Characteristics of Lipid Biomakers and Their Response to Climate Change in Column Sediments from Bering Sea Shelf
-
摘要: 为探究全球变暖对于高纬度海洋生态环境的影响,对中国第5次北极科学考察在白令海陆架区采集的BL16柱样沉积物中的脂类进行了研究.沉积物中检测到丰富的饱和烃和脂肪酸等化合物,其组成和分布显示,该沉积柱中有机质为陆源和海源混合输入.其中长链正构烷烃和长链饱和正构脂肪酸主要来源于陆源高等植物,饱和异构和反异构脂肪酸主要来源于海洋自生细菌,短碳链正构烷烃、反异构烷烃和烷基环戊烷烃的浓度相互间有较好的相关性,表明其来源较为一致,主要来源于海洋浮游藻类和细菌.海源短链正构烷烃与陆源长链正构烷烃的比值∑C15-21/∑C23-33在0.14~0.90之间,表明该沉积柱中正构烷烃主要以陆源输入为主.沉积柱中短链正构烷烃、反异构烷烃和烷基环戊烷浓度,以及脂肪酸中异构、反异构脂肪酸组分与长链饱和正构脂肪酸组分的相对变化与总有机碳含量(TOC)、总氮含量(TN)变化一致,尤其在20世纪70年代以来明显升高,可能反映了海洋初级生产力持续增加的趋势,并且对全球变暖做出了灵敏的响应.Abstract: In order to study the impact of global warming on the ecological environments of high latitude ocean, the lipid biomarkers of a sediment core called BL16 were studied, which was collected during the Fifth Chinese National Arctic Expedition Cruise at the Bering Sea shelf. These compounds, including saturated hydrocarbons and fatty acids; show that the organic matter in the sediments is the mixed input of terrigenous and marine sources. The long chain n-alkanes and long chain saturated fatty acids are mainly derived from terrestrial higher plants, while saturated iso- and anteiso-fatty acids mainly originate from marine autotrophic bacteria. Two of the concentrations of short chain n-alkanes, anteiso-alkanes and alkylcyclopentanes are well interrelated, suggesting that these compounds share the same source and are mainly from phytoplankton and microbes. The relative ratios of the short to long chain n-alkanes (∑C15-21/∑C23-33) vary from 0.14 to 0.90 in sediments, indicating that the n-alkanes are primarily derived from terrestrial sources. The concentrations of short chain n-alkanes, anteiso-alkanes and alkylcyclopentanes, and the relative abundances of saturated iso-, anteiso-fatty acids to saturated long chain fatty acids are consistent with total organic carbon (TOC) and total nitrogen (TN) in the sediment core and show an apparent increase since the 1970s, which may reflect the continuously increasing trend of marine primary productivity and a sensitive response to global warming.
-
Key words:
- Bering Sea /
- saturated hydrocarbon /
- fatty acid /
- organic matter source /
- global warming /
- climate change
-
图 1 白令海水深、环流和采样站位
Fig. 1. Water depths, circulations and sampling station in the Bering Sea
图 4 沉积柱样中粒度与长链正构烷烃∑C23-33(a)、反异构烷烃(b)、短链正构烷烃∑C15-21(c)以及烷基环戊烷浓度的相关性(d)
图a粒度数据来自胡利民等(2015)
Fig. 4. The correlations between sediment grain size and concentrations of long chain n-alkanes ∑C23-33 (a), anteiso-alkanes (b), short chain n-alkanes ∑C15-21 (c), and alkylcyclopentanes in sediment core (d)
图 5 沉积样柱中TOC、TN、脂肪酸指标和各组分饱和烃浓度的垂向分布
a.TOC、TN、年代数据胡利民等(2015);b.C15:0、C17:0异构/反异构脂肪酸之和比C24-28饱和正构脂肪酸之和
Fig. 5. Vertical distributions of TOC, TN, proxy of fatty acids and saturated hydrocarbon concentrations of each component in sediment core
-
[1] Blumer, M., Guillard, R.R.L., Chase, T., 1971.Hydrocarbons of Marine Phytoplankton.Marine Biology, 8(3):183-189.https://doi.org/10.1007/bf00355214 doi: 10.1007/BF00355214 [2] Colombo, J.C., Silverberg, N., Gearing, J.N., 1996.Lipid Biogeochemistry in the Laurentian Trough:Ⅰ-Fatty Acids, Sterols and Aliphatic Hydrocarbons in Rapidly Settling Particles.Organic Geochemistry, 25(3-4):211-225.https://doi.org/10.1016/s0146-6380(96)00115-5 doi: 10.1016/S0146-6380(96)00115-5 [3] Eglinton, G., Hamilton, R.J., 1967.Leaf Epicuticular Waxes.Science, 156(3780):1322-1335. https://doi.org/10.1126/science.156.3780.1322 [4] Goñi, M.A., O'Connor, A.E., Kuzyk, Z.Z., et al., 2013.Distribution and Sources of Organic Matter in Surface Marine Sediments across the North American Arctic Margin.Journal of Geophysical Research(Oceans), 118(9):4017-4035. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8acabfaf230846adc7205338955b2213 [5] Grebmeier, J.M., Cooper, L.W., Feder, H.M., et al., 2006a.Ecosystem Dynamics of the Pacific-Influenced Northern Bering and Chukchi Seas in the Amerasian Arctic.Progress in Oceanography, 71(2-4):331-361. https://doi.org/10.1016/j.pocean.2006.10.001 [6] Grebmeier, J.M., Overland, J.E., Moore, S.E., et al., 2006b.A Major Ecosystem Shift in the Northern Bering Sea.Science, 311(5766):1461-1464. doi: 10.1126/science.1121365 [7] Guan, H.X., Chen, D.F., Wu, N.Y., 2010.Distribution and Origin of Cycloalkane and Monocyclicaromatic in Seep-Carbonates from Lower Slopes of Gulf of Mexico.Marine Geology & Quaternary Geology, 30(3):113-118 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001301323 [8] Hu, L.M., Guo, Z.G., Feng, J.L., et al., 2009.Distributions and Sources of Bulk Organic Matter and Aliphatic Hydrocarbons in Surface Sediments of the Bohai Sea, China.Marine Chemistry, 113(3-4):197-211. https://doi.org/10.1016/j.marchem.2009.02.001 [9] Hu, L.M., Shi, X.F., Liu, Y.G., et al., 2015.Geochemical Characteristics and Burial Record of Organic Carbon in the Column Sediments from Western Bering Sea.Marine Geology & Quaternary Geology, 35(3):37-47 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201503007.htm [10] Hunt Jr, G.L., Stabeno, P., Walters, G., et al., 2002.Climate Change and Control of the Southeastern Bering Sea Pelagic Ecosystem.Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 49(26):5821-5853.https://doi.org/10.1016/s0967-0645(02)00321-1 doi: 10.1016/S0967-0645(02)00321-1 [11] Lu, B., Pan, J.M., Wang, Z.P., et al., 2002.The Composition Indexes of n-Alkanes in Sediments and Study on Paleoenvironment in the Arctic.Acta Oceanologica Sinica, 24(6):34-48 (in Chinese with English abstract). [12] Lu, B., Zhou, H.Y., Chen, R.H., et al., 2004.The Composition Characteristic of n-Alkanes in the Modern Sediments of the Arctic and the Comparison with That of Sea Areas of Different Latitudes.Chinese Journal of Polar Research, 16(4):281-294 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JDYZ200404001.htm [13] Lu, Z.H., Gan, H.J., Shi, Y., et al., 2016.Geochemical Characteristics of Crude Oil and Oil-Source Correlation in the Western Fushan Depression.Earth Science, 41(11):1909-1920 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201611007 [14] Lü, X.X., Versteegh, G.J.M., Song, J.M., et al., 2016.Geochemistry of Middle Holocene Sediments from South Yellow Sea:Implications to Provenance and Climate Change.Journal of Earth Science, 27(5):751-762. https://doi.org/10.1007/s12583-015-0577-0 [15] Matsumoto, G.I., Friedmann, E.I., Watanuki, K., et al., 1992.Novel Long-Chain Anteiso-Alkanes and Anteiso-Alkanoic Acids in Antarctic Rocks Colonized by Living and Fossil Cryptoendolithic Microorganisms.Journal of Chromatography, 598(2):267-276.https://doi.org/10.1016/0021-9673(92)85056-y doi: 10.1016/0021-9673(92)85056-Y [16] Méheust, M., Fahl, K., Stein, R., 2013.Variability in Modern Sea Surface Temperature, Sea Ice and Terrigenous Input in the Sub-Polar North Pacific and Bering Sea:Reconstruction from Biomarker Data.Organic Geochemistry, 57:54-64. https://doi.org/10.1016/j.orggeochem.2013.01.008 [17] Méheust, M., Stein, R., Fahl, K., et al., 2015.High-Resolution IP25-Based Reconstruction of Sea-Ice Variability in the Western North Pacific and Bering Sea during the Past 18 000 Years.Geo-Marine Letters, 36(2):101-111. doi: 10.1007/s00367-015-0432-4 [18] Meyer, V.D., Max, L., Hefter, J., et al., 2016.Glacial-to-Holocene Evolution of Sea Surface Temperature and Surface Circulation in the Subarctic Northwest Pacific and the Western Bering Sea.Paleoceanography, 31(7):916-927.https://doi.org/10.1002/2015pa002877 doi: 10.1002/palo.v31.7 [19] Meyers, P.A., Ishiwatari, R., 1993.Lacustrine Organic Geochemistry-An Overview of Indicators of Organic Matter Sources and Diagenesis in Lake Sediments.Organic Geochemistry, 20(7):867-900.https://doi.org/10.1016/0146-6380(93)90100-p doi: 10.1016/0146-6380(93)90100-P [20] Müller, P.J., 1977.Cn Ratios in Pacific Deep-Sea Sediments:Effect of Inorganic Ammonium and Organic Nitrogen Compounds Sorbed by Clays.Geochimica et Cosmochimica Acta, 41(6):765-776. https://doi.org/10.1016/0016-7037(77)90047-3 [21] Nagashima, K., Asahara, Y., Takeuchi, F., et al., 2012.Contribution of Detrital Materials from the Yukon River to the Continental Shelf Sediments of the Bering Sea Based on the Electron Spin Resonance Signal Intensity and Crystallinity of Quartz.Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 61-64:145-154.https://doi.org/10.1016/j.dsr2.2011.12.001 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4eece333b03f987d556735b309d22398 [22] Naidu, A.S., Cooper, L.W., Finney, B.P., et al., 2000.Organic Carbon Isotope Ratios (δ13C) of Arctic Amerasian Continental Shelf Sediments.International Journal of Earth Sciences, 89(3): 522-532.https://doi.org/10.1007/s005310000121 [23] Naidu, A.S., Scalan, R.S., Feder, H.M., et al., 1993.Stable Organic Carbon Isotopes in Sediments of the North Bering-South Chukchi Seas, Alaskan-Soviet Arctic Shelf.Continental Shelf Research, 13(5-6):669-691.https://doi.org/10.1016/0278-4343(93)90099-j doi: 10.1016/0278-4343(93)90099-J [24] Overland, J.E., Roach, A.T., 1987.Northward Flow in the Bering and Chukchi Seas.Journal of Geophysical Research:Oceans, 92(C7):7097-7105.doi: 10.1029/JC092iC07p07097 [25] Pachauri, R.K., Allen, M.R., Barros, V.R., et al., 2014.Climate Change 2014: Synthesis Report.IPCC, Switzerland. [26] Ruan, J.P., Huang, Y.H., Shi, X.F., et al., 2017.Holocene Variability in Sea Surface Temperature and Sea Ice Extent in the Northern Bering Sea:A Multiple Biomarker Study.Organic Geochemistry, 113:1-9. doi: 10.1016/j.orggeochem.2017.08.006 [27] Schubert, C.J., Calvert, S.E., 2001.Nitrogen and Carbon Isotopic Composition of Marine and Terrestrial Organic Matter in Arctic Ocean Sediments:Implications for Nutrient Utilization and Organic Matter Composition.Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 48(3):789-810.https://doi.org/10.1016/s0967-0637(00)00069-8 doi: 10.1016/S0967-0637(00)00069-8 [28] Screen, J.A., Simmonds, I., 2010.The Central Role of Diminishing Sea Ice in Recent Arctic Temperature Amplification.Nature, 464(7293):1334-1337. https://doi.org/10.1038/nature09051 [29] Shaffer, G., Bendtsen, J., 1994.Role of the Bering Strait in Controlling North Atlantic Ocean Circulation and Climate.Nature, 367(6461):354-357. https://doi.org/10.1038/367354a0 [30] Takahashi, K., Fujitani, N., Yanada, M., 2002.Long Term Monitoring of Particle Fluxes in the Bering Sea and the Central Subarctic Pacific Ocean, 1990-2000.Progress in Oceanography, 55(1-2):95-112.https://doi.org/10.1016/s0079-6611(02)00072-1 doi: 10.1016/S0079-6611(02)00072-1 [31] Takahashi, K., 2005.The Bering Sea and Paleoceanography.Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(16-18):2080-2091.doi: 10.1016/j.dsr2.2005.08.003 [32] Tanaka, S., Takahashi, K., 2005.Late Quaternary Paleoceanographic Changes in the Bering Sea and the Western Subarctic Pacific Based on Radiolarian Assemblages.Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 52(16-18):2131-2149. https://doi.org/10.1016/j.dsr2.2005.07.002 [33] Thiel, V., Jenisch, A., Wörheide, G., et al., 1999.Mid-Chain Branched Alkanoic Acids from "Living Fossil" Demosponges:A Link to Ancient Sedimentary Lipids? Organic Geochemistry, 30(1):1-14.https://doi.org/10.1016/s0146-6380(98)00200-9 doi: 10.1016/S0146-6380(98)00200-9 [34] Volkman, J.K., Barrett, S.M., Blackburn, S.I., et al., 1998.Microalgal Biomarkers:A Review of Recent Research Developments.Organic Geochemistry, 29(5-7):1163-1179.https://doi.org/10.1016/s0146-6380(98)00062-x doi: 10.1016/S0146-6380(98)00062-X [35] Volkman, J.K., Johns, R.B., Gillan, F.T., et al., 1980.Microbial Lipids of an Intertidal Sediment-Ⅰ.Fatty Acids and Hydrocarbons.Geochimica et Cosmochimica Acta, 44(8):1133-1143. https://doi.org/10.1016/0016-7037(80)90067-8 [36] Wehner, H., Teschner, M., Bosecker, K., 1986.Chemical Reactions and Stability of Biomarkers and Stable Isotope Ratios during in Vitro Biodegradation of Petroleum.Organic Geochemistry, 10(1-3):463-471.https://doi.org/10.1016/0146-6380(86)90046-x doi: 10.1016/0146-6380(86)90046-X [37] Xie, S.C., Liang, B., Guo, J.Q., et al., 2003.Biomarkers and the Related Global Change.Quaternary Sciences, 23(5):521-528 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_65c5f181bf7e17eda621e9e8b8ede512 [38] Yang, H., Ding, W.H., Xie, S.C., 2014.Distribution of Microbial Fatty Acids and Fatty Alcohols in Soils from an Altitude Transect of Mt.Jianfengling in Hainan, China:Implication for Paleoaltimetry and Paleotemperature Reconstruction.Science China:Earth Sciences, 57(5):999-1012.https://doi.org/10.1007/s11430-013-4729-8. doi: 10.1007/s11430-013-4729-8 [39] Yu, X.G., Bian, Y.P., Ruan, X.Y., et al., 2015.Glycerol Dialkyl Glyceroltetraethers and TEX86 Index in Surface Sediments of the Arctic Ocean and the Bering Sea.Marine Geology & Quaternary Geology, 35(3):11-22 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201503005.htm [40] Zhao, M.X., Zhang, Y.Z., Xing, L., et al., 2011.The Composition and Distribution of n-Alkanes in Surface Sediments from the South Yellow Sea and Their Potential as Organic Matter Source Indicators.Periodical of Ocean University of China, 41(4):90-96 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb201104014 [41] 管红香, 陈多福, 吴能友, 2010.墨西哥湾深水下陆坡区冷泉碳酸盐岩中的环烷烃及单环芳烃的特征与来源.海洋地质与第四纪地质, 30(3):113-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001301323 [42] 胡利民, 石学法, 刘焱光, 等, 2015.白令海西部柱样沉积物中有机碳的地球化学特征与埋藏记录.海洋地质与第四纪地质, 35(3):37-47. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201503007.htm [43] 卢冰, 潘建明, 王自磐, 等, 2002.北极沉积物中正构烷烃的组合特征及古沉积环境的研究.海洋学报, 24(6):34-48. doi: 10.3321/j.issn:0253-4193.2002.06.004 [44] 卢冰, 周怀阳, 陈荣华, 等, 2004.北极现代沉积物中正构烷烃的分子组合特征及其与不同纬度的海域对比.极地研究, 16(4):281-294. http://d.old.wanfangdata.com.cn/Periodical/jdyj200404002 [45] 卢政环, 甘华军, 时阳, 等, 2016.福山凹陷西部地区原油地化特征与油源对比.地球科学, 41(11):1909-1920. http://earth-science.net/WebPage/Article.aspx?id=3389 [46] 谢树成, 梁斌, 郭建秋, 等, 2003.生物标志化合物与相关的全球变化.第四纪研究, 23(5):521-528. doi: 10.3321/j.issn:1001-7410.2003.05.007 [47] 于晓果, 边叶萍, 阮小燕, 等, 2015.北冰洋沉积物中四醚脂类来源与TEX86指数初步研究.海洋地质与第四纪地质, 35(3):11-22. http://www.cqvip.com/QK/96122X/201503/665635198.html [48] 赵美训, 张玉琢, 邢磊, 等, 2011.南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义.中国海洋大学学报(自然科学版), 41(4):90-96. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201104014