Wenyu Copper (Silver) Deposit Ore-Forming Geological Background, Jingdong County, Yunnan: Geochronology and Geochemistry Evidences from Ore-Bearing Volcanic Rocks
-
摘要: 文玉铜(银)矿是云县-景洪火山弧上重要的与火山作用相关矿床,了解矿区成岩成矿地质背景是探讨成矿作用的基础.本文报道了赋矿火山岩的岩石学、地球化学及锆石LA-ICP-MS年代学.小定西组火山岩由基性岩夹少量酸性岩组成,SiO2分别介于47.94%~54.02%和76.92%~84.16%之间,具"双峰式"火山岩特征.流纹岩锆石U-Pb年龄为238.4±2.4 Ma(MSWD=1.4),表明小定西组时代为中三叠世,而并非前人认为的晚三叠世.小定西组基性火山岩具低镁高铝特征,属于钾玄岩-高钾钙碱性-钙碱性系列,具较强Sr、Ti、Nb和Ta负异常、弱Eu负异常以及较低的Mg#、(La/Yb)N比值和Cr、Ni含量等特征;酸性火山岩属于过铝质高钾钙碱性系列,具有强的Sr、Ti、P、Nb、Ta、Ba和Eu负异常,Nb/Ta和Th/Ce比值与大陆地壳较为一致,具高Th含量和低Mg#特征.地球化学特征显示其可能形成于中三叠世早期弧(陆)-陆碰撞边缘下的伸展环境,是洋壳俯冲板片断离作用的结果.结合区域火山作用及成矿作用研究,中三叠世碰撞伸展作用阶段伴随多期次多阶段火山作用,具有良好的火山成矿作用前景.Abstract: Wenyu copper (silver) ore, located in Yun county-Jinghong volcanic arc, is important deposit related to volcanism. It is important to understand its geological background since it is basic for discussing mineralization of Wenyu ore area. This paper reports petrology, geochemistry and zircon LA-ICP-MS chronology of volcanic rocks from Xiaodingxi Formation in the mining area.Results show that they are composed of basaltic rocks and a small amount of acidic rocks, with SiO2 ranging from 47.94%-54.02% and 76.92%-84.16%, respectively, exhibiting the features of bimodal volcanic rocks. Zircon U-Pb age of rhyolite is 238.4±2.4 Ma(MSWD=1.4), showing that volcanic rocks in Xiaodingxi Formation formed at Middle Triassic, rather than Late Triassic. The basaltic volcanic rocks are characterized by low Mg and high Al, belonging to shoshonite-high K calc-alkaline-calc-alkaline series, with strong negative Sr, Ti, Nb and Ta anomalies, weak negative Eu anomalies, and lower (La/Yb)N ratio and Mg#, Cr and Ni contents. Acidic volcanic rocks belong to peraluminous high K calc-alkaline series, with strong negative Sr, Ti, P, Nb, Ta, Ba and Eu anomalies. Nb/Ta and Th/Ce ratios are relatively consistent with those of continental crust, displaying characteristics of high Th and low Mg#, which suggests that it formed in an extension setting during a margin of arc (continent)-continent collision in the early Middle Triassic, which is a result of oceanic crust subduction slab break-off. In combination with regional volcanism and metallogenesis research data, it is concluded that multi-stage volcanism in the collision extension environment occurred many times during the Middle Triassic, indicating a good prospect of volcanism mineralization.
-
Key words:
- zircon U-Pb geochronology /
- volcanic rock /
- geochemistry /
- Wenyu copper (silver) ore /
- Yunnan
-
图 1 三江地区构造格架图(a)和文玉铜(银)矿区地质简图(b)
图a据Deng et al.(2014)修改,图b据详查报告修改
Fig. 1. Tectonic framework of the Sanjiang region (a) and geological sketch map of the Wenyu copper (silver) mining area (b)
图 4 文玉矿区小定西组火山岩Nb/Y-Zr/TiO2(a)和Co-Th(b)图解
a.据Winchester and Floyd(1977);b.据Hastie et al.(2007)
Fig. 4. Nb/Y-Zr/TiO2 (a) and Co versus Th (b) diagrams of the Xiaodingxi Formation volcanic rocks in Wenyu mining area
图 6 文玉矿区小定西组火山岩稀土元素球粒陨石标准化配分图(a)和微量元素标准化蜘网图(b)
据Sun and McDonough(1989);Pearce et al.(1995); Shinjo et al.(1999)
Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle normalized trace element spider diagram (b) for the Xiaodingxi Formation volcanic rocks in Wenyu mining area
图 7 文玉矿区小定西组火山岩La/Yb-Ba/La(a)和(Ta/La)N-(Hf/Sm)N(b)图解
a.据朱弟成等(2006)修改;b.据La Flèche et al.(1998)修改
Fig. 7. La/Yb-Ba/La (a) and (Ta/La)N-(Hf/Sm)N (b) diagrams of the Xiaodingxi Formation volcanic rock in Wenyu mining area
图 9 文玉矿区小定西组火山岩FeOT-MgO-Al2O3(a)、Zr-Ti(b)和Y-Nb(c)图解
图a据Pearce et al.(1977);图b据Pearce(1982);图c据Pearce et al.(1984);Ⅰ.洋中脊或洋底; Ⅱ.洋岛; Ⅲ.大陆; Ⅳ.扩张性中央岛; Ⅴ.造山带
Fig. 9. FeOT-MgO-Al2O3 (a), Zr-Ti (b) and Y-Nb (c) diagrams of the Xiaodingxi Formation volcanic rock in Wenyu mining area
表 1 文玉矿区小定西组流纹岩LA-ICP-MS锆石U-Pb同位素测年结果
Table 1. Zircons U-Pb data of the Xiaodingxi Formation rhyolite in Wenyu mining area
测点号
(YJ-02N)元素含量(10-6) Th/U 同位素比值 年龄(Ma) Th U Pb 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 798 928 16.4 0.86 0.054 85 0.004 12 0.292 05 0.019 00 0.038 42 0.000 75 406 169 260 15 243 5 2 658 895 15.5 0.74 0.054 42 0.003 66 0.272 64 0.017 61 0.036 70 0.000 63 387 150 245 14 232 4 3 591 793 17.3 0.75 0.059 21 0.004 38 0.300 26 0.023 27 0.035 54 0.000 69 576 161 267 18 225 4 4 1 108 1 397 33.8 0.79 0.061 84 0.004 32 0.325 31 0.020 88 0.036 13 0.000 63 733 145 286 16 229 4 5 614 749 11.3 0.82 0.054 34 0.003 55 0.286 89 0.017 73 0.037 86 0.000 66 383 146 256 14 240 4 6 317 491 23.8 0.65 0.086 81 0.006 42 0.448 28 0.032 51 0.037 11 0.000 85 1367 143 376 23 235 5 7 605 820 15.0 0.74 0.054 39 0.003 67 0.282 47 0.017 30 0.038 60 0.000 78 387 152 253 14 244 5 8 695 923 26.2 0.75 0.050 20 0.003 06 0.265 95 0.015 01 0.037 95 0.000 67 211 141 239 12 240 4 9 658 901 18.4 0.73 0.048 00 0.003 14 0.252 32 0.015 82 0.037 94 0.000 79 98 157 228 13 240 5 10 484 701 15.8 0.69 0.047 53 0.003 84 0.258 66 0.020 30 0.037 57 0.000 78 76 181 234 16 238 5 11 295 413 21.2 0.71 0.055 66 0.005 37 0.278 20 0.023 97 0.037 35 0.000 86 439 215 249 19 236 5 12 442 626 12.5 0.71 0.049 39 0.003 64 0.254 29 0.016 56 0.038 04 0.000 79 165 167 230 13 241 5 13 478 697 13.8 0.69 0.047 68 0.003 24 0.256 71 0.016 62 0.035 98 0.000 79 83 156 232 13 228 5 14 633 649 21.2 0.98 0.046 80 0.003 38 0.233 00 0.015 69 0.036 13 0.000 81 39 172 213 13 229 5 15 292 440 15.6 0.66 0.053 86 0.004 63 0.259 39 0.019 28 0.036 76 0.000 98 365 190 234 16 233 6 16 488 641 30.5 0.76 0.086 17 0.008 52 0.504 42 0.055 51 0.039 16 0.000 98 1343 192 415 37 248 6 17 420 480 11.3 0.88 0.052 78 0.004 53 0.270 81 0.019 04 0.038 08 0.000 89 320 192 243 15 241 6 18 301 508 11.3 0.59 0.054 49 0.004 06 0.280 37 0.020 84 0.037 38 0.000 74 391 167 251 17 237 5 19 284 452 4.63 0.63 0.052 60 0.004 65 0.269 18 0.021 68 0.036 52 0.000 90 322 202 242 17 231 6 20 693 945 17.6 0.73 0.050 10 0.002 91 0.282 51 0.014 27 0.038 23 0.000 73 198 135 253 11 242 5 21 888 915 21.4 0.97 0.064 83 0.004 64 0.263 95 0.015 90 0.029 22 0.000 69 769 156 238 13 186 4 22 828 1 257 17.9 0.66 0.050 74 0.003 14 0.250 47 0.013 86 0.035 22 0.000 64 228 143 227 11 223 4 23 736 926 20.2 0.79 0.045 19 0.003 16 0.236 47 0.015 94 0.038 80 0.000 80 - - 216 13 245 5 24 740 949 11.5 0.78 0.049 35 0.003 18 0.263 48 0.016 70 0.038 82 0.000 72 165 152 237 13 246 4 25 604 817 10.7 0.74 0.047 21 0.003 37 0.247 76 0.016 74 0.038 80 0.000 68 61 159 225 14 245 4 26 827 656 7.47 1.26 0.051 18 0.004 05 0.253 83 0.017 56 0.037 20 0.000 76 256 181 230 14 235 5 27 585 782 12.7 0.75 0.051 01 0.003 62 0.279 32 0.018 96 0.039 78 0.000 84 243 160 250 15 251 5 28 548 736 7.81 0.74 0.062 22 0.004 09 0.322 95 0.022 81 0.037 45 0.000 74 683 108 284 18 237 5 29 546 751 15.2 0.73 0.050 53 0.003 83 0.261 36 0.018 69 0.038 50 0.000 71 220 176 236 15 244 4 30 628 776 10.8 0.81 0.045 51 0.002 65 0.240 39 0.013 76 0.037 87 0.000 69 - - 219 11 240 4 31 636 830 20.6 0.77 0.052 05 0.003 88 0.266 58 0.018 48 0.036 24 0.000 66 287 170 240 15 229 4 32 827 1 106 10.3 0.75 0.052 25 0.003 13 0.277 80 0.017 17 0.038 69 0.000 68 298 137 249 14 245 4 注:“-”表示误差数据予以剔除.其中3、4、6、16、21~23、27、28点年龄数据不谐和,不参与计算. 表 2 文玉矿区小定西组火山岩主量元素(10-2)分析结果
Table 2. Major element (10-2) composition of the Xiaodingxi Formation volcanic rocks in Wenyu mining area
样品编号 YJN02H ZKH0001-20.2h ZKH0001-114.2h ZK0804-84.3h ZK0005-174.9h ZK0207-176.2h ZK6605-190h TLN03H PZ03H PD1070-3H PD1780-1H 流纹岩 玄武岩 玄武岩 玄武岩 玄武质凝灰岩 玄武岩 玄武岩 火山角砾岩 流纹岩 玄武岩 玄武岩 SiO2 76.92 51.36 51.99 51.23 48.98 52.70 47.94 54.02 84.16 49.57 52.01 TiO2 0.23 1.62 1.33 1.24 1.38 1.14 1.99 1.09 0.14 1.19 1.73 Al2O3 13.02 16.85 17.23 16.33 16.60 16.66 16.34 16.94 7.76 17.06 16.93 Fe2O3 1.79 4.99 6.34 7.24 4.84 4.17 8.07 6.47 0.78 2.53 5.37 FeO 0.17 4.67 2.81 1.23 5.05 4.55 3.81 2.56 0.34 5.70 3.90 MnO 0.01 0.25 0.14 0.37 0.41 0.24 0.22 0.15 0.01 0.21 0.18 MgO 0.52 4.64 4.87 5.50 6.37 5.53 5.13 5.35 0.18 5.23 4.01 CaO 0.18 7.75 8.23 1.52 3.26 2.64 4.23 1.62 0.08 4.73 6.78 Na2O 0.07 3.10 3.12 0.21 3.34 6.22 5.15 5.91 0.03 4.57 3.39 K2O 4.01 2.09 1.18 10.59 4.45 1.44 2.20 2.16 5.37 3.50 2.28 P2O5 0.05 0.58 0.44 0.40 0.50 0.46 0.87 0.37 0.03 0.46 0.58 LOI 2.95 1.46 1.90 3.56 4.10 3.72 3.49 3.01 1.05 4.54 2.27 H2O- 0.30 0.38 0.29 0.83 0.35 0.28 0.35 0.21 0.28 0.20 0.45 Mg# 34.23 47.45 50.48 55.87 54.70 54.28 45.23 53.22 23.55 53.89 45.01 总量 100.22 99.74 99.87 100.25 99.63 99.75 99.79 99.86 100.20 99.49 99.88 注:Mg#=100×Mg2+/(Mg2++Fe2+). 表 3 文玉矿区小定西组火山岩微量元素(10-6)分析结果
Table 3. Trace elements (10-6) composition of the Xiaodingxi Formation volcanic rocks in Wenyu mining area
样品编号 YJN02H ZK0005-174.9h ZK0804-84.3h ZK0207-176.2h ZK6605-190h ZKH0001-20.2h ZKH0001-114.2h PZ03H PD1780-1H TLN03H PD1070-3H La 52.0 34.0 24.3 26.5 55.0 31.2 27.9 51.6 26.8 15.8 18.7 Ce 88.4 68.0 51.4 55.5 111.0 64.7 56.4 81.2 57.5 36.4 44.5 Pr 9.73 9.38 7.43 7.75 14.6 9.04 7.89 8.86 8.41 5.41 6.53 Nd 32.8 39.6 31.9 32.7 60.4 38.8 34.2 30.8 38.2 25.0 29.6 Sm 5.08 7.48 6.48 6.12 10.8 7.35 6.44 4.28 7.29 5.23 5.90 Eu 0.70 1.89 1.75 1.62 2.73 1.94 1.73 0.61 2.02 1.31 1.61 Gd 3.38 6.31 5.03 5.25 8.63 6.15 5.34 2.61 6.04 4.24 5.12 Tb 0.63 1.03 0.83 0.87 1.39 0.99 0.87 0.48 1.00 0.69 0.84 Dy 3.59 5.82 4.74 4.99 7.50 5.32 4.80 2.69 5.48 3.90 4.75 Ho 0.77 1.17 0.93 0.99 1.45 1.03 0.94 0.53 1.06 0.73 0.94 Er 2.23 3.05 2.44 2.56 3.75 2.63 2.41 1.53 2.71 1.94 2.47 Tm 0.39 0.45 0.36 0.38 0.56 0.40 0.36 0.25 0.40 0.30 0.37 Yb 2.76 2.93 2.40 2.40 3.57 2.55 2.30 1.67 2.57 1.86 2.33 Lu 0.39 0.40 0.32 0.33 0.48 0.34 0.31 0.23 0.35 0.24 0.32 ΣREE 202.85 181.51 140.31 147.96 281.86 172.44 151.89 187.34 159.83 103.05 123.98 LREE 188.01 158.46 121.51 128.57 251.8 151.09 132.83 176.74 138.2 87.84 105.23 HREE 14.14 21.16 17.05 17.77 27.33 19.41 17.33 9.99 19.61 13.90 17.14 LREE/HREE 13.3 7.49 7.13 7.24 9.21 7.78 7.66 17.69 7.05 6.32 6.14 LaN/YbN 13.51 8.32 7.26 7.92 11.05 8.78 8.70 22.16 7.48 6.09 5.76 δEu 0.49 0.82 0.90 0.85 0.84 0.86 0.88 0.52 0.90 0.82 0.87 δCe 0.90 0.92 0.93 0.94 0.94 0.93 0.92 0.85 0.93 0.96 0.98 Rb 175.0 123.0 574.0 30.7 68.9 65.5 33.2 172 76.6 37.1 59.9 Cs 16.60 3.07 25.30 1.49 4.14 2.91 4.00 3.81 3.66 1.93 1.28 Sr 17.9 254.0 447.0 142.0 447.0 643.0 614.0 13.3 683.0 69.8 80.8 Ba 649 1 279 5 014 186 600 336 247 385 311 192 461 Hf 5.83 4.73 4.31 4.39 7.56 4.37 4.10 3.36 4.44 3.81 4.09 Zr 240 219 201 204 422 199 177 135 212 163 174 Ta 1.90 0.87 0.77 0.77 1.62 0.98 0.80 0.92 1.00 0.72 0.77 Nb 21.6 15.4 14.0 14.3 32.8 18.9 15.1 12.3 19.1 12.4 14.7 U 6.06 0.66 0.65 0.52 1.45 0.69 0.59 2.69 0.39 0.75 0.53 Th 25.8 3.82 3.93 3.76 5.99 3.51 3.24 12.40 2.25 4.24 3.16 Pb 30.80 13.80 37.10 9.94 16.20 9.28 27.40 5.14 7.00 7.16 5.56 Y 19.3 28.3 23.4 25.0 36.8 26.3 23.7 14.5 27.1 19.0 24.3 Sc 4.68 27.60 24.20 23.80 28.80 23.10 24.60 3.19 24.30 18.90 21.40 Co 1.76 33.10 22.20 25.10 31.90 27.20 28.80 0.73 25.30 22.60 27.70 Ni 1.12 47.80 30.10 32.50 42.00 35.50 43.30 0.74 43.80 29.10 30.90 Cu 3.64 16.30 6.74 26.90 23.20 14.90 33.90 68.50 118.00 4 671.00 3 665.00 Ti 1 281 9 599 8 167 8 245 13 971 10 586 9 427 723 11 654 7 038 8 184 V 10.8 258 220 179 240 215 224 5.46 228 178 171 Mn 92.7 3 564 3 268 2 094 1 911 1 975 1 223 50.6 1 467 1 219 1 877 Zn 20.0 362 856 230 176 114 143 17.2 106 176 253 Ga 15.1 20.1 19.3 20.0 20.0 18.9 19.6 6.51 19.5 20.8 19.6 Ge 0.81 1.38 1.65 1.24 1.73 1.32 1.31 1.59 1.25 1.40 1.38 Cr 2.46 89.4 109 83.9 105.0 90.6 113 2.48 102.0 75.1 68.2 Sn 3.17 2.02 2.02 2.13 1.81 1.99 1.74 1.60 1.60 1.78 1.59 -
[1] Atherton, M.P., Petford, N., 1993.Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust.Nature, 362(6416):144-146. https://doi.org/10.1038/362144a0 [2] Bacon, C.R., Druitt, T.H., 1988.Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon.Contributions to Mineralogy and Petrology, 98(2):224-256. https://doi.org/10.1007/bf00402114 [3] Barry, T.L., Pearce, J.A., Leat, P.T., et al., 2006.Hf Isotope Evidence for Selective Mobility of High-Field-Strength Elements in a Subduction Setting:South Sandwich Islands.Earth and Planetary Science Letters, 252(3-4):223-244. https://doi.org/10.1016/j.epsl.2006.09.034 [4] Bolhar, R., Weaver, S.D., Whitehouse, M.J., et al., 2008.Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite (New Zealand).Earth and Planetary Science Letters, 268(3-4):312-324. https://doi.org/10.1016/j.epsl.2008.01.022 [5] Bonin, B., 2004.Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review.Lithos, 78(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.042 [6] Castillo, P.R., 2004.Geochemical Constraints on Possible Subduction Components in Lavas of Mayon and Taal Volcanoes, Southern Luzon, Philippines.Journal of Petrology, 45(6):1089-1108. https://doi.org/10.1093/petrology/egh005 [7] Chen, L., Wang, L.Q., Wang, B.D., et al., 2013.Genesis of the Guanfang Copper Deposit in the Yunxian-Jinggu Volcanic Arc, Western Yunnan:Evidences from Fluid Inclusions and Geochronology.Acta Petrologica Sinica, 29(4):1279-1289(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201304014.htm [8] Class, C., Miller, D.M., Goldstein, S.L., et al., 2000.Distinguishing Melt and Fluid Subduction Components in Umnak Volcanics, Aleutian Arc.Geochemistry, Geophysics, Geosystems, 1(6):1004-1030. https://doi.org/10.1029/1999gc000010 [9] Condie, K.C., 2001.Mantle Plumes and Their Record in Earth History.Cambridge University Press, London. https://doi.org/10.1017/CBO9780511810589 [10] Cong, B.L., Wu, G.Y., Zhang, Q., et al., 1993.Petrotectonic Evolution of the Tethys Zone in Western Yunnan, China.Science in China (Series B), 23(11):1201-1207(in Chinese). [11] Crofu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003.Atlas of Zircon Textures.Reviews in Mineralogy and Geochemistry, 53(1):469-495. https://doi.org/10.2113/0530469 [12] Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0 [13] Deng, J., Li, W.C., Mo, X.X., et al., 2016.Superimposed Orogenesis and Metallogenesis in Sanjiang Tethys.Science Press, Beijing, 1-217 (in Chinese). [14] Deng, J., Wang, Q.F., Li, G.J., et al., 2014.Tethys Tectonic Evolution and Its Bearing on the Distribution of Important Mineral Deposits in the Sanjiang Region, SW China.Gondwana Research, 26(2):419-437. https://doi.org/10.1016/j.gr.2013.08.002 [15] Deng, J.F., Zhao, H.L., Mo, X.X., et al., 1996.Continental Roots-Plume Tectonics of China:The Key to Continental Dynamics.Geological Publishing House, Beijing, 1-110 (in Chinese). [16] Dostal, J., Chatterjee, A.K., 2000.Contrasting Behaviour of Nb/Ta and Zr/Hf Ratios in a Peraluminous Granitic Pluton (Nova Scotia, Canada).Chemical Geology, 163(1-4):207-218. https://doi.org/10.1016/s0009-2541(99)00113-8 [17] Duretz, T., Gerya, T.V., May, D.A., 2011.Numerical Modelling of Spontaneous Slab Breakoff and Subsequent Topographic Response.Tectonophysics, 502(1-2):244-256. https://doi.org/10.1016/j.tecto.2010.05.024 [18] Fan, W.M., Peng, T.P., Wang, Y.J., 2009.Triassic Magmatism in the Southern Lancangjiang Zone, Southwestern China and Its Constraints on the Tectonic Evolution of Paleo-Tethys.Earth Science Frontiers, 16(6):291-302(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200906039.htm [19] Fang, Z.J., Zhou, Z.C., Lin, M.J., 1990.Some New obserratias on the Geology of Western Yunnan.Chinese Science Bulletin, 35(5):363-365(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXTW199015011.htm [20] Fang, Z.J., Zhou, Z.C., Lin, M.J., 1992.Discussions on Changning-Menglian Suture Zone from the Angle of Stratigraphy.Journal of Stratigraphy, 16(4):292-303(in Chinese). [21] Gagnevin, D., Daly, J.S., Horstwood, M.S.A., et al., 2011.In-Situ Zircon U-Pb, Oxygen and Hafnium Isotopic Evidence for Magma Mixing and Mantle Metasomatism in the Tuscan Magmatic Province, Italy.Earth and Planetary Science Letters, 305(1-2):45-56. https://doi.org/10.1016/j.epsl.2011.02.039 [22] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. https://doi.org/10.1016/0009-2541(94)00145-x [23] Guffanti, M., Clynne, M.A., Muffler, L.J.P., 1996.Thermal and Mass Implications of Magmatic Evolution in the Lassen Volcanic Region, California, and Minimum Constraints on Basalt Influx to the Lower Crust.Journal of Geophysical Research:Solid Earth, 101(B2):3003-3013. https://doi.org/10.1029/95jb03463 [24] Guo, K., Zhai, S.K., Yu, Z.H., et al., 2016.Determination and Tectonic Significance of Volcanic Rock Series in the Okinawa Trough.Earth Science, 41(10):1655-1664 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201610003.htm [25] Hastie, A.R., Kerr, A.C., Pearce, J.A., et al., 2007.Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements:Development of the Th-Co Discrimination Diagram.Journal of Petrology, 48(12):2341-2357. https://doi.org/10.1093/petrology/egm062 [26] Hennig, D., Lehmann, B., Frei, D., et al., 2009.Early Permian Seafloor to Continental Arc Magmatism in the Eastern Paleo-Tethys:U-Pb Age and Nd-Sr Isotope Data from the Southern Lancangjiang Zone, Yunnan, China.Lithos, 113(3-4):408-422. https://doi.org/10.1016/j.lithos.2009.04.031 [27] Heppe, K., 2004. Plate Tectonic Evolution and Mineral Resource Potential of the Lancang River Zone, Southwestern Yunnan, People's Republic of China (Dissertation). University of Göttingen, Göttingen, Germany, 1-147. [28] Hou, K.J., Li, Y.H., Tian, Y.R., 2009.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS.Mineral Deposits, 28(4):481-492(in Chinese with English abstract). https://doi.org/10.3969/j.issn.0258-7106.2009.04.010 [29] Ingle, S., 2002.Indian Continental Crust Recovered from Elan Bank, Kerguelen Plateau (ODP Leg 183, Site 1137).Journal of Petrology, 43(7):1241-1257. https://doi.org/10.1093/petrology/43.7.1241 [30] Kerrich, R., Polat, A., Wyman, D., et al., 1999.Trace Element Systematics of Mg-, to Fe-Tholeiitic Basalt Suites of the Superior Province:Implications for Archean Mantle Reservoirs and Greenstone Belt Genesis.Lithos, 46(1):163-187. https://doi.org/10.1016/s0024-4937(98)00059-0 [31] Kersting, A.B., Arculus, R.J., 1994.Klyuchevskoy Volcano, Kamchatka, Russia:The Role of High-Flux Recharged, Tapped, and Fractionated Magma Chamber (S) in the Genesis of High-Al2O3 from High-MgO Basalt.Journal of Petrology, 35(1):1-41. https://doi.org/10.1093/petrology/35.1.1 [32] Kogiso, T., Tatsumi, Y., Nakano, S., 1997.Trace Element Transport during Dehydration Processes in the Subducted Oceanic Crust:1.Experiments and Implications for the Origin of Ocean Island Basalts.Earth and Planetary Science Letters, 148(1-2):193-205. https://doi.org/10.1016/s0012-821x(97)00018-6 [33] Kong, H.L., Dong, G.C., Mo, X.X., et al., 2012.Petrogenesis of Lincang Granites in Sanjiang Area of Western Yunnan Province:Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotope.Acta Petrologica Sinica, 28(5):1438-1452(in Chinese with English abstract). http://www.oalib.com/paper/1475010 [34] La Flèche, M.R., Camiré, G., Jenner, G.A., 1998.Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada.Chemical Geology, 148(3-4):115-136. https://doi.org/10.1016/s0009-2541(98)00002-3 [35] Li, C.M., 2009.A Review on the Minerageny and Situ Microanalytical Dating Techniques of Zircons.Geological Survey and Research, 32(3):161-174(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1672-4135.2009.03.001 [36] Li, D. Z., Zhang, Q., Zhang, K. W., 1986. The Characteristics of Petrochemistry and Geochemistry and Geological Significance of the Volcanic Rocks in Menglian Area, Yunnan Province. In: Team of Comprehensive Scientific Expedition to the Qinghai-Tibet Plateau, CAS, eds., Research on Tibetan Plateau, Hengduan Mountains Investigation Album(2). Beijing Science and Technology Press, Beijing, 137-145(in Chinese). [37] Li, W.C., Pan, G.T., Hou, Z.Q., et al., 2010.The Archipelagic Arc Basin-Collision Orogeny Metallogenic Theory and Exploration Technology in Sanjiang Area of Southwestern China.Geological Publishing House, Beijing (in Chinese). [38] Li, X.Z., Liu, W.J., Wang, Y.Z., et al., 1999.Tethys Tectonic Evolution and Metallogenesis in the Sanjiang Area, Southwestern China.Geological Publishing House, Beijing, 1-276(in Chinese). [39] Lin, B., Wang, L.Q., Tang, J.X., et al., 2017.Zircon U-Pb Geochronology of Ore-Bearing Porphyries in Baomai Deposit, Yulong Copper Belt, Tibet.Earth Science, 42(9):1454-1471 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201709002.htm [40] Liu, B.P., Feng, Q.L., Fang, N.Q., et al., 1993.Tectonic Evolution of Palaeo-Tethys Poly-Island-Ocean in Changning-Menglian and Lancangjiang Belts, Southwestern Yunnan, China.Earth Science, 18(5):529-539 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199305000.htm [41] Liu, C.S., 1990.The Hercynian-Indosinian Collision Type Granites of West Yunnan and their Petrogenetic Modeling.Journal of Guilin College of Geology, (1):35-44(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GLGX199001003.htm [42] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [43] Lytwyn, J., Rutherford, E., Burke, K., et al., 2001.The Geochemistry of Volcanic, Plutonic and Turbiditic Rocks from Sumba, Indonesia.Journal of Asian Earth Sciences, 19(4):481-500. https://doi.org/10.1016/s1367-9120(00)00031-6 [44] Mo, X.X., Lu, F.X., Shen, S.Y., et al., 1993.Volcanism and Metallogenesis in Sanjiang Tethys.Geological Publishing House, Beijing, 1-267(in Chinese). [45] Mo, X.X., Shen, S.Y., Zhu, Q.W., et al., 1998.Volcanics Ophiolite and Mineralization of Middle and Southern Part in Sanjiang, Southern China.Geological Publishing House, Beijing(in Chinese). [46] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003.Response of Volcanism to the India-Asia Collision.Earth Science Frontiers, 10(3):135-148(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200303019.htm [47] Morra, V., Secchi, F.A.G., Melluso, L., et al., 1997.High-Mg Subduction-Related Tertiary Basalts in Sardinia, Italy.Lithos, 40(1):69-91. https://doi.org/10.1016/s0024-4937(96)00028-x [48] Pearce, J.A., 1982.Trace Element Characteristics of Lavas from Destructive Plate Boundaries.Andesites, 525-548. http://www.mendeley.com/catalog/trace-element-characteristics-lavas-destructive-plate-boundaries/ [49] Pearce, J.A., Baker, P.E., Harvey, P.K., et al., 1995.Geochemical Evidence for Subduction Fluxes, Mantle Melting and Fractional Crystallization beneath the South Sandwich Island Arc.Journal of Petrology, 36(4):1073-1109. https://doi.org/10.1093/petrology/36.4.1073 [50] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [51] Pearce, T.H., Gorman, B.E., Birkett, T.C., 1977.The Relationship between Major Element Chemistry and Tectonic Environment of Basic and Intermediate Volcanic Rocks.Earth and Planetary Science Letters, 36(1):121-132. https://doi.org/10.1016/0012-821x(77)90193-5 [52] Peng, T.P., Wang, Y.J., Fan, W.M., et al., 2006.SHRIMP Ziron U-Pb Geochronology of Early Mesozoic Felsic Igneous Rocks from the Southern Lancangjiang and its Tectonic Implications.Science in China (Series D), 36(2):123-132. https://doi.org/10.1007/s11430-006-1032-y [53] Peng, T.P., Wang, Y.J., Zhao, G.C., et al., 2008.Arc-Like Volcanic Rocks from the Southern Lancangjiang Zone, SW China:Geochronological and Geochemical Constraints on Their Petrogenesis and Tectonic Implications.Lithos, 102(1-2):358-373. https://doi.org/10.1016/j.lithos.2007.08.012 [54] Perfit, M.R., Gust, D.A., Bence, A.E., et al., 1980.Chemical Characteristics of Island-Arc Basalts:Implications for Mantle Sources.Chemical Geology, 30(3):227-256. https://doi.org/10.1016/0009-2541(80)90107-2 [55] Pin, C., Paquette, J.L., 1997.A Mantle-Derived Bimodal Suite in the Hercynian Belt:Nd Isotope and Trace Element Evidence for a Subduction-Related Rift Origin of the Late Devonian Brvenne Metavolcanics, Massif Central (France).Contributions to Mineralogy and Petrology, 129(2-3):222-238. https://doi.org/10.1007/s004100050334 [56] Schiano, P., Clocchiatti, R., Boivin, P., et al., 2004.The Nature of Melt Inclusions Inside Minerals in an Ultramafic Cumulate from Adak Volcanic Center, Aleutian Arc:Implications for the Origin of High-Al Basalts.Chemical Geology, 203(1-2):169-179. https://doi.org/10.1016/j.chemgeo.2003.10.001 [57] Seghedi, I., Downes, H., Vaselli, O., et al., 2004.Post-Collisional Tertiary-Quaternary Mafic Alkalic Magmatism in the Carpathian-Pannonian Region:A Review.Tectonophysics, 393(1-4):43-62. https://doi.org/10.1016/j.tecto.2004.07.051 [58] Shen, S.Y., Feng, Q.L., Liu, B.P., et al., 2002.Tectonomagmatic Types of Volcanic Rocks in South Lancang River Belt, Jinshajiang River-Lancangjiang River-Nujiang River Area in China.Journal of Mineralogy and Petrology, 22(3):66-71(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1001-6872.2002.03.015 [59] Shen, S.Y., Feng, Q.L., Wei, Q.R., et al., 2006.Determination of Epicontinental Arc Volcanic Rock of Late Permian in North Part of South Lancangjiang Belt, Southwestern China.Journal of Mineralogy and Petrology, 26(2):35-39 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/0743954794900485 [60] Shinjo, R., Chung, S.L., Kato, Y., et al., 1999.Geochemical and Sr-Nd Isotopic Characteristics of Volcanic Rocks from the Okinawa Trough and Ryukyu Arc:Implications for the Evolution of a Young, Intracontinental Back Arc Basin.Journal of Geophysical Research:Solid Earth, 104(B5):10591-10608. https://doi.org/10.1029/1999jb900040 [61] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm [62] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [63] Sun, W.D., Bennett, V.C., Kamenetsky, V.S., 2004.The Mechanism of Re Enrichment in Arc Magmas:Evidence from Lau Basin Basaltic Glasses and Primitive Melt Inclusions.Earth and Planetary Science Letters, 222(1):101-114. https://doi.org/10.1016/j.epsl.2004.02.011 [64] Tatsumi, Y., Maruyama, S., 1989. Boninites and High-Mg Andesites: Tectonics and Petrogenesis. In: Crawford, A. J., ed., Boninites and Related Rocks. Unwin Hyman, London, 50-71. [65] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publication, NewYork. [66] Tepper, J.H., Nelson, B.K., Bergantz, G.W., et al., 1993.Petrology of the Chilliwack Batholith, North Cascades, Washington:Generation of Calc-Alkaline Granitoids by Melting of Mafic Lower Crust with Variable Water Fugacity.Contributions to Mineralogy and Petrology, 113(3):333-351. https://doi.org/10.1007/bf00286926 [67] Turner, S., Arnaud, N., Liu, J., et al., 1996.Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau:Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts.Journal of Petrology, 37(1):45-71. https://doi.org/10.1093/petrology/37.1.45 [68] Turner, S., Sandiford, M., Foden, J., 1992.Some Geodynamic and Compositional Constraints on "Postorogenic" Magmatism.Geology, 20(10):931.https://doi.org/10.1130/0091-7613(1992)020<0931:sgacco>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0931:sgacco>2.3.co;2 [69] Wang, B.D., Wang, L.Q., Chen, J.L., et al., 2014.Triassic Three-Stage Collision in the Paleo-Tethys:Constraints from Magmatism in the Jiangda-Deqen-Weixi Continental Margin Arc, SW China.Gondwana Research, 26(2):475-491. https://doi.org/10.1016/j.gr.2013.07.023 [70] Wang, F., Liu, F.L., Liu, P.H., et al., 2014.Petrogenesis of Lincang Granites in the South of Lancangjiang Area:Constrain from Geochemistry and Zircon U-Pb Geochronology.Acta Petrologica Sinica, 30(10):3034-3050 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB201410018.htm [71] Wang, S., Dong, G.C., Mo, X.X., et al., 2012.Petrological and Geochemical Characteristics, Ar-Ar Geochronology Study and Their Tectonic Significance of Triassic Volcanic Rocks in Southern Lancangjiang Zone.Acta Petrologica Sinica, 28(4):1148-1162(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201204013.htm [72] Wang, Y.B., Yang, Z.D., Li, Y.L., 2009.The Wenyu Volcanic Hydrothermal Cu Deposit in Jingdong, Yunnan.Yunnan Geology, 28(1):56-59(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1004-1885.2009.01.010 [73] Wang, Y.J., Zhang, A.M., Fan, W.M., et al., 2010.Petrogenesis of Late Triassic Post-Collisional Basaltic Rocks of the Lancangjiang Tectonic Zone, Southwest China, and Tectonic Implications for the Evolution of the Eastern Paleotethys:Geochronological and Geochemical Constraints.Lithos, 120(3/4):529-546. https://doi.org/10.1016/j.lithos.2010.09.012 [74] Wei, C., Qi., X.X., Chang, Y.L., et al., 2016.Identification on Age of Xiaodingxi Formation Volcanic Rocks in Central-Southern Lancangjiang Orogeny and Its Tectonic Implication.Acta Geologica Sinica, 90(11):3192-3214 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201611014.htm [75] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [76] Woodhead, J.D., Hergt, J.M., Davidson, J.P., et al., 2001.Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes.Earth and Planetary Science Letters, 192(3):331-346. https://doi.org/10.1016/s0012-821x(01)00453-8 [77] Wu, Y.B., Zheng, Y.F., 2004.Minerageny of Zircon and Its Restrict on the Explanation for U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). [78] Xu, X.C., Huang, Z., Xie, Q.Q., et al., 2004.The Sm-Nd and 40Ar-39Ar Isotopic Ages of Lithogenesis and Metallogenesis of the Songjiapo Copper Deposit in Jinggu, Yunnan Province.Geological Review, 50(1):99-105 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200401014.htm [79] Yang, X.M., Yang, X.Y., Chen, S.X., 2000.Petrology Geochemistry.University of Science and Technology of China Press, Hefei, 106-119 (in Chinese). [80] Yang, Y.Q., Yang, J.M., Xu, D.C., et al., 2006.Volcanic Rock Evolution and Metallogenic Features of Copper-Polymetallic Deposits in Southern Lancang River Valley, Yunnan Province.Mineral Deposits, 25(4):447-462(in Chinese with English abstract). https://doi.org/10.3969/j.issn.0258-7106.2006.04.009 [81] Zhang, C.H., Liu, J.S., Liu, D.L., 2006.Geological and Geochemical Characteristics and Tectonic Setting of Triassic Volcanic Suite in Guanfang Area along South Lancangjiang Belt.Acta Petrologica et Mineralogica, 25(5):377-386(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-6524.2006.05.002 [82] Zhang, Z., Song, J.L., Tang, J.X., et al., 2017.Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet:Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science, 42(6):862-880 (in Chinese with English abstract). [83] Zhao, D.S., Liu, X.P., 1994.Geochemical Characteristics of Collision Type Volcanic Rocks from Northwestern Yunnan.Geochimica, 23(3):235-244 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX403.002.htm [84] Zhong, D.L., 1998.The Paleotethys Orogenic Belt in the West of Sichuan and Yunnan.Science Press, Beijing, 1-231(in Chinese). [85] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006.Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks.Acta Petrologica Sinica, 22(3):534-546(in Chinese with English abstract). http://www.oalib.com/paper/1472180 [86] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012.Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet:Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin.Chemical Geology, 328:290-308. https://doi.org/10.1016/j.chemgeo.2011.12.024 [87] Zhu, Q.W., Mo, X.X., Zhang, S.Q., 1999.The Evolution of the Palaeo-Tethys in the South Lancangjiang Zone, Western Yunnan:Evidences from Magmatic Rocks.Tethyan Geology, (23):16-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TTSD199900001.htm [88] Zhu, Q.W., Zhang, S.Q., Tan, J., 1998.Geochemical Evidence of Volcanic Rocks for Determining the South Lancangjiang Suture Zone.Acta Petrologica et Mineralogica, 17(4):298-307(in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-6524.1998.04.002 [89] Zhu, W.G., Zhong, H., Wang, L.Q., et al., 2011.Petrogenesis of the Basalts and Rhyolite Porphyries of the Minle Copper Deposit, Yunnan:Geochronological and Geochemical Constraints.Acta Petrologica Sinica, 27(9):2694-2708(in Chinese with English abstract). http://www.oalib.com/paper/1474890 [90] 陈莉, 王立全, 王保弟, 等, 2013.滇西云县-景谷火山弧带官房铜矿床成因:流体包裹体及年代学证据.岩石学报, 29(4):1279-1289. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20130414&journal_id=ysxb&year_id=2013 [91] 从柏林, 吴根耀, 张旗, 等, 1993.中国滇西古特提斯构造带岩石大地构造演化.中国科学(B辑), 23(11):1201-1207. http://www.cqvip.com/QK/88064X/199311/1285352.html [92] 邓晋福, 赵海玲, 莫宣学, 等, 1996.中国大陆根柱构造-大陆动力学的钥匙.北京:地质出版社, 1-110. [93] 邓军, 李文昌, 莫宣学, 等, 2016.三江特提斯复合造山与成矿作用.北京:科学出版社, 1-217. [94] 范蔚茗, 彭头平, 王岳军, 2009.滇西古特提斯俯冲-碰撞过程的岩浆作用记录.地学前缘, 16(6):291-302. http://or.nsfc.gov.cn/bitstream/00001903-5/49932/1/1000001773229.pdf [95] 方宗杰, 周志澄, 林敏基, 1990.关于滇西地质的若干新认识.科学通报, 35(5):363-365. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb199005013&dbname=CJFD&dbcode=CJFQ [96] 方宗杰, 周志澄, 林敏基, 1992.从地层学的角度探讨昌宁-孟连缝合带的若干问题.地层学杂志, 16(4):292-303. https://www.wenkuxiazai.com/doc/163f52c589eb172ded63b71d.html [97] 国坤, 翟世奎, 于增慧, 等, 2016.冲绳海槽火山岩岩石系列的厘定及构造环境意义.地球科学, 41(10):1655-1664. http://www.earth-science.net/WebPage/Article.aspx?id=3369 [98] 侯可军, 李延河, 田有荣, 2009.LA-MC-ICP-MS锆石微区原位U-Pb定年技术.矿床地质, 28(4):481-492. http://www.doc88.com/p-2816746530546.html [99] 孔会磊, 董国臣, 莫宣学, 等, 2012.滇西三江地区临沧花岗岩的岩石成因:地球化学、锆石U-Pb年代学及Hf同位素约束.岩石学报, 28(5):1438-1452. http://mall.cnki.net/magazine/Article/YSXB201205010.htm [100] 李长民, 2009.锆石成因矿物学与锆石微区定年综述.地质调查与研究, 32(3):161-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz200903001 [101] 李达周, 张旗, 张魁武, 1986. 云南孟连地区火山岩的岩石化学和地球化学特征及其地质意义. 见: 中国科学院青藏高原综合科学考察队编. 青藏高原研究-横断山考察专集(二). 北京: 北京科学技术出版社, 137-145. [102] 李文昌, 潘桂棠, 侯增谦, 等, 2010.西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术.北京:地质出版社. [103] 李兴振, 刘文均, 王义昭, 等, 1999.西南三江地区特提斯构造演化与成矿(总论).北京:地质出版社, 1-276. [104] 林彬, 王立强, 唐菊兴, 等, 2017.西藏玉龙铜矿带包买矿床含矿斑岩锆石U-Pb年代学.地球科学, 42(9):1454-1471. http://www.earth-science.net/WebPage/Article.aspx?id=3651 [105] 刘本培, 冯庆来, 方念乔, 等, 1993.滇西南昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化.地球科学, 18(5):529-539. http://www.earth-science.net/WebPage/Article.aspx?id=68 [106] 刘昌实, 1990.滇西海西-印支期碰撞型花岗岩的成岩定量模拟.桂林冶金地质学院学报, 10(1):35-44. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=glgx199001003&dbname=CJFD&dbcode=CJFQ [107] 莫宣学, 路凤香, 沈上越, 等, 1993.三江特提斯火山作用与成矿.北京:地质出版社, 1-267. [108] 莫宣学, 沈上越, 朱勤文, 等, 1998.三江中南段火山岩蛇绿岩与成矿.北京:地质出版社. [109] 莫宣学, 赵志丹, 邓晋福, 等, 2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘, 10(3):135-148. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303019.htm [110] 彭头平, 王岳军, 范蔚茗, 等, 2006.澜沧江南段早中生代酸性火成岩SHRIMP锆石U-Pb定年及构造意义.中国科学(D辑), 36(2):123-132. http://d.wanfangdata.com.cn/Periodical_zgkx-cd200602002.aspx [111] 沈上越, 冯庆来, 刘本培, 等, 2002.三江地区南澜沧江带火山岩构造岩浆类型.矿物岩石, 22(3):66-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwys200203015 [112] 沈上越, 冯庆来, 魏启荣, 等.2006.南澜沧江带北段上二叠统陆缘弧火山岩的厘定.矿物岩石, 26(2):35-39. http://industry.wanfangdata.com.cn/jt/Magazine?magazineId=kwys&yearIssue=2006_2 [113] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评, 48(S1):26-30. http://www.cqvip.com/QK/91067X/2002S1/1004250435.html [114] 王舫, 刘福来, 刘平华, 等, 2014.澜沧江南段临沧花岗岩的锆石U-Pb年龄及构造意义.岩石学报, 30(10):3034-3050. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20141018&journal_id=ysxb&year_id=2014 [115] 王硕, 董国臣, 莫宣学, 等, 2012.澜沧江南带三叠纪火山岩岩石学、地球化学特征、Ar-Ar年代学研究及其构造意义.岩石学报, 28(4):1148-1162. http://mall.cnki.net/magazine/Article/YSXB201204013.htm [116] 王应宝, 杨志东, 李云留, 2009.云南景东文玉火山热液型铜矿.云南地质, 28(1):56-59. http://d.wanfangdata.com.cn/periodical_yndz200901010.aspx [117] 韦诚, 戚学祥, 常裕林, 等, 2016.澜沧江构造带中南段小定西组火山岩形成时代的厘定及其构造意义.地质学报, 90(11):3192-3214. doi: 10.3969/j.issn.0001-5717.2016.11.014 [118] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [119] 徐晓春, 黄震, 谢巧勤, 等, 2004.云南景谷宋家坡铜矿床成岩成矿的Sm-Nd和40Ar-39Ar同位素年龄.地质论评, 50(1):99-105. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp200401014&dbname=CJFD&dbcode=CJFQ [120] 杨学明, 杨晓勇, 陈双喜, 2000.岩石地球化学.合肥:中国科学技术大学出版社, 106-119. [121] 杨岳清, 杨建民, 徐德才, 等, 2006.云南澜沧江南段火山岩演化及其铜多金属矿床的成矿特点.矿床地质, 25(4):447-462. http://www.oalib.com/paper/4574106 [122] 张彩华, 刘继顺, 刘德利, 2006.滇西南澜沧江带官房地区三叠纪火山岩地质地球化学特征及其构造环境.岩石矿物学杂志, 25(5):377-386. https://www.wenkuxiazai.com/doc/c617b321e009581b6ad9eb19.html [123] 张志, 宋俊龙, 唐菊兴, 等, 2017.西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球科学, 42(6):862-880. http://www.earth-science.net/WebPage/Article.aspx?id=3584 [124] 赵大升, 刘祥品.1994.滇西北碰撞型火山岩的地球化学特征.地球化学, 23(3):235-244. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx403.002&dbname=CJFD&dbcode=CJFQ [125] 钟大赉, 1998.滇川西部古特提斯造山带.北京:科学出版社, 1-231. [126] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20060358 [127] 朱勤文, 莫宣学, 张双全, 1999.南澜沧江古特提斯演化的岩浆岩证据.特提斯地质, (23):16-30. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ttsd199900001&dbname=CJFD&dbcode=CJFQ [128] 朱勤文, 张双全, 谭劲, 1998.确定南澜沧江缝合带的火山岩地球化学证据.岩石矿物学杂志, 17(4):298-307. doi: 10.3969/j.issn.1000-6524.1998.04.002 [129] 朱维光, 钟宏, 王立全, 等, 2011.云南民乐铜矿床中玄武岩和流纹斑岩的成因:年代学和地球化学制约.岩石学报, 27(9):2694-2708. http://www.oalib.com/paper/1474890