco-Function Areas of Loess Plateau in Eastern Gansu Province. Transactions of the Chinese Society of Agricultural Engineering, 28(17): 78-85(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201217012 [10] Hu, X.B., Lu, X.J., Yu, Y., et al., 2018. Simulation of Canopy Conductance of Qinghai Spruce (Piceacrassifolia) Plantation Based on Granier's Thermal Dissipation Probe Method. Scientia Silvae Sinicae, 54(3): 8-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-LYKE201803002.htm [11] Li, J.J., Bai, G.S., 2013. Crown Interception of Apple trees in Loess Hilly and Gully Region, Northwest China. Chinese Journal of Applied Ecology, 24(2): 379-387(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yystxb201302012 [12] Li, P.Z., Wang, L, Wang, D., 2017. Dynamics of Soil Reservoir of Wheat Field in Rain-Fed Area of the Loess Tableland, China. Chinese Journal of Applied Ecology, 28(11): 3635-3662(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yystxb201711024 [13] Li, Y.S., 2001. Effects of Forest on Water Cycle on the Loess Plateau. Journal of Natural Resources, 16(5): 427-432(in Chinese with English abstract). https://www.researchgate.net/publication/303670154_Effects_of_forest_water_circle_on_the_loess_plateau [14] Mu, Y., Wang, Y.P., 2017. Study on Soil Water Balance of Apple Orchards in the Loess Tableland of China. Research of Agricultural Modernization, 38(1): 161-167(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-NXDH201701023.htm [15] Parent, A.C., Anctil, F., 2012. Quantifying Evapotranspiration of a Rainfed Potato Crop in South-Eastern Canada Using Eddy Covariance Techniques. Agricultural Water Management, 113(10): 45-56. https://doi.org/10.1016/j.agwat.2012.06.014 [16] Si, J.H., Feng, Q., Zhang, X.Y., et al., 2005. Research Progress on Surveying and Calculation of Evapotranspiration of Plants and Its Prospects. Advances in Water Science, 16(3): 450-459(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=skxjz200503024 [17] Tang, M., Zhao, X.N., Wu, P.T., et al., 2016. Effects of Different Surface Mulching on Jujube Stem Sap Flow Characteristics. Agricultural Research in the Arid Areas, 34(1):120-126(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201601019 [18] Wang, H.T., Ma, L.Y., 2002. Measurement of Whole Tree's Sater Consumption with Thermal Dissipation Sap Flow Probe(TDP). Acta Phytoecologica Sinica, 26(6): 661-667(in Chinese with English abstract). http://europepmc.org/abstract/CBA/378893 [19] Wang, L., Wang, Y.P., 2013. Characteristics of Stem Sap Flow of Apple Trees in Loess Tableland. Transactions of the Chinese Society for Agricultural Machinery, 44(10): 152-158, 151(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201310024 [20] Wang, R.H., Xi, R.C., Xu, J.L., et al., 2006. Measurement of the Water Consumption of Gardening Trees with Thermal Dissipation Sap Flow Probe (TDP). Journal of Central South Forestry University, 26(2): 7-12(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=znlxyxb200602002 [21] Wang, S., Fan, J., 2015. Application of Three Heat Pulse Technique-Based Methods to Determine the Stem Sap Flow. Chinese Journal of Applied Ecology, 26(8): 2244-2230(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yystxb201508002 [22] Wang, S.Y., Wang, L., Han, X., et al., 2016. Evapotranspiration Characteristics of Apple Orchard at Peak Period of Fruiting in Loess Tableland. Scientia Silvae Sinicae, 52(1): 128-135(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201601015 [23] Wang, Y.P., Han, M.Y., Zhang, L.S., et al., 2013. Spatial Characteristics of Soil Moisture of Apple Orchards in the Loess Plateau of Shaanxi Province. Scientia Silvae Sinicae, 49(7): 16-25(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201307003 [24] Wang, Y.Q., Fan, J., Shao, M.A., et al., 2009. Evapotranspiration of Three Types of Plants in Water-Wind Erosion Crisscross Regions in the Loess Plateau. Acta Ecologica Sinica, 29(10): 5386-5394(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200910025 [25] Wei, X.G., Nie, Z.Y., Liu, S.Y., et al., 2015. Soil Moisture Characteristics and Its Influence on Jujube Tree Transpiration in Loess Hilly Region. Transactions of the Chinese Society for Agricultural Machinery, 46(6): 130-140(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201506019 [26] Wever, L.A., Flanagan, L.B., Carlson, P.J., 2002.Seasonal and Interannual Variation in Evapotranspiration, Energy Balance and Surface Conductance in a Northern Temperate Grassland. Agricultural & Forest Meteorology, 112(1): 31-49. http://cn.bing.com/academic/profile?id=60214e2a51025c40ae0238e0d979a319&encoded=0&v=paper_preview&mkt=zh-cn [27] Wu, B.J., Liu, Y.J., Jiang, C.D., et al., 2015. Effects of Stomatal Development on Leaf Temperature during Leaf Expansion. Plant Physiology Journal, 51(1): 119-126(in Chinese with English abstract). https://www.researchgate.net/publication/281952359_Effects_of_stomatal_development_on_leaf_temperature_during_leaf_expansion [28] Xu, H.H., Guo, X.H., Qiu, Q.Y., 2015. Research on Daily Variation of Sap Flow of Apple Trees under Different Weather Conditions. Chinese Agricultural Science Bulletin, 31(22): 120-124(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201522018 [29] Yang, F.L., Zhang, Q., Wang, W.Y., et al., 2014. Evapotranspiration and Factors Influencing Evapotranspiration in the Spring Wheat Farmland of China's Loess Tableland. Chinese Journal of Applied Ecology, 34(9): 2323-2328(in Chinese with English abstract). [30] Yu, J.F., Liu, W.Z., Gan, Z.T., et al., 2010. The Characteristics of Apple Tree Transpiration Rate and Its Influencing Factors on the Loess Tableland Region. Agricultural Research in the Arid Areas, 28(4): 59-63(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghdqnyyj201004012 [31] Yu, Q., Wang, T.D., 1998. Simulation of the Physiological Responses of C3 Plant Leaves to Environmental Factors by a Model Which Combines Stomatal Conductance, Photosynthesis and Transpiration. Acta Botanica Sinica, 40(8): 740-754. https://www.researchgate.net/publication/288372195_Simulation_of_the_physiological_responses_of_C3_plant_leaves_to_environmental_factors_by_a_model_which_combines_stomatal_conductance_photosynthesis_and_transpiration [32] Zhang, B.Z., Chen, H., Xu, D, et al., 2017a. Methods to Estimate Daily Evapotranspiration from Hourly Evapotranspiration. Biosystems Engineering, 153: 129-139. doi: 10.1016/j.biosystemseng.2016.11.008 [33] Zhang, H. D., Wei, W., Chen, L.D., et al., 2017b. Effects of Terracing on Soil Water and Canopy Transpiration of Pinustabulaeformis in the Loess Plateau of China. Ecological Engineering, 102: 557-564. doi: 10.1016/j.ecoleng.2017.02.044 [34] Zhang, J., Wang, L., Han, X., et al., 2016a. Evapotranspiration of Farmland on Loess Tableland and Its Major Influencing Factors. Acta Pedologica Sinica, 53(6): 1421-1432(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trxb201606008 [35] Zhang, J., Wang, L., Han, X., et al., 2016b. The Relationship between Sap Flow Velocity and Environmental Factors of the 19a Apple Trees on the Loess Plateau at Different Time Scales. Scientia Agricultura Sinica, 49(13): 2583-2592(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx201613014 [36] Zhang, X.Y., Kang, E.S., Zhang, Z.H., et al., 2005. A Study of the Stem Sap Flux of Populuseuphratica in the Lower Reaches of Heihe River. Journal of Glaciology and Geocryology, 27(5): 742-746(in Chinese with English abstract). [37] Zhang, Y.H., Wang, X.L., Hu, G.C., 2012. Evapotranspiration Estimation of Hailiutu River Basin Based on MODIS Data. Earth Science, 37(2):375-380 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201202025 [38] 段春锋, 缪启龙, 曹雯, 2011.西北地区参考作物蒸散变化特征及其主要影响因素.农业工程学报, 27(8): 77-83. doi: 10.3969/j.issn.1002-6819.2011.08.013 [39] 樊军, 郝明德, 邵明安, 2004.黄土旱塬农业生态系统土壤深层水分消耗与水分生态环境效应.农业工程学报, 20(1):61-64. doi: 10.3321/j.issn:1002-6819.2004.01.014 [40] 范双萍, 2018.甘肃陇中地区近55年潜在蒸散量及干旱指数演变趋势.地球环境学报, 9(2): 172-181. http://d.old.wanfangdata.com.cn/Periodical/dqhjxb201802006 [41] 甘卓亭, 刘文兆, 2006.黄土塬区麦田蒸散特征.应用生态学报, 19(8): 1435-1438. doi: 10.3321/j.issn:1001-9332.2006.08.015 [42] 郭映, 董阳, 党慧慧, 等, 2014.基于不同时间尺度玉米蒸散蒸腾量及其影响因素.资源科学, 36(7): 1501-1508. http://d.old.wanfangdata.com.cn/Periodical/zykx201407021 [43] 韩雪, 王力, 王艳萍, 2014.自然降雨条件下夏玉米冠层截留特征及影响因素.中国农业科学, 47(8): 1541-1549. doi: 10.3864/j.issn.0578-1752.2014.08.010 [44] 韩永伟, 高吉喜, 王宝良, 等, 2012.黄土高原生态功能区土壤保持功能及其价值.农业工程学报, 28(17): 78-85. doi: 10.3969/j.issn.1002-6819.2012.17.012 [45] 胡兴波, 芦新建, 于洋, 等, 2018.基于热扩散法的青海云杉冠层导度模拟.林业科学, 54(3): 8-18. http://d.old.wanfangdata.com.cn/Periodical/lykx201803002 [46] 李晶晶, 白岗栓, 2013.黄土丘陵沟壑区苹果树冠截留规律.应用生态学报, 24(2): 379-387. http://d.old.wanfangdata.com.cn/Periodical/yystxb201302012 [47] 李鹏展, 王力, 王棣, 2017.黄土旱塬区冬小麦土壤水库动态.应用生态学报, 28(11): 3653-3662. http://d.old.wanfangdata.com.cn/Periodical/yystxb201711024 [48] 李玉山, 2001.黄土高原森林植被对陆地水循环影响的研究.自然资源学报, 16(5): 427-432. doi: 10.3321/j.issn:1000-3037.2001.05.006 [49] 穆艳, 王延平, 2017.黄土长武塬区苹果林地水量平衡研究.农业现代化研究, 38(1): 161-167. http://d.old.wanfangdata.com.cn/Periodical/nyxdhyj201701023 [50] 司建华, 冯起, 张小由, 等, 2005.植物蒸散耗水量测定方法研究进展.水科学进展, 16(3): 450-459. doi: 10.3321/j.issn:1001-6791.2005.03.024 [51] 唐敏, 赵西宁, 吴普特, 等, 2016.不同地表覆盖对枣树树干液流特征的影响.干旱地区农业研究, 34(1):120-126. http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201601019 [52] 王华田, 马履一, 2002.利用热扩式边材液流探针测定树木整株蒸腾耗水量的研究.植物生态学报, 26(6): 661-667. doi: 10.3321/j.issn:1005-264X.2002.06.005 [53] 王力, 王艳萍, 2013.黄土塬区苹果树干液流特征.农业机械学报, 44(10): 152-158. doi: 10.6041/j.issn.1000-1298.2013.10.024 [54] 王瑞辉, 奚如春, 徐军亮, 等, 2006.用热扩散式茎流计测定园林树木蒸腾耗水量.中南林学院学报, (2): 7-12. doi: 10.3969/j.issn.1673-923X.2006.02.002 [55] 王胜, 樊军, 2015.热脉冲技术3种方法组合在测量树干液流中的应用.应用生态学报, 26(8): 2244-2252. http://d.old.wanfangdata.com.cn/Periodical/yystxb201508002 [56] 王石言, 王力, 韩雪, 等, 2016.黄土塬区盛果期苹果园的蒸散特征.林业科学, 52(1): 128-135. http://d.old.wanfangdata.com.cn/Periodical/lykx201601015 [57] 王延平, 韩明玉, 张林森, 等, 2013.陕西黄土高原苹果园土壤水分分异特征.林业科学, 49(7): 16-25. http://d.old.wanfangdata.com.cn/Periodical/lykx201307003 [58] 王幼奇, 樊军, 邵明安, 等, 2009.黄土高原水蚀风蚀交错区三种植被蒸散特征.生态学报, 29(10): 5386-5394. doi: 10.3321/j.issn:1000-0933.2009.10.025 [59] 魏新光, 聂真义, 刘守阳, 等, 2015.黄土丘陵区枣林土壤水分动态及其对蒸腾的影响.农业机械学报, 46(6): 130-140. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201506019 [60] 吴冰洁, 刘玉军, 姜闯道, 等, 2015.叶片生长进程中气孔发育对叶温调节的影响.植物生理学报, 51(1): 119-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201501017 [61] 续海红, 郭向红, 仇群伊, 2015.不同天气条件下苹果树液流日变化规律研究.中国农学通报, 31(22): 120-124. doi: 10.11924/j.issn.1000-6850.casb15040030 [62] 阳伏林, 张强, 王文玉, 等, 2014.黄土高原春小麦农田蒸散及其影响因素.生态学报, 34(9): 2323-2328. http://d.old.wanfangdata.com.cn/Periodical/stxb201409017 [63] 于金凤, 刘文兆, 甘卓亭, 等, 2010.黄土塬区苹果树蒸腾速率变化特征及其影响因子.干旱地区农业研究, 28(4): 59-63. http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201004012 [64] 张静, 王力, 韩雪, 等, 2016a.黄土塬区农田蒸散的变化特征及主控因素.土壤学报, 53(6): 1421-1432. http://d.old.wanfangdata.com.cn/Periodical/trxb201606008 [65] 张静, 王力, 韩雪, 等, 2016b.不同时间尺度下黄土塬区19年生苹果树干液流速率与环境因子的关系.中国农业科学, 49(13): 2583-2592. http://d.old.wanfangdata.com.cn/Periodical/zgnykx201613014 [66] 张小由, 康尔泗, 张智慧, 等, 2005.黑河下游天然胡杨树干液流特征的试验研究.冰川冻土, 27(5): 742-746. http://d.old.wanfangdata.com.cn/Periodical/bcdt200505018 [67] 张雨航, 王晓林, 胡光成, 2012.基于MODIS数据的海流兔河流域蒸散量的计算.地球科学, 37(2):375-380. http://earth-science.net/WebPage/Article.aspx?id=2242