Risk Analysis on Individual Reservoir Bank Landslide and Its Generated Wave
-
摘要: 水库滑坡次生涌浪灾害是库水运营过程中重要的灾害类型,开展滑坡及其次生涌浪灾害风险分析,能够合理确定并评价滑坡及其次生涌浪灾害对生命及财产的影响程度,从而为采取经济有效的减灾应急措施提供理论依据和技术支持.以三峡库区万州区塘角1号滑坡为例,探讨不同库水位降雨组合工况下,考虑空间差异性的单体滑坡危险性分析方法;确定滑坡次生涌浪灾害影响范围;完善滑坡及其次生涌浪灾害承灾体易损性评价方法;绘制最危险工况下塘角1号滑坡及其次生涌浪灾害经济风险和人口风险分布图,得出:塘角1号滑坡最危险工况为库水位175~145 m+3日100 mm降雨.在该工况下,塘角1号滑坡及其次生灾害总经济风险为2 239万元;坡体上室内人口总风险为0.55人.研究成果以期为指导该类滑坡减灾防灾提供思路和依据.Abstract: The reservoir landslide and its generated surge are major disasters in the operation of reservoir water and their influence degree on life and property can be reasonably determined and evaluated.by risk analysis, which shall provide theoretical basis and technical support for economical and effective emergency measures of disaster reduction. Tangjiao No.1 landslide, in Wanzhou District, Three Gorges Reservoir, was taken as an example in this study. Firstly, the method of hazard analysis on individual landslide by considering the spatial difference and different water levels and rainfall scenarios was discussed. Secondly, the impact range of landslide generated wave was determined. Thirdly, the methods of vulnerability analysis on the elements at risk in the impact range of landslide and its generated wave were studied. Finally, under the most dangerous scenario, economic risk map of Tangshan No. 1 landslide and its generated wave and population risk map of Tangshan No. 1 landslide were obtained. The results show that the most dangerous scenario for Tangshan No. 1 landslide was water level decreasing from 175 m to 145 m with a 3-day-rain of 100 mm daily rainfall. Under this scenario, the total economic risk of Tangshan No. 1 landslide and its generated wave was 22.39 million RMB; the total indoor population risk of the landslide was 0.55 person. The results of this study could be used in guiding reservoir bank landslide disaster prevention and mitigation.
-
Key words:
- landslides /
- landslide generated wave /
- risk analysis /
- reservoir bank /
- Three Gorges Reservoir
-
图 8 船舶(3 000 t)撞击力与码头前初始涌浪高度关系图
数据来源王平义等(2016)
Fig. 8. Relationship between ship (3 000 t) impact force and wave height in front of the wharf
表 1 塘角1号滑坡计算工况
Table 1. Calculation scenarios of Tangjiao No.1 landslide
工况 库水位 降雨 工况1 175 m降至145 m 单日0 mm 工况2 175 m降至145 m 单日100 mm 工况3 175 m降至145 m 3日50 mm 工况4 175 m降至145 m 3日100 mm 表 2 塘角1号滑坡材料参数(曹颖, 2016)
Table 2. Material parameters of Tangjiao No.1 landslide
参数 状态 滑体 滑床 重度(kN/m3) 天然 19.8 25.3 饱和 20.6 25.7 内聚力C(kPa) 天然 26.3 220 饱和 18.2 205 内摩擦角φ(°) 天然 14.2 35.9 饱和 9.4 35.6 渗透系数(m/s) 天然 2.10E-06 / 饱和 5.50E-07 / 体积含水量(m3/m3) 天然 0.301 / 饱和 0.305 / 表 3 塘角1号滑坡各工况下破坏概率及稳定性计算结果
Table 3. Failure probability and safety factor of Tangjiao No.1 landslide under all the Scenarios
工况 时步 破坏概率P(%) 稳定性系数Fs A1 A2 A3-1 A3-2 B1 B2 A1 A2 A3-1 A3-2 B1 B2 207 94.55 16.05 0.00 0.15 0.00 0.15 0.846 1.138 1.705 2.221 2.783 2.385 工况1 208 94.70 16.20 0.00 0.15 0.00 0.15 0.844 1.137 1.706 2.221 2.783 2.385 209 95.00 16.40 0.00 0.15 0.00 0.15 0.843 1.135 1.706 2.221 2.783 2.385 207 94.95 16.05 0.00 0.15 0.00 0.15 0.843 1.138 1.703 2.171 2.781 2.383 工况2 208 95.10 16.25 0.00 0.15 0.00 0.15 0.841 1.136 1.703 2.171 2.805 2.384 209 95.25 16.55 0.00 0.15 0.00 0.15 0.840 1.135 1.703 2.171 2.805 2.384 207 94.95 16.05 0.00 0.15 0.00 0.15 0.843 1.138 1.704 2.171 2.781 2.385 工况3 208 95.10 16.25 0.00 0.15 0.00 0.15 0.841 1.136 1.703 2.171 2.781 2.385 209 95.25 16.70 0.00 0.15 0.00 0.15 0.839 1.134 1.703 2.171 2.781 2.385 207 94.95 16.05 0.00 0.15 0.00 0.15 0.843 1.138 1.703 2.171 2.781 2.383 工况4 208 95.10 16.30 0.00 0.15 0.00 0.15 0.841 1.136 1.702 2.171 2.781 2.383 209 95.25 16.70 0.00 0.15 0.00 0.15 0.839 1.134 1.702 2.171 2.781 2.383 表 4 塘角1号滑坡涌浪计算参数
Table 4. Calculation parameters for Tangjiao No.1 landslide generated wave
滑坡参数 河道参数 长度l(m) 66.93 对岸岸坡坡角β(°) 15 宽度w(m) 349.94 河道宽度b(m) 975.8 厚度t(m) 12.99 水深h(m) 58.31 滑面倾角α(°) 4 平均速度v(m/s) 4.55 表 5 塘角1号滑坡致灾强度评价标准(杜娟, 2012; 曹颖2016)
Table 5. Standard for landslide intensity evaluation of Tangjiao No.1 landslide
滑坡致灾强度
变形速度(mm/s)滑体厚度/建筑物基础埋深(m) < 0.4 0.4~0.8 0.8~1.2 1.2~1.6 >1.6 < 5×10-7 0.30 0.80 1 0.70 0.20 5×10-7~5×10-5 0.37 0.82 1 0.73 0.28 5×10-5~5×10-3 0.44 0.84 1 0.76 0.36 5×10-3~5×10-1 0.65 0.90 1 0.85 0.60 >5×10-1 1 1 1 1 1 表 6 塘角1号滑坡土地道路抗灾能力评价标准(桂蕾, 2014)
Table 6. Standard for resistance evaluation on land and road on Tangjiao No.1 landslide
承灾体类型 耕地 林地 水域 乡村街道 抗灾能力 0.3 0.5 0.3 0.1 表 7 塘角1号滑坡房屋建筑抗灾能力评价标准
Table 7. Standard for resistance evaluation on buildings on Tangjiao No.1 landslide
抗灾能力
修筑年代农村居民建筑 土木结构 砖混结构 ≤1980 0.01 0.1 ≤1990 0.03 0.2 ≤2000 0.05 0.3 ≤2010 0.05 0.5 >2010 0.1 0.5 表 8 塘角1号滑坡室内人员抗灾能力评价标准
Table 8. Standard for resistance evaluation on indoor personnel on Tangjiao No.1 landslide
抗灾能力
修筑年代室内人员 老人小孩 青年 土木结构 砖混结构 土木结构 砖混结构 ≤1980 0.1 0.3 0.3 0.5 ≤1990 0.1 0.3 0.3 0.5 ≤2000 0.1 0.5 0.3 0.7 ≤2010 0.1 0.5 0.5 0.7 >2010 0.1 0.5 0.5 0.7 表 9 塘角1号A1区滑坡涌浪范围内码头易损性
Table 9. Vulnerability of wharfs in the range of A1 part of Tangjiao No.1 landslide generated wave
码头编号 码头类型 初始波高(m) 撞击力(MN) 涌浪对码头致灾强度I 码头抗灾能力R 易损性 1 客运 0.31 0.56 0.16 0.9 0.07 2 货运 0.33 0.56 0.17 0.8 0.09 3 煤 0.45 0.61 0.18 0.9 0.08 4 矿石 0.76 0.72 0.21 0.8 0.14 5 货运 0.89 0.77 0.23 0.7 0.21 6 客运 0.99 0.80 0.24 0.5 0.44 表 10 塘角1号A1区滑坡涌浪范围内河道驳船航行易损性
Table 10. Vulnerability of barges in the range of A1 part of Tangjiao No.1 landslide generated wave
涌浪类型 涌浪距滑坡点距离(km) 涌浪高度(m) 涌浪对船只致灾强度I 驳船抗灾能力R 易损性V 最大首浪 0.00 2.63 1.00 0.70 1.00 沿程传播浪 1.00 0.89 0.60 0.70 0.96 沿程传播浪 2.00 0.66 0.44 0.70 0.73 沿程传播浪 3.00 0.54 0.36 0.70 0.52 沿程传播浪 4.00 0.45 0.30 0.70 0.37 沿程传播浪 5.00 0.39 0.26 0.70 0.28 沿程传播浪 6.00 0.35 0.23 0.70 0.22 沿程传播浪 7.00 0.31 0.21 0.70 0.18 沿对岸传播浪 0.20 2.09 1.00 0.70 1.00 沿对岸传播浪 0.30 1.71 1.00 0.70 1.00 沿对岸传播浪 0.40 1.48 0.99 0.70 1.00 沿对岸传播浪 0.50 1.32 0.88 0.70 1.00 沿对岸传播浪 0.60 1.21 0.80 0.70 1.00 沿对岸传播浪 0.70 1.12 0.74 0.70 1.00 沿对岸传播浪 0.80 1.04 0.70 0.70 1.00 沿对岸传播浪 0.90 0.99 0.66 0.70 0.99 沿对岸传播浪 0.98 0.95 0.63 0.70 0.98 表 11 塘角1号滑坡及其次生涌浪灾害影响范围内承灾体经济价值标准
Table 11. Economic standards of elements at risk in the range of Tangjiao No.1 landslide and the generated wave
承灾体类型 房屋建筑(元/m2) 道路(元/m2) 耕地(元/m2) 林地(元/m2) 码头(万元) 驳船(万元) 1 2 3 4 5 6 单价 2 000 60 5 15 40 80 20 20 10 10 300 -
[1] Afungang, R.N., Bateira, C.V., 2016.Temporal Probability Analysis of Landslides Triggered by Intense Rainfall in the Bamenda Mountain Region, Cameroon.Environmental Earth Sciences, 75(12):1-12. https://doi.org/10.13039/501100000780 [2] Cao, Y., 2016.Risk Assessment and Early Warning of Individual Landslide-Case Study of the Tangjiao Landslide in Wanzhou(Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). [3] Daniele, B., Tazio, S., Alberto, B., 2015.Landslide Hazard:Risk Zonation and Impact Wave Analysis for the Bumbuma Dam-Sierra Leone.Engineering Geology for Society and Territory, 2:1129-1134. doi: 10.1007/978-3-319-09057-3_199 [4] Du, J., 2012.Risk Assessment of Individual Landslide (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). [5] Fell, R., Ho, K.K.S., Lacasse, S., et al., 2005.A Framework for Landslide Risk Assessment and Management.International Conference on Landslide Risk Management, 599-600. [6] Fotopoulou, S.D., Pitilakis, K.D., 2012.Vulnerability Assessment of Reinforced Concrete Buildings Subjected to Seismically Triggered Slow-Moving Earth Slides.Landslides, 10(5):563-582. https://doi.org/10.1007/s10346-012-0345-5 [7] Ge, Y.F., Tang, H.M., Li, W., et al., 2016.Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Structure.Earth Science, 41(9):1583-1592 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201609013.htm [8] Gui, L., 2014.Research on Landslide Development Regularities and Risk in Wan Zhou District, Three Gorges Reservoir(Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). [9] Hungr, O., McDougall, S., 2009.Two Numerical Models for Landslide Dynamic Analysis.Computers & Geosciences, 35(5):978-992. https://doi.org/10.1016/j.cageo.2007.12.003 [10] Iverson, R.M., George, D.L., Allstadt, K., et al., 2015.Landslide Mobility and Hazards:Implications of the 2014 Oso Disaster.Earth and Planetary Science Letters, 412:197-208. https://doi.org/10.1016/j.epsl.2014.12.020 [11] Ji, H., Si, H., 2013.Visualized Analysis of Surge Vulnerability by Landslides Based on GIS in Three Gorges Reservoirs.China Safety Science Journal, 23(9):166-171 (in Chinese with English abstract). http://www.doc88.com/p-8909112234835.html [12] Li, Z.H., Nadim, F., Huang, H.W., et al., 2010.Quantitative Vulnerability Estimation for Scenario-Based Landslide Hazards.Landslides, 7(2):125-134. https://doi.org/10.1007/s10346-009-0190-3 [13] Liu, Y.L., 2013.Research on Landslide-Induced Surge in Three Gorges Reservoir Area(Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). [14] Luna, B.Q., Cepeda, J., Stumpf, A., et al., 2013.Analysis and Uncertainty Quantification of Dynamic Run-out Model Parameters for Landslides.Springer Berlin Heidelberg, 315-318. [15] Maritime Administration of the People's Republic of China, 2011.Technical Rules for Statutory Inspection of Inland Waterways.People's Communications Press, Beijing (in Chinese). [16] Miao, F.S., Wu, Y.P., Xie, Y.H., et al., 2016.Research on Progressive Failure Process of Baishuihe Landslide Based on Monte Carlo Model.Stochastic Environmental Research and Risk Assessment, 31(7):1683-1696. https://doi.org/10.13039/501100001809 [17] Nicolet, P., Jaboyedoff, M., Cloutier, C., et al., 2016.Brief Communication:On Direct Impact Probability of Landslides on Vehicles.Natural Hazards and Earth System Sciences, 16(4):995-1004. https://doi.org/10.5194/nhess-16-995-2016 [18] Qiu, H.J., Cui, P., Hu, S., et al., 2016.Size-Frequency Distribution of Landslides in Different Landforms on the Loess Plateau of Northern Shaanxi.Earth Science, 41(2):343-350(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dqkx201602014.aspx [19] Three Gorges Reservoir Area Geological Disaster Prevention and Control Work Command, 2014.Three Gorges Reservoir Area Geological Disaster Prevention Engineering Geological Prospecting Technical Requirements.China University of Geosciences Press, Wuhan(in Chinese). [20] Uzielli, M., Catani, F., Tofani, V., et al., 2014.Risk Analysis for the Ancona Landslide-Ⅱ:Estimation of Risk to Buildings.Landslides, 12(1):83-100. https://doi.org/10.1007/s10346-014-0477-x [21] Wang, J.C., 2010.Research on Load Standard and Reliability of Light Wharf Structures (Dissertation).Dalian University of Technology, Dalian(in Chinese with English abstract). [22] Wang, P.Y., Han, L.F., Yu, T., et al., 2016.Effects of Landslide Generated Impulse Waves on Ship Impact Force for Pile Wharf.Journal of Harbin Engineering University, 37(6):878-884 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_hebgcdxxb201606021 [23] Wang, Y., Yin, K.L., 2003.Analysis of Movement Process of Landslide in Reservoir and Calculation of Its Initial Surge Height.Earth Science, 28(5):579-582 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX200305018.htm [24] Wood, N.J., Peters, J., 2014.Variations in Population Vulnerability to Tectonic and Landslide-Related Tsunami Hazards in Alaska.Natural Hazards, 75(2):1811-1831. https://doi.org/10.1007/s11069-014-1399-6 [25] Wu, Y., Liu, D.S., Li, M.J., 2011.Impact Energy Calculation for Rock Slope and Quantitative Assessment of Vulnerability for Element at Risk.Chinese Journal of Rock Mechanics and Engineering, 30(5):901-909 (in Chinese with English abstract). [26] Yin, K.L., Chen, L., Ma, F.X., et al., 2016.Practice and Thinking of Landslide Risk Management Considering Their Secondary Consequences in the Three-Gorges Reservoir, China.Landslides and Engineered Slopes.Experience, Theory and Practice, 3:2097-2105. [27] Yin, Y.P., Huang, B.L., Liu, G.N., et al., 2015.Potential Risk Analysis on a Jianchuandong Dangerous Rockmass-Generated Impulse Wave in the Three Gorges Reservoir, China.Environmental Earth Sciences, 74(3):2595-2607. https://doi.org/10.1007/s12665-015-4278-x [28] Zhang, S., Zhang, L.M., 2014.Human Vulnerability to Quick Shallow Landslides along Road:Fleeing Process and Modeling.Landslides, 11(6):1115-1129. https://doi.org/10.1007/s10346-014-0468-y [29] Zhang, Y., 2010.Dynamic Analysis to Ship Impact of Piling Wharf(Dissertation).Tianjin University, Tianjin (in Chinese with English abstract). [30] 曹颖, 2016. 单体滑坡灾害风险评价与预警预报——以万州区塘角1号滑坡为例(博士学位论文). 武汉: 中国地质大学. [31] 杜娟, 2012. 单体滑坡灾害风险评价研究(博士学位论文). 武汉: 中国地质大学. [32] 葛云峰, 唐辉明, 李伟, 等, 2016.基于岩体结构特征的高速远程滑坡致灾范围评价.地球科学, 41(9):1583-1592. doi: 10.11764/j.issn.1672-1926.2016.09.1583 [33] 桂蕾, 2014. 三峡库区万州区滑坡发育规律及风险研究(博士学位论文). 武汉: 中国地质大学. [34] 纪虹, 司鹄, 2013.基于GIS技术的三峡库区滑坡涌浪灾害易损性可视化研究.中国安全科学学报, 23(9):166-171. http://www.cqvip.com/QK/97423X/201309/47854315.html [35] 刘艺梁, 2013. 三峡库区库岸滑坡涌浪灾害研究(博士学位论文). 武汉: 中国地质大学. [36] 邱海军, 崔鹏, 胡胜, 等, 2016.陕北黄土高原不同地貌类型区黄土滑坡频率分布.地球科学, 41(2):343-350. http://www.earth-science.net/WebPage/Article.aspx?id=3251 [37] 三峡库区地质灾害防治工作指挥部, 2014. 三峡库区地质灾害防治工程地质勘查技术要求. 武汉: 中国地质大学出版社. [38] 王建超, 2010. 轻型码头结构荷载标准与可靠度研究. 大连: 大连理工大学. [39] 王平义, 韩林峰, 喻涛, 等, 2016.滑坡涌浪对高桩码头船舶撞击力的影响.哈尔滨工程大学学报, 37(6):878-884. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_hebgcdxxb201606021 [40] 汪洋, 殷坤龙, 2003.水库库岸滑坡的运动过程分析及初始涌浪计算.地球科学, 28(5):579-582. http://www.earth-science.net/WebPage/Article.aspx?id=1292 [41] 吴越, 刘东升, 李明军, 2011.岩体滑坡冲击能计算及受灾体易损性定量评估.岩石力学与工程学报, 30(5):901-909. http://d.wanfangdata.com.cn/Periodical_yslxygcxb201105005.aspx [42] 张颖, 2010. 高桩码头船舶撞击力的动力分析(硕士学位论文). 天津: 天津大学. [43] 中华人民共和国海事局, 2011.内河船舶法定检查技术规则.北京:人民交通出版社.