Petrogeochemistry, Zircon SHRIMP U-Pb Geochronology of Mafic Dykes in South Guizhou and Their Geological Implications
-
摘要: 基性岩墙,与层状、环状基性杂岩体和高Ti、低Ti玄武岩共同组成了峨眉山大火成岩省岩石组合.为进一步确定大火成岩省及相关生物灭绝事件的时间联系,及更深化研究大火成岩省的成因,对分布于贵州省南部的基性岩墙进行了主、微量元素、Sr-Nd同位素测定和锆石SHRIMP U-Pb年代学研究.黔南基性岩墙∑REE=135.66×10-6~280.59×10-6,LREE/HREE为6.42~7.54,(La/Yb)N为7.94~9.85,轻重稀土分异明显,δEu为1.0~1.3,具有Ba、Sr、K等LILE富集,Nb、Ta、Zr、Hf等HFSE亏损特征,显示与峨眉山高钛玄武岩相似的地球化学特征.Th/Ta(1.80~1.94)、Nb/U(30.8~39.88)、Th/La(0.08~0.10)、Nb/Th(7.89~8.40)比值与原始地幔相似,较低的初始(87Sr/86Sr)i比值(0.705 278~0.706 052)、εNd(t)(-0.5~+1.6)、以及Th/Ta比值(< 2.13)显示岩浆无明显的地壳混染,岩浆可能形成于受地幔柱作用的富集石榴石地幔源区10%~12%的部分熔融.SHRIMP锆石206Pb/238U加权平均年龄为261.2±2.6 Ma,反映峨眉山大火成岩的喷发时间可能集中在260 Ma左右,并可能与瓜德鲁普末期的生物灭绝有关.Abstract: The rocks of Emeishan large igneous province (ELIP) are mainly composed of mafic dykes, layered and ring mafic complex, high Ti and low Ti basalts. The major elements, trace elements, Sr-Nd isotopes and zircon SHRIMP U-Pb ages of mafic dykes from South Guizhou Province were studied in order to further determine the temporal link between ELIP and related mass extinction events and research the genesis of ELIP in this paper. Results show ∑REE=135.66×10-6-280.59×10-6, LREE/HREE=6.42-7.54, (La/Yb)N=7.94-9.85, relatively enriched LREE to HREE, δEu=1.0-1.3, enriched LILE, such as Ba, K, Sr, depleted HFSE, such as Nb, Ta, Zr, Hf, displaying similar geochemical characteristics of Emeishan high Ti basalts. The similar ratios of Th/Ta(1.80-1.94), Nb/U(30.8-39.88), Th/La(0.08-0.10), Nb/Th(7.89-8.40) to primitive mantle, low (87Sr/86Sr)i(0.705 278-0.706 052)), εNd(t)(-0.5~+1.6) and Th/Ta(< 2.13) imply no obvious crustal contamination, and the mafic rocks may have been caused by 10%-12% partial melting of the garnet peridotite in their source region that interacted with the upwelling Emeishan plume at the periphery of the plume. The 261.2±2.6 Ma age of zircon SHRIMP U-Pb may imply that the ELIP formed by a mantle plume at~260 Ma and was one of the likely causes of the end-Guadalupian mass extinction.
-
Key words:
- mafic dyke /
- petrology /
- geochemistry /
- zircon SHRIMP U-Pb age /
- Emeishan large igneous province /
- South Guizhou
-
图 1 黔南基性岩墙地质图
a.研究区大地构造位置图, 据程裕淇(1994);b.黔南基性岩墙地质略图,据1:20万罗甸幅(贵州省地质局108队,1965;1:20万罗甸幅)、乐业幅地质图(广西壮族自治区地质局,1972;1:20万乐业幅地质图)修改.T2b2.中三叠统边阳组中段;T1.下三叠统;P2m.中二叠统茅口组;P2q.中二叠统栖霞组;C2mp.上石炭统马平组;C2hn.上石炭统黄龙组;C1d-b.下石炭统大塘组-摆佐组;D3s-d.上泥盆统响水洞组-代化组;D2h.中泥盆统火烘组;βμ.基性岩墙
Fig. 1. Geological background of the mafic dyke, South Guizhou
图 4 黔南基性岩墙SiO2-K2O+Na2O图解(a)和Nb/Y-Zr/TiO2×0.000 1图解(b)
图a据Bas et al.(1986);图b据Winchester and Floyd(1977)
Fig. 4. SiO2 vs. K2O+Na2O (a), and Nb/Y-Zr/TiO2×0.000 1 (b) for the mafic dyke from South Guizhou
图 6 黔南基性岩墙稀土元素球粒陨石标准化图解(a)和微量元素原始地幔蛛网图(b)
图a据Taylor and McLennan(1985);图b据Sun and McDonough(1989).峨眉山高钛玄武岩数据来自Xu et al.(2001); Xiao et al.(2003); Zhou et al.(2006)
Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) for the mafic dyke from South Guizhou
图 7 黔南基性岩墙Sr-Nd同位素初始比值
峨眉山玄武岩数据来自Xu et al.(2001); Song et al.(2004, 2008); Xiao et al.(2004); Wang et al.(2007); Fan et al.(2008); Qi and Zhou(2008); Shellnutt et al.(2008).DMM, EMI, EMII来自Zindler and Hart(1986); Hart(1988); Weaver(1991)
Fig. 7. Plot of initial εNd(t) vs. (87Sr/86Sr)i for the mafic dyke from South Guizhou
图 9 黔南基性岩墙Nb/Yb-Th/Yb(a)和Nb/Yb-TiO2 /Yb(b)图解
Fig. 9. Nb/Yb vs.Th/Yb (a) and Nb/Yb vs. TiO2/Yb (b) diagrams for the mafic dyke from South Guizhou
图 10 黔南基性岩La/Yb-Sm/Yb图解
底图引自王妍(2011)
Fig. 10. La/Yb vs. Sm/Yb diagram for the mafic dyke from South Guizhou
表 1 黔南基性岩墙岩石主量元素(%)、微量和稀土元素(10-6)化学成分分析结果
Table 1. Major (%) and trace and REE element (10-6) abundances for the mafic dyke from South Guizhou
样号 GG14-1 GG14-2 QJ1-1 ec7 ec8 ec10 BS2 BS5 LM1 LM4 SiO2 47.00 46.20 45.50 45.80 47.50 48.50 46.00 45.50 44.40 46.80 TiO2 3.10 3.28 3.29 2.81 3.65 3.63 2.79 2.83 3.25 3.65 Al2O3 12.90 13.05 14.10 14.15 12.45 12.55 15.70 15.60 13.95 12.05 Fe2O3 15.60 15.50 14.92 14.08 16.36 14.33 13.98 14.72 14.76 16.46 MnO 0.23 0.21 0.22 0.19 0.27 0.19 0.16 0.18 0.20 0.27 MgO 5.52 4.32 6.02 5.24 4.05 5.64 4.48 4.70 5.80 4.90 CaO 7.51 9.22 10.00 9.20 6.76 7.35 7.61 8.22 10.80 8.24 Na2O 4.25 3.98 2.63 3.57 4.08 4.70 3.72 3.68 2.93 3.07 K2O 0.75 1.06 1.18 0.59 1.34 0.45 0.94 0.99 0.64 1.10 P2O5 0.76 0.84 0.71 0.71 1.08 0.93 0.54 0.57 0.73 0.95 LOI 2.42 1.91 1.74 2.88 1.59 1.55 3.42 2.86 2.48 2.00 Total 100.04 99.57 100.31 99.22 99.13 99.82 99.34 99.85 99.94 99.49 Rb 13.40 18.00 21.40 9.70 22.70 8.30 22.90 23.90 7.30 22.50 Sr 454 916 606 602 332 437 596 663 694 708 Ba 340 440 640 270 570 360 490 490 1860 600 Th 2.50 3.20 2.80 2.70 3.90 3.40 1.80 1.90 2.60 3.50 U 0.60 0.70 0.70 0.60 0.80 0.80 0.40 0.50 0.60 0.80 Nb 21.00 25.90 22.10 21.60 31.90 27.20 15.10 15.40 21.70 29.40 Ta 1.36 1.68 1.46 1.44 2.17 1.81 0.97 0.98 1.43 1.89 Pb 2.10 7.10 2.60 1.30 3.00 2.00 2.00 1.90 1.60 4.40 Zr 106.50 129.00 150.00 98.10 130.50 146.50 77.60 83.00 125.00 152.50 Hf 3.20 3.80 3.90 2.90 3.90 4.10 2.30 2.40 3.70 4.20 Ti 18 585 19 664 19 724 16 846 21 882 21 762 16 726 16 966 19 484 21 882 Ni 39.30 25.10 81.60 35.50 7.50 20.80 59.80 66.50 83.90 6.30 V 311 367 345 310 297 343 362 404 344 335 La 30.50 35.50 27.60 30.70 49.70 37.80 22.90 23.10 29.40 43.10 Ce 69.00 80.10 62.70 68.50 110.00 88.40 51.20 52.60 67.00 97.90 Pr 8.80 10.10 8.25 8.88 14.05 11.40 6.66 6.77 8.41 12.30 Nd 37.80 42.80 33.60 36.90 58.00 47.50 27.80 28.70 35.30 51.20 Sm 8.01 8.84 7.08 7.89 11.70 10.30 6.37 6.24 7.54 10.85 Eu 3.11 3.66 3.13 2.93 4.17 3.30 2.45 2.42 3.11 3.92 Gd 7.87 8.72 6.93 7.60 11.45 9.95 6.21 6.06 7.12 10.50 Tb 1.11 1.23 0.89 1.09 1.60 1.34 0.91 0.85 0.93 1.46 Dy 6.12 7.03 5.23 6.12 8.97 7.48 4.87 4.98 5.44 8.42 Ho 1.19 1.34 1.02 1.20 1.69 1.48 0.95 0.98 1.02 1.62 Er 3.32 3.79 2.50 3.32 4.46 4.01 2.56 2.34 2.60 4.23 Tm 0.42 0.45 0.34 0.44 0.61 0.49 0.36 0.33 0.35 0.51 Yb 2.50 3.08 2.15 2.52 3.62 3.24 2.07 1.93 2.20 3.43 Lu 0.40 0.47 0.32 0.40 0.57 0.50 0.35 0.31 0.33 0.49 Y 30.50 35.10 26.70 31.10 42.90 38.70 23.90 23.50 26.60 40.20 δEu 1.20 1.27 1.37 1.16 1.10 1.00 1.19 1.20 1.30 1.12 ∑REE 180.15 207.11 161.74 178.49 280.59 227.19 135.66 137.61 170.75 249.93 LREE/HREE 6.86 6.93 7.35 6.87 7.51 6.97 6.42 6.74 7.54 7.15 (La/Yb)N 8.75 8.27 9.21 8.74 9.85 8.37 7.94 8.59 9.59 9.01 Th/Ta 1.84 1.90 1.92 1.88 1.80 1.88 1.86 1.94 1.82 1.85 Nb/U 35.00 37.00 31.57 36.00 39.88 34.00 37.75 30.80 36.17 36.75 Th/La 0.08 0.09 0.10 0.09 0.08 0.09 0.08 0.08 0.09 0.08 Nb/Th 8.40 8.09 7.89 8.00 8.18 8.00 8.39 8.11 8.35 8.40 La/Nb 1.45 1.37 1.25 1.42 1.56 1.39 1.52 1.50 1.35 1.47 表 2 黔南基性岩墙Sr-Nd同位素数据
Table 2. Sr-Nd isotopic data for the mafic dyke from South Guizhou
样品编号 Rb Sr 87Rb/86Sr 87Sr/86Sr ±2σ (87Sr/86Sr)i Sm Nd 147Sm/144Nd 143Nd/144Nd ±2σ εNd(t) GG13 31.7 490 0.187 0.706 582 12 0.706 052 8.21 37.6 0.132 0 0.512 545 10 0.4 GG14-2 18.0 916 0.057 0.706 264 11 0.705 894 8.84 42.8 0.124 9 0.5125 99 6 1.6 GG14-4 16.1 466 0.100 0.706 267 12 0.705 608 8.45 39.5 0.129 3 0.512 587 13 1.3 QJ1-1 21.4 606 0.102 0.705 988 15 0.705 583 7.08 33.6 0.127 4 0.512 509 13 -0.2 QJ1-2 22.1 559 0.114 0.706 008 13 0.705583 6.84 33.2 0.124 6 0.512 491 12 -0.5 QJ1-3 23.0 536 0.124 0.706 045 11 0.705 881 7.00 33.9 0.124 8 0.512 500 10 -0.3 ec11 20.7 561 0.107 0.706 280 13 0.705 278 9.48 42.8 0.133 9 0.512 602 9 1.4 BS5 23.9 663 0.104 0.705 665 13 0.705 405 6.24 28.7 0.131 4 0.512 559 9 0.6 LM4 22.5 708 0.092 0.705 748 15 0.705 888 10.85 51.2 0.128 1 0.512 546 15 0.5 LMZK2 27.5 620 0.128 0.706 365 14 0.706 052 7.47 34.7 0.130 1 0.512 510 11 -0.3 表 3 黔南基性岩墙SHRIMP锆石U-Pb同位素测定结果
Table 3. SHRIMP U-Pb isotopic compositions of zircons for the mafic dyke from South Guizhou
测点 206Pc
(%)含量及比值 同位素比值 同位素年龄(Ma) U
(10-6)Th
(10-6)206Pb*
(10-6)232Th/
238U207Pb*/
206Pb*测值
(±%)207Pb*/
235U测值
(±%)206Pb*/
238U测值
(±%)误差相关系数 206Pb/
238U测值±1σ207Pb/
206Pb测值±1σ不谐和度
(%)1.1 0.26 624 587 22.1 0.97 0.050 9 2.0 0.289 0 2.20 0.041 2 1.00 0.451 260.1 ±2.6 236 ±46 -10 2.1 0.32 148 1 512 2 52.7 3.57 0.050 7 1.8 0.289 2 2.00 0.041 3 0.93 0.455 261.1 ±2.4 229 ±42 -14 3.1 0.21 203 7 660 2 73.8 3.35 0.051 2 1.3 0.297 3 1.60 0.042 1 0.93 0.579 265.8 ±2.4 251 ±30 -6 4.1 0.19 619 748 22.2 1.25 0.051 3 1.9 0.295 0 2.10 0.041 7 0.99 0.465 263.4 ±2.6 254 ±44 -4 5.1 0.14 215 5 360 0 77.4 1.73 0.051 3 1.6 0.295 3 1.80 0.041 7 0.92 0.506 263.5 ±2.4 256 ±36 -3 6.1 0.08 307 7 328 3 112.0 1.10 0.051 4 0.8 0.299 3 1.20 0.042 2 0.90 0.753 266.7 ±2.4 259 ±18 -3 7.1 0.20 773 168 5 27.3 2.25 0.051 7 1.7 0.292 4 2.00 0.041 1 0.97 0.494 259.4 ±2.5 270 ±39 4 8.1 0.14 497 469 17.5 0.98 0.052 4 2.5 0.295 0 2.70 0.040 9 1.00 0.379 258.2 ±2.6 301 ±57 14 9.1 0.13 118 3 460 3 42.0 4.02 0.051 6 1.4 0.293 5 1.70 0.041 3 0.93 0.553 260.8 ±2.4 266 ±32 2 10.1 0.94 863 195 1 30.7 2.34 0.050 1 3.4 0.284 0 3.50 0.041 1 0.97 0.275 259.4 ±2.5 202 ±79 -29 表 4 与峨眉山大火成岩省有关的年龄统计
Table 4. Summary of reported age data from the ELIP
年龄(Ma) 测年对象 测年方法 采样地点 文献出处 254±5 辉石岩中的金云母 Ar/Ar 云南大理洱海边 Boven et al., 2002 251.2~252.8 玄武岩、粗面岩和正长岩 Ar/Ar 云南和四川 Lo et al., 2002 259±3 辉长岩 SHRIMP 攀西新街侵入岩 Zhou et al., 2002 253.6±0.4 玄武岩 Ar/Ar 广西百色 Fan et al., 2004 255.4±0.4 玄武岩 Ar/Ar 广西田阳 Fan et al., 2004 256.2±0.8 玄武岩 Ar/Ar 广西巴马 Fan et al., 2004 253.7±6.1 玄武岩 SHRIMP 广西百色 Fan et al., 2004 262±3 苏长橄榄辉长岩 SHRIMP 四川盐源 Guo et al., 2004 263±3 淡色辉长岩 SHRIMP 攀枝花侵入岩 Zhou et al., 2005 260±3 辉绿岩 SHRIMP 云南富宁 Zhou et al., 2006 258±3 闪长岩 SHRIMP 云南富宁 Zhou et al., 2006 261.6±4.4 正长岩 SHRIMP 攀西猫猫沟岩体 罗震宇等, 2006 258.9±3.4 玄武岩 Ar/Ar 峨眉山玄武岩省 侯增谦等, 2006 259.3±1.3 矿化辉长岩 TIMS 攀西红格侵入岩 Zhong and Zhu, 2006 260.7±0.8 角闪辉长岩 TIMS 攀西冰谷侵入岩 Zhong and Zhu, 2006 261±4 钠闪石花岗岩 SHRIMP 攀西白马侵入岩附近茨达A型花岗岩 Zhong et al., 2007 251±6 黑云母钾长石花岗岩 SHRIMP 攀西红格侵入岩附近矮郎河I型花岗岩 Zhong et al., 2007 249±32 铜镍硫化物矿石 Re-Os 云南白马寨 Wang et al., 2007 256.85±2.69 辉长岩中黑云母 Ar/Ar 攀枝花岩体 Wang et al., 2007 250.2 ±1.9 苦橄质基性-超基性岩 Ar/Ar 四川丹巴杨柳坪 Wang et al., 2007 257±4 宣威组底部沉积物 SHRIMP 贵州威宁 He et al., 2007 260±5 宣威组底部沉积物 SHRIMP 贵州威宁 He et al., 2007 263±4 玄武岩顶部酸性凝灰岩 SHRIMP 云南洱源 He et al., 2007 260±4 粘土岩 SHRIMP 四川朝天 He et al., 2007 263±3 辉长岩 SHRIMP 攀西力马河侵入岩 Zhou et al., 2008 261±1 闪长岩 SHRIMP 攀西朱布侵入岩 Zhou et al., 2008 262±2 正长岩 SHRIMP 攀西白马侵入岩 Zhou et al., 2008 260.6±3.5 蛇纹石化橄榄岩 SHRIMP 云南金宝山岩体 陶琰等, 2008 260.7±5.6 斜长角闪岩 SHRIMP 云南金宝山岩体 陶琰等, 2008 259.6±5.9 斑状玄武岩 SHRIMP 广西巴马 Fan et al., 2008 259.1±4.0 斑状玄武岩 SHRIMP 广西百色 Fan et al., 2008 261.6±4.4 霞石正长岩 SHRIMP 攀西猫猫沟侵入岩 Xu et al., 2008 259.8±3.5 辉石正长岩 SHRIMP 攀西米易 Xu et al., 2008 260.4±3.6 闪长岩 SHRIMP 攀西米易撒莲镇 Xu et al., 2008 261.4±2.3 A型花岗岩 SHRIMP 攀西太和侵入岩 Xu et al., 2008 266.5±5.1 辉石正长岩 SHRIMP 攀西米易黄草岩体 Xu et al., 2008 255.2±3.6 过铝质花岗岩 SHRIMP 攀西红格侵入岩附近矮郎河 Xu et al., 2008 238.4±3.4 流纹凝灰岩 SHRIMP 云南宾川 Xu et al., 2008 255.0±0.62 辉绿岩 LA-ICP-MS 贵州罗甸 韩伟等, 2009 261±2 辉长岩 SHRIMP 攀西白马侵入岩 Shellnutt et al., 2009 253.1±1.9 正长岩 SHRIMP 攀枝花侵入岩中正长岩侵入体 Zhong et al., 2009 259.69±0.61 辉长苏长岩 LA-ICP-MS 攀西大板山 王萌等, 2011 251.0±1.0 凝灰岩 LA-ICP-MS 贵州盘县 朱江等,2011 260±8 花岗岩 SHRIMP 攀西营盘梁子岩体 Shellnutt et al., 2011 261±5 镁铁质岩墙 SHRIMP 攀枝花市南部 Shellnutt and Jahn, 2011 259.5±2.7 镁铁质包体 LA-ICP-MS 攀西白马侵入岩 Zhong et al., 2011 259.0±3.1 镁铁质包体 LA-ICP-MS 攀西白马侵入岩 Zhong et al., 2011 258.2±2.2 辉长岩 LA-ICP-MS 攀西白马侵入岩 Zhong et al., 2011 258.5±2.3 正长岩 LA-ICP-MS 攀西白马侵入岩 Zhong et al., 2011 257.8±2.6 正长岩 LA-ICP-MS 攀西白马侵入岩 Zhong et al., 2011 256.2±1.5 花岗岩 LA-ICP-MS 攀西白马侵入岩 Zhong et al., 2011 257.9±2.4 辉长岩 LA-ICP-MS 攀枝花侵入岩 Zhong et al., 2011 255.4±3.1 辉长岩 LA-ICP-MS 攀枝花侵入岩 Zhong et al., 2011 259.5±1.1 正长闪长岩 LA-ICP-MS 攀枝花侵入岩 Zhong et al., 2011 259.2±1.3 正长闪长岩 LA-ICP-MS 攀枝花侵入岩 Zhong et al., 2011 257.8±2.3 正长闪长岩 LA-ICP-MS 攀枝花侵入岩 Zhong et al., 2011 259.8±1.6 正长闪长岩 LA-ICP-MS 攀枝花侵入岩 Zhong et al., 2011 255.8±1.8 正长岩 LA-ICP-MS 攀枝花侵入岩 Zhong et al., 2011 258.7±2.0 辉长岩 LA-ICP-MS 攀西红格侵入岩 Zhong et al., 2011 258.9±2.1 辉长岩 LA-ICP-MS 攀西红格侵入岩 Zhong et al., 2011 256.8±2.8 I型花岗岩 LA-ICP-MS 攀西红格侵入岩 Zhong et al., 2011 256.2±3.0 I型花岗岩 LA-ICP-MS 攀西红格侵入岩 Zhong et al., 2011 258.8±2.3 辉长岩 LA-ICP-MS 攀西太和侵入岩 Zhong et al., 2011 257.6±0.5 镁铁质侵入岩 CA-TIMS 侵入攀西沃水过铝质正长岩中 Shellnutt et al., 2012 259.2±0.4 镁铁质岩墙 CA-TIMS 侵入攀西白马侵入岩的过碱性正长岩中 Shellnutt et al., 2012 259.4±0.8 镁铁质岩墙 CA-TIMS 侵入攀西白马侵入岩的过碱性正长岩中 Shellnutt et al., 2012 259.6±0.5 准铝质正长岩 CA-TIMS 攀西沃水岩体 Shellnutt et al., 2012 259.1±0.5 准铝质正长岩 CA-TIMS 攀西大黑山岩体 Shellnutt et al., 2012 258.9±0.7 准铝质正长岩 CA-TIMS 攀西草黄岩体 Shellnutt et al., 2012 258.4±0.6 花岗岩 CA-TIMS 攀西白马侵入岩附近茨达 Shellnutt et al., 2012 257±9 玄武岩 LA-ICP-MS 广西 Lai et al., 2012 256.7±4.3 基性岩墙 LA-ICP-MS 四川冕宁 Li, 2012 257.6±2 基性岩墙 LA-ICP-MS 云南富民 Li, 2012 255.1±3. 6 黑云母二长花岗岩 LA-ICP-MS 侵入攀西红格岩体内部的大老包花岗岩 程黎鹿等, 2013 261.4±4.6 苦橄质岩墙 LA-ICP-MS 攀枝花岩体 Hou et al., 2013 263±10 辉绿岩 LA-ICP-MS 贵州普安 曾广乾等, 2014 259.1±0.5 长英质熔结凝灰岩 CA-TIMS 云南江尾镇宾川剖面 Zhong et al., 2014 259.9±1.1 辉长岩 LA-ICP-MS 攀西大板山 Liu et al., 2015 260.3±1.3 辉长苏长岩 LA-ICP-MS 攀西大板山 Liu et al., 2015 262~249 花岗岩和流纹岩 LA-ICP-MS 越南北部Phan Si Pan-Tu Le地区 Usuki et al., 2015 264±3 基性岩墙(斜锆石) SIMS 云南武定 Fan et al., 2017 256±5 基性岩墙(斜锆石) SIMS 云南武定 Fan et al., 2017 -
[1] Ali, J.R., Lo, C.H., Thompson, G.M., et al., 2004.Emeishan Basalt Ar-Ar Overprint Ages Define Several Tectonic Events That Affected the Western Yangtze Platform in the Mesozoic and Cenozoic.Journal of Asian Earth Sciences, 23(2):163-178. https://doi.org/10.1016/s1367-9120(03)00072-5 [2] Ali, J.R., Thompson, G.M., Song, X., et al., 2002.Emeishan Basalts (SW China) and the 'End-Guadalupian' Crisis:Magnetobiostratigraphic Constraints.Journal of the Geological Society, 159(1):21-29. https://doi.org/10.1144/0016-764901086 [3] Ali, J.R., Thompson, G.M., Zhou, M.F., et al., 2005.Emeishan Large Igneous Province, SW China.Lithos, 79(3-4):475-489. https://doi.org/10.1016/j.lithos.2004.09.013 [4] Bas, M.J.L., Maitre, R.W.L., Streckeisen, A., et al., 1986.A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram.Journal of Petrology, 27(3):745-750. https://doi.org/10.1093/petrology/27.3.745 [5] Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7 [6] Bond, D.P.G., Hilton, J., Wignall, P.B., et al., 2010.The Middle Permian (Capitanian) Mass Extinction on Land and in the Oceans.Earth-Science Reviews, 102(1):100-116. https://doi.org/10.1016/j.earscirev.2010.07.004 [7] Boven, A., Pasteels, P., Punzalan, L.E., et al., 2002.40Ar/39Ar Geochronological Constraints on the Age and Evolution of the Permo-Triassic Emeishan Volcanic Province, Southwest China.Journal of Asian Earth Sciences, 20(2):157-175. https://doi.org/10.1016/s1367-9120(01)00031-1 [8] Campbell, I.H., 2007.Testing the Plume Theory.Chemical Geology, 241(3-4):153-176. https://doi.org/10.1016/j.chemgeo.2007.01.024 [9] Chen, F., Hegner, E., Todt, W., 2000.Zircon Ages and Nd Isotopic and Chemical Compositions of Orthogneisses from the Black Forest, Germany:Evidence for a Cambrian Magmatic Arc.International Journal of Earth Sciences, 88(4):791-802. https://doi.org/10.1007/s005310050306 [10] Chen, F., Siebel, W., Satir, M., et al., 2002.Geochronology of the Karadere Basement (NW Turkey) and Implications for the Geological Evolution of the Istanbul Zone.International Journal of Earth Sciences, 91(3):469-481. https://doi.org/10.1007/s00531-001-0239-6 [11] Chen, W., Wan, Y.S., Li, H.Q., et al., 2011.Isotope Geochronology:Technique and Application.Acta Geologica Sinica, 85(11):1917-1947 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201111010.htm [12] Cheng, L.L., Zeng, L., Zhang, F., et al., 2013.Mantle-Derived Magmas Underplating and Its Effect on the Crust in the Emeishan Large Igneous Province:Evidence from Geochronological Study and Numerical Simulation of Dalaobao Granites.Acta Petrologica Sinica, 29(10):3533-3539 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201310016.htm [13] Cheng, Y.Q., 1994.Introduction to Regional Geology of China.Geological Publishing House, Beijing (in Chinese). [14] Chung, S.L., Jahn, B.M., 1995.Plume-Lithosphere Interaction in Generation of the Emeishan Flood Basalts at the Permian-Triassic Boundary.Geology, 23(10):889-892.https://doi.org/10.1130/0091-7613(1995)023<0889:pliigo>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0889:pliigo>2.3.co;2 [15] Erwin, D.H., 1994.The Permo-Triassic Extinction.Nature, 367(6460):231-236. https://doi.org/10.1038/367231a0 [16] Fan, H.P., Zhu, W.G., Bai, Z.J., et al., 2017.Geochronologic and Geochemical Constraints of the Petrogenesis of Permian Mafic Dykes in the Wuding Area, SW China:Implications for Fe-Ti Enrichment in Mafic Rocks in the ELIP.Journal of Volcanology and Geothermal Research, 331:64-78. https://doi.org/10.1016/j.jvolgeores.2016.12.005 [17] Fan, W.M., Wang, Y.J., Peng, T., et.al., 2004.Ar-Ar and U-Pb Geochronology of Late Paleozoic Basalts in Western Guangxi and Its Constraints on the Eruption Age of Emeishan Basalt Magmatism.Chinese Science Bulletin, 49(21):2318-2327. https://doi.org/10.1360/04wd0201 [18] Fan, W.M., Zhang, C.H., Wang, Y.J., et al., 2008.Geochronology and Geochemistry of Permian Basalts in Western Guangxi Province, Southwest China:Evidence for Plume-Lithosphere Interaction.Lithos, 102(1/2):218-236. https://doi.org/10.1016/j.lithos.2007.09.019 [19] Guo, F., Fan, W.M., Wang, Y.J., et al., 2004.When did the Emeishan Mantle Plume Activity Start?Geochronological and Geochemical Evidence from Ultramafic-Mafic Dikes in Southwestern China.International Geology Review, 46(3):226-234. https://doi.org/10.2747/0020-6814.46.3.226 [20] Han, W., Luo, J.H., Fan, J.L., et al., 2009.Late Permian Diabase in Luodian, Southeastern Guizhou, and Its Tectonic Significances.Geological Review, 55(6):795-803 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp200906006.htm [21] Hart, S.R., 1988.Heterogeneous Mantle Domains:Signatures, Genesis and Mixing Chronologies.Earth and Planetary Science Letters, 90(3):273-296. https://doi.org/10.1016/0012-821x(88)90131-8 [22] He, B., Xu, Y.G., Chung, S.L., et al., 2003.Sedimentary Evidence for a Rapid, Kilometer-Scale Crustal Doming Prior to the Eruption of the Emeishan Flood Basalts.Earth and Planetary Science Letters, 213(3-4):391-405. https://doi.org/10.1016/s0012-821x(03)00323-6 [23] He, B., Xu, Y.G., Huang, X.L., et al., 2007.Age and Duration of the Emeishan Flood Volcanism, SW China:Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section.Earth and Planetary Science Letters, 255(3-4):306-323. https://doi.org/10.1016/j.epsl.2006.12.021 [24] He, H.L., Li, B., Han, L.R., et al., 2002.Evaluation of Determining 47 Elements in Geological Samples by Pressurized Acid Digestion-ICPMS.Chinese Journal Analysis Laboratory, 21(5):8-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FXSY200205003.htm [25] Hou, T., Zhang, Z.C., Encarnacion, J., et al., 2013.The Role of Recycled Oceanic Crust in Magmatism and Metallogeny:Os-Sr-Nd Isotopes, U-Pb Geochronology and Geochemistry of Picritic Dykes in the Panzhihua Giant Fe-Ti Oxide Deposit, Central Emeishan Large Igneous Province, SW China.Contributions to Mineralogy and Petrology, 165(4):805-822. https://doi.org/10.1007/s00410-012-0836-3 [26] Hou, Z.Q., Chen, W., Lu, J.R., 2006.The 259Ma Continental Flood Basalt Eruption Event:From the Laser 40Ar/39Ar Dating Evidence.Acta Geologica Sinica, 80(8):1130 (in Chinese). [27] Huang, K.N., Opdyke, N.D., 1998.Magnetostratigraphic Investigations on an Emeishan Basalt Section in Western Guizhou Province, China.Earth and Planetary Science Letters, 163(1-4):1-14. https://doi.org/10.1016/s0012-821x(98)00169-1 [28] Jin, Y.G., Zhang, J., Shang, Q.H., 1994.Two Phases of the End-Permian Mass Extinction.Pangea:Global Environments and Resources.Canadian Society of Petroleum Geologists Memoir, 17:813-822. http://ci.nii.ac.jp/naid/10010367167 [29] Lance, P.B., Sandra, L.K., Charlotte, M.A., et al., 2003a.TEMORA 1:A New Zircon Standard for Phanerozoic U-Pb Geochronology.Chemical Geology, 200(1-2):155-170. https://doi.org/10.1016/S0009-2541(03)00165-7 [30] Lance, P, B, ,Sandra, L.K., Ian, S.W., et al., 2003b.The Application of SHRIMP to Phanerozoic Geochronology; a Critical Appraisal of Four Zircon Standards.Chemical Geology, 200(1-2):171-188. https://doi.org/10.1016/S0009-2541(03)00166-9 [31] Lai, S.C., Qin, J.F., Li, Y.F., et al., 2012.Permian High Ti/Y Basalts from the Eastern Part of the Emeishan Large Igneous Province, Southwestern China:Petrogenesis and Tectonic Implications.Journal of Asian Earth Sciences, 47:216-230. https://doi.org/10.1016/j.jseaes.2011.07.010 [32] Li, H. B., 2012. Mantle Plume Geodynamic Significances of the Emeishan Large Igneous Province: Evidence from Mafic Dykes, Geochemistry and Stratigraphic Records (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [33] Li, H.B., Zhang Z.C., Lü, L.S., 2010.Geometry of the Mafic Dyke Swarms in Emeishan Large Igneous Province:Implications for Mantle Plume.Acta Petrologica Sinica, 26(10):3143-3152 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20101025&journal_id=ysxb [34] Li, H.B., Zhang, Z.C., Richard, E., et al., 2015.Giant Radiating Mafic Dyke Swarm of the Emeishan Large Igneous Province:Identifying the Mantle Plume Centre.Terra Nova, 27(4):247-257. https://doi.org/10.1111/ter.12154 [35] Liu, W.H., Zhang, J., Sun, T., et al., 2015.Low-Ti Iron Oxide Deposits in the Emeishan Large Igneous Province Related to Low-Ti Basalts and Gabbroic Intrusions.Ore Geology Reviews, 65:180-197. https://doi.org/10.1016/j.oregeorev.2014.08.015 [36] Lo, C.H., Chung, S.L., Lee, T.Y., et al., 2002.Age of the Emeishan Flood Magmatism and Relations to Permian-Triassic Boundary Events.Earth and Planetary Science Letters, 198(3-4):449-458. https://doi.org/10.1016/S0012-821X(02)00535-6 [37] Ludwig, K. R., 2001. SQUID 1. 02. A User's Manual. Berkeley Geochronology Center Special Publication, Berkeley. [38] Luo, Z.Y., Xu, Y.G., He, B., et al., 2006.Geochronologic and Petrochemical Evidence for the Genetic Link between the Maomaogou Nepheline Syenites and the Emeishan Large Igneous Province.Chinese Science Bulletin, 51(15):1802-1810 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200707012&dbname=CJFD&dbcode=CJFQ [39] Pearce, J.A., 2008.Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust.Lithos, 100(1):14-48.https://doi.org/0.1016/j.lithos.2007.06.016 https://www.sciencedirect.com/science/article/pii/S0024493707001375 [40] Pearce, J.A., Mei, H.J., 1988.Volcanic Rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud.Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594):169-201. https://doi.org/10.1098/rsta.1988.0125 [41] Qi, H., Xiao, L., Balta, B., et al., 2010.Variety and Complexity of the Late-Permian Emeishan Basalts:Reappraisal of Plume-Lithosphere Interaction Processes.Lithos, 119(1):91-107.https://doi.org/0.1016/j.lithos.2010.07.020 http://www.sciencedirect.com/science/article/pii/S0024493710001969 [42] Qi, L., Zhou, M.F., 2008.Platinum-Group Elemental and Sr-Nd-Os Isotopic Geochemistry of Permian Emeishan Flood Basalts in Guizhou Province, SW China.Chemical Geology, 248(1-2), 3-103.https://doi.org/0.1016/j.chemgeo.2007.11.004 http://www.sciencedirect.com/science/article/pii/S000925410700486X [43] Schoene, B., Samperton, K.M., Eddy, M.P., et al., 2015.U-Pb Geochronology of the Deccan Traps and Relation to the End-Cretaceous Mass Extinction.Science, 347(6218):182-184. https://doi.org/10.1126/science.aaa0118 [44] Shellnutt, J.G., Denyszyn, S.W., Mundil, R., 2012.Precise Age Determination of Mafic and Felsic Intrusive Rocks from the Permian Emeishan Large Igneous Province (SW China).Gondwana Research, 22(1):118-126. https://doi.org/10.1016/j.gr.2011.10.009 [45] Shellnutt, J.G., Jahn, B.M., 2011.Origin of Late Permian Emeishan Basaltic Rocks from the Panxi Region (SW China):Implications for the Ti-Classification and Spatial-Compositional Distribution of the Emeishan Flood Basalts.Journal of Volcanology and Geothermal Research, 199(1):85-95. https://doi.org/10.1016/j.jvolgeores.2010.10.009 [46] Shellnutt, J.G., Jahn, B.M., Zhou, M.F., 2011.Crustally-Derived Granites in the Panzhihua Region, SW China:Implications for Felsic Magmatism in the Emeishan Large Igneous Province.Lithos, 123(1):145-157.https://doi.org/0.1016/j.lithos.2010.10.016 http://www.sciencedirect.com/science/article/pii/S0024493710002999 [47] Shellnutt, J.G., Zhou, M.F., Yan, D.P., et al., 2008.Longevity of the Permian Emeishan Mantle Plume (SW China):1Ma, 8Ma or 18Ma?Geological Magazine, 145(3):373-388.doi1017/S016756808004524 http://www.ingentaconnect.com/content/cupr/00167568/2008/00000145/00000003/art00005 [48] Shellnutt, J.G., Wang, C.Y., Zhou, M.F., et al., 2009.Zircon Lu-Hf Isotopic Compositions of Metaluminous and Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province (SW China):Constraints on the Mantle Source.Journal of Asian Earth Sciences, 35(1):45-55. https://doi.org/10.1016/j.jseaes.2008.12.003 [49] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002.Mount Making and Procedure of the SHRIMP Dating.Geological Review, 48(Suppl.):26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm [50] Song, X.Y., Qi, H.W., Robinson, P.T., et al., 2008.Melting of the Subcontinental Lithospheric Mantle by the Emeishan Mantle Plume; Evidence from the Basal Alkaline Basalts in Dongchuan, Yunnan, Southwestern China.Lithos, 100(1):93-111. https://doi.org/10.1016/j.lithos.2007.06.023 [51] Song, X.Y., Zhou, M.F., Cao, Z.M., et al., 2004.Late Permian Rifting of the South China Craton Caused by the Emeishan Mantle Plume?Journal of the Geological Society, 161(5):773-781. https://doi.org/10.1144/0016-764903-135 [52] Song, X.Y., Zhou, M.F., Hou, Z.Q., et al., 2001.Geochemical Constraints on the Mantle Source of the Upper Permian Emeishan Continental Flood Basalts, Southwestern China.International Geology Review, 43(3):213-225. https://doi.org/10.1080/00206810109465009 [53] Stacey, J.S., Kramers, J.D., 1975.Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model.Earth and Planetary Science Letters, 26(2):207-221. https://doi.org/10.1016/0012-821X(75)90088-6 [54] Stothers, R.B., 1993.Flood Basalts and Extinction Events.Geophysical Research Letters, 20(13):1399-1402. https://doi.org/10.1029/93gl01381 [55] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [56] Tao, Y., Ma, Y.S., Miao, L.C., et al., 2008.SHRIMP U-Pb Zircon Age of the Jinbaoshan Ultramafic Intrusion, Yunnan Province, SW China.Chinese Science Bulletin, 53(22):2828-2832 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200901032&dbname=CJFD&dbcode=CJFQ [57] Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Oxford Press Blackwell, 1-312. [58] Usuki, T., Lan, C.Y., Tran, T.H., et al., 2015.Zircon U-Pb Ages and Hf Isotopic Compositions of Alkaline Silicic Magmatic Rocks in the Phan Si Pan-Tu Le Region, Northern Vietnam:Identification of a Displaced Western Extension of the Emeishan Large Igneous Province.Journal of Asian Earth Sciences, 97:102-124. https://doi.org/10.1016/j.jseaes.2014.10.016 [59] Wang, C.Y., Zhou, M.F., Qi, L., 2007.Permian Flood Basalts and Mafic Intrusions in the Jinping (SW China)-Song Da (Northern Vietnam) District:Mantle Sources, Crustal Contamination and Sulfide Segregation.Chemical Geology, 243(3-4):317-343. https://doi.org/10.1016/j.chemgeo.2007.05.017 [60] Wang, D.H., Li, J.K., Liu, F., et al., 2004.Some Problems Related to Mantle Plume and Their Significance in Ore Prospecting.Acta Geoscientica Sinica, 25(5):489-494 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqxb200405000.htm [61] Wang, M., Zhao, Z.C., Hou, T., et al., 2011.Geochronology and Geochemistry of the Dabanshan Intrusion in Panxi District and Its Constraints on the Metallogenesis of Cu-Ni Sulfide Deposits.Acta Petrologica Sinica, 27(9):2665-2678 (in Chinese with English abstract). http://www.oalib.com/paper/1476032 [62] Wang, S.Y., Zhang, H., Peng, C.L., et al., 2005.Strata of Paleozoic-Mesozoic and Evolution of the Chasmic Furrow in Western Guizhou Province.Geological Publishing House, Beijing, 125-129 (in Chinese). [63] Wang. Y., 2011. A Geochemical Study of Cenozoic Continental Basalts from the Subei-Hefei Areas in East-Central China(Dissertation). University of Science and Technology of China, Hefei (in Chinese with English abstract). [64] Weaver, B.L., 1991.The Origin of Ocean Island Basalt End-Member Compositions:Trace Element and Isotopic Constraints.Earth and Planetary Science Letters, 104(2-4):381-397. https://doi.org/10.1016/0012-821X(91)90217-6 [65] Wignall, P.B., 2001.Large Igneous Provinces and Mass Extinctions.Earth-Science Reviews, 53(1-2):1-33. https://doi.org/10.1016/S0012-8252(00)00037-4 [66] Wignall, P.B., 2005.The Link between Large Igneous Province Eruptions and Mass Extinctions.Elements, 1(5):293-297. https://doi.org/10.2113/gselements.1.5.293 [67] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [68] Xiao, L., Xu, Y.G., Chung, S.L., et al., 2003.Chemostratigraphic Correlation of Upper Permian Lavas from Yunnan Province, China:Extent of the Emeishan Large Igneous Province.International Geology Review, 45(8):753-766. https://doi.org/10.2747/0020-6814.45.8.753 [69] Xiao, L., Xu, Y.G., Mei, H.J., et al., 2004.Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China:Implications for Plume-Lithosphere Interaction.Earth and Planetary Science Letters, 228(3-4):525-546. https://doi.org/10.1016/j.epsl.2004.10.002 [70] Xiao, L., Xu, Y.G., Mei, H.J., et al., 2003.Late Permian Flood Basalts at Jinping Area and Its Relation to Emei Mantle Plume:Geochemical Evidences.Acta Petrologica Sinica, 19(1):38-48 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200301004.htm [71] Xu, J.F., Suzuki, K., Xu, Y.G., et al., 2007.Os, Pb, and Nd Isotope Geochemistry of the Permian Emeishan Continental Flood Basalts:Insights into the Source of a Large Igneous Province.Geochimica et Cosmochimica Acta, 71(8):2104-2119. https://doi.org/10.1016/j.gca.2007.01.027 [72] Xu, Y.G., Chung, S.L., Jahn, B.M., et al., 2001.Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China.Lithos, 58(3):145-168. https://doi.org/10.1016/S0024-4937(01)00055-X [73] Xu, Y.G., He, B., Chung, S.L., et al., 2004.Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province.Geology, 32(10):917. https://doi.org/10.1130/G20602.1 [74] Xu, Y.G., Luo, Z.Y., Huang, X.L., et al., 2008.Zircon U-Pb and Hf Isotope Constraints on Crustal Melting Associated with the Emeishan Mantle Plume.Geochimica et Cosmochimica Acta, 72(13):3084-3104. https://doi.org/10.1016/j.gca.2008.04.019 [75] Zeng, G.Q., He, L.L., Yang, K.G., 2014.Geochronology, Geochemistry and Geological Significances of Diabase Dykes in Pu'an, West Guizhou.Journal of Mineralogy and Petrology, 34(4):61-70 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS201404008.htm [76] Zhang, Z., 2006a.Geochemistry of Picritic and Associated Basalt Flows of the Western Emeishan Flood Basalt Province, China.Journal of Petrology, 47(10):1997-2019. https://doi.org/10.1093/petrology/egl034 [77] Zhang, Z., 2006b.Native Gold and Native Copper Grains Enclosed by Olivine Phenocrysts in a Picrite Lava of the Emeishan Large Igneous Province, SW China.American Mineralogist, 91(7):1178-1183. https://doi.org/10.2138/am.2006.1888 [78] Zhang, Z.C., Zhi, X.C., Chen, L., et al., 2008.Re-Os Isotopic Compositions of Picrites from the Emeishan Flood Basalt Province, China.Earth and Planetary Science Letters, 276(1-2):30-39. https://doi.org/10.1016/j.epsl.2008.09.005 [79] Zhong, H., Campbell, I.H., Zhu, W.G., et al., 2011.Timing and Source Constraints on the Relationship between Mafic and Felsic Intrusions in the Emeishan Large Igneous Province.Geochimica et Cosmochimica Acta, 75(5):1374-1395. https://doi.org/org/10.1016/j.gca.2010.12.016 [80] Zhong, H., Zhu, W.G., 2006.Geochronology of Layered Mafic Intrusions from the Pan-Xi Area in the Emeishan Large Igneous Province, SW China.Mineralium Deposita, 41(6):599-606. https://doi.org/10.1007/s00126-006-0081-7 [81] Zhong, H., Zhu, W.G., Chu, Z.Y., et al., 2007.SHRIMP U-Pb Zircon Geochronology, Geochemistry, and Nd-Sr Isotopic Study of Contrasting Granites in the Emeishan Large Igneous Province, SW China.Chemical Geology, 236(1-2):112-133. https://doi.org/10.1016/j.chemgeo.2006.09.004 [82] Zhong, H., Zhu, W.G., Hu, R.Z., et al., 2009.Zircon U-Pb Age and Sr-Nd-Hf Isotope Geochemistry of the Panzhihua A-Type Syenitic Intrusion in the Emeishan Large Igneous Province, Southwest China and Implications for Growth of Juvenile Crust.Lithos, 110(1):109-128. https://doi.org/10.1016/j.lithos.2008.12.006 [83] Zhong, Y.T., He, B., Mundil, R., et al., 2014.CA-TIMS Zircon U-Pb Dating of Felsic Ignimbrite from the Binchuan Section:Implications for the Termination Age of Emeishan Large Igneous Province.Lithos, 204:14-19. https://doi.org/10.1016/j.lithos.2014.03.005 [84] Zhou, M.F., Arndt, N.T., Malpas, J., et al., 2008.Two Magma Series and Associated Ore Deposit Types in the Permian Emeishan Large Igneous Province, SW China.Lithos, 103(3):352-368. https://doi.org/10.1016/j.lithos.2007.10.006 [85] Zhou, M.F., Malpas, J., Song, X.Y., et al., 2002.A Temporal Link between the Emeishan Large Igneous Province (SW China) and the End-Guadalupian Mass Extinction.Earth and Planetary Science Letters, 196(3-4):113-122. https://doi.org/10.1016/S0012-821X(01)00608-2 [86] Zhou, M.F., Robinson, P.T., Lesher, C.M., et al., 2005.Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua Gabbroic Layered Intrusion and Associated Fe-Ti-V Oxide Deposits, Sichuan Province, SW China.Journal of Petrology, 46(11):2253-2280. https://doi.org/10.1093/petrology/egi054 [87] Zhou, M.F., Zhao, J.H., Qi, L., et al., 2006 Zircon U-Pb Geochronology and Elemental and Sr-Nd Isotope Geochemistry of Permian Mafic Rocks in the Funing Area, SW China.Contributions to Mineralogy and Petrology, 151(1):1-19. https://doi.org/10.1007/s00410-005-0030-y [88] Zhu, J., Zhang, Z.C., Hou, T., et al., 2011.LA-ICP-MS Zircon U-Pb Geochronology of the Tuffs on the Uppermost of the Emeishan Basalt Succession in Panxian County, Guizhou Province:Constraints on Genetic Link between Emeishan Large Igneous Province and the Mass Extinction.Acta Petrologica Sinica, 27(9):2743-2751 (in Chinese with English abstract). http://www.oalib.com/paper/1476784 [89] Zindler, A., Hart, S.R., 1986.Chemical Geodynamics.Annual Review of Earth and Planetary Sciences, 14:493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [90] 陈文, 万渝生, 李华芹, 等, 2011.同位素地质年龄测定技术及应用.地质学报, 85(11):1917-1947. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe201111010&dbname=CJFD&dbcode=CJFQ [91] 程黎鹿, 曾铃, 张帆, 等, 2013.峨眉山大火成岩省幔源岩浆底侵作用的地壳响应:来自大老包花岗岩的年代学和热模拟证据.岩石学报, 29(10):3533-3539. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201310016&dbname=CJFD&dbcode=CJFQ [92] 程裕淇, 1994.中国区域地质概论.北京:地质出版社. [93] 韩伟, 罗金海, 樊俊雷, 等, 2009.贵州罗甸晚二叠世辉绿岩及其区域构造意义.地质论评, 55(6):795-803. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp200906006&dbname=CJFD&dbcode=CJFQ [94] 何红蓼, 李冰, 韩丽荣, 等, 2002.封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价.分析试验室, 21(5):8-12. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=fxsy200205003&dbname=CJFD&dbcode=CJFQ [95] 侯增谦, 陈文, 卢记仁, 2006.四川峨眉大火成岩省259Ma大陆溢流玄武岩喷发事件:来自激光40Ar/39Ar测年证据.地质学报, 80(8):1130. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe200608010&dbname=CJFD&dbcode=CJFQ [96] 李宏博, 2012. 峨眉山大火成岩省地幔柱动力学: 基性岩强墙群、地球化学及沉积地层学证据(博士学位论文). 北京: 中国地质大学. [97] 李宏博, 张招崇, 吕林素, 2010.峨眉山大火成岩省基性墙群几何学研究及对地幔柱中心的指示意义.岩石学报, 26(10):3143-3152. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201010025&dbname=CJFD&dbcode=CJFQ [98] 罗震宇, 徐义刚, 何斌, 等, 2006.论攀西猫猫沟霞石正长岩与峨眉山大火成岩省的成因联系:年代学和岩石地球化学证据.科学通报, 51(15):1802-1810. doi: 10.3321/j.issn:0023-074X.2006.15.011 [99] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作, 年龄测定及有关地质现象讨论.地质论评, 48(增刊):26-30. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp2002s1006&dbname=CJFD&dbcode=CJFQ [100] 陶琰, 马言胜, 苗来成, 等, 2008.云南金宝山超镁铁岩体锆石SHRIMP年龄.科学通报, 53(22):2828-2832. doi: 10.3321/j.issn:0023-074X.2008.22.023 [101] 王登红, 李建康, 刘峰, 等, 2004.地幔柱研究中几个问题的探索及其找矿意义.地球学报, 25(5):489-494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200405001 [102] 王萌, 张招崇, 侯通, 等, 2011.攀西地区大板山岩体的年代学、元素地球化学及其对铜镍硫化物矿床成因的约束.岩石学报, 27(9):2665-2678. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201109017&dbname=CJFD&dbcode=CJFQ [103] 王尚彦, 张慧, 彭成龙, 等, 2005.贵州西部古-中生代地层及裂陷槽盆的演化.北京:地质出版社. [104] 王妍, 2011. 中国东部苏北-合肥新生代大陆玄武岩地球化学研究(博士学位论文). 合肥: 中国科学技术大学. [105] 肖龙, 徐义刚, 梅厚钧, 等, 2003.云南金平晚二叠纪玄武岩特征及其与峨眉地幔柱关系——地球化学证据.岩石学报, 19(1):38-48. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200301004&dbname=CJFD&dbcode=CJFQ [106] 曾广乾, 何良伦, 杨坤光, 2014.黔西普安辉绿岩的年代学、地球化学特征及其地质意义.矿物岩石, 34(4):61-70. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kwys201404008&dbname=CJFD&dbcode=CJFQ [107] 朱江, 张招崇, 侯通, 等, 2011.贵州盘县峨眉山玄武岩系顶部凝灰岩LA-ICP-MS锆石U-Pb年龄:对峨眉山大火成岩省与生物大规模灭绝关系的约束.岩石学报, 27(9):2743-2751. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201109023&dbname=CJFD&dbcode=CJFQ