Petrogenesis and Implications for Neoproterozoic Granites in Kekesayi Area, South Altyn Continent
-
摘要: 南阿尔金陆块是阿尔金造山带的重要组成部分.大量新元古代花岗岩出露于南阿尔金亚干布阳-帕夏拉依裆-科克萨依一带.这些花岗岩记录了与Rodinia超大陆汇聚有关的动力学信息,因此对其进行研究有利于对阿尔金造山带演化历史的认识和理解.选取了科克萨依花岗岩岩体进行了岩相学、地球化学、锆石U-Pb年代学和Hf同位素组成的研究.研究结果表明:(1)科克萨依二长花岗岩的主要矿物有:石英、钾长石、斜长石、黑云母和白云母;花岗岩的锆石U-Pb年龄为947~945 Ma.(2)地球化学特征显示,岩石具有高SiO2(71.54%~74.69%)、高Na2O+K2O(6.33%~7.40%),低CaO(1.59%~2.00%),低MgO(0.43%~0.61%)和TiO2(0.25%~0.37%)的特征,相对富钾,K2O/Na2O比值为1.02~1.71,A/CNK在1.10~1.14之间,属高钾钙碱性系列的过铝质花岗岩.富集Rb、Th、K、La等元素,亏损Nb、Ta、P、Ti等元素;轻稀土富集而重稀土亏损,具有明显的负Eu异常.(3)锆石εHf(t)为-4.09~+3.87之间,二阶段模式年龄tDM2为1.6~2.0 Ga.这些特征表明科克萨依二长花岗岩是古老地壳富长石贫黏土的(变)杂砂岩部分熔融形成的S型花岗岩.结合相邻地区新元古代花岗岩类的地球化学、同位素特征及阿尔金区域构造资料,认为科克萨依二长花岗岩形成于新元古代时期,是碰撞造山环境下的产物,是Rodinia超大陆汇聚碰撞过程的响应.Abstract: The South Altyn continental block is an important geological unit of the Altyn Tagh orogenic belt. Numerous Neoproterozoic granites outcrops in the South Altyn continental block, and are mainly located in Paxialayidang-Yaganbuyang-Kekesayi area. These granites provide indispensable dynamics information of the Rodinia supercontinent aggregation in Neoproterozoic. Therefore, the study of granites can help us to understand the formation and evolution history of the Altyn Tagh orogenic belt. In this paper, Kekesayi granitic pluton was studied by means of petrography, geochemistry, zircon U-Pb chronology and Hf isotopic analyses. The results are as follows. (1) Main minerals of Kekesayi monzonitic granite are:quartz+K-feldspar+plagioclase+biotite+muscovite. Zircon U-Pb dating shows that the granite was emplaced in 947-945 Ma. (2) Geochemistry characteristics show high SiO2 (71.54%-74.69%), K2O+Na2O (6.33%-7.40%) contents and low CaO (1.59%-2.00%), MgO (0.43%-0.61%) and TiO2 (0.25%-0.37%) contents, with K2O/Na2O ratios of 1.02-1.71 and A/CNK ratios of 1.10-1.14, showing a typical high-K calc-alkaline series with peraluminous features. Meanwhile, the granite is also enriched in Rb, K, Th and La, and depleted in Nb, Ta, Sr and Ba, with negative Eu anormalies and relative enrichment in LREE. (3) εHf(t) values range from -4.09 to +3.87 while two-stage model ages (tDM2) vary in 1.6-2.0 Ga. It is argued that the Kekesayi monzonitic granites were derived from partial melting of the meta-grey wackes of Late Paleoproterozoic to Early Mesoproterozoic ancient crustal materials. In combination with other Neoproterozoic granite features, the petrogenesis and isotopic geochronology indicate that the Kekesayi monzonitic granite was formed in collisional orogeny setting and may have been triggered by the assemblage of Rodinia supercontinent in Neoproterozoic.
-
Key words:
- granite /
- geochemistry /
- U-Pb chronology /
- Hf isotopic characteristics /
- South Altyn continent
-
图 1 阿尔金造山带地质图及研究区地质简图
图a据Liu et al.(2012);b据吴才来等(2016);c据西安地质矿产研究所(2003)编新疆1:25万苏吾什杰幅区域地质调查报告.TRB.塔里木盆地;QL.祁连山;QDB.柴达木盆地;WKL.西昆仑;EKL.东昆仑;HMLY.喜马拉雅山
Fig. 1. Geological sketch map of Altyn Tagh orogenic belt and geological sketch map of study area
图 3 科克萨依新元古代花岗岩体全岩SiO2-Na2O+K2O (a),SiO2-K2O (b)和A/CNK-A/NK图解(c)
图a据Maniar and Piccoli(1989);图b据Middlemost(1994);图c据Martin et al.(2005)
Fig. 3. Whole-rock SiO2 vs. Na2O+K2O classification diagram (a), SiO2 vs. K2O diagram (b) and A/CNK vs. A/NK diagram (c) of Kekesayi Neoproterozoic granites
图 4 科克萨依花岗岩全岩稀土配分模式(a)和微量元素蛛网图(b)
Fig. 4. Chondrite-normalized REE patterns (a) and primitive mantle-normalized spider diagrams (b) for the granites in Kekesayi area
图 7 科克萨依地区花岗质岩体C/MF-A/MF图解(a),Al2O3+FeOT+MgO+TiO2-Al2O3/(FeOT+MgO+TiO2)图解(b),Al2O3/TiO2-CaO/Na2O图解(c)和Rb/Sr-Rb/Ba图解(d)
图a据Alther et al.(2000);图b据Douce(1999);图d据Sylvester(1998).数据来源:Himalayan淡色花岗岩据Searle and Fryer(1986); Inger and Harris(1993); Ayres and Harris(1997).Lachlan S型花岗岩据Chappell and Simpson(1984); Healy et al.(2004)
Fig. 7. Geochemical diagrams of granites in Kekesayi area, C/MF vs. A/MF (a), Al2O3+FeOT+MgO+TiO2 vs. Al2O3/(FeOT+MgO+TiO2) (b), Al2O3/TiO2 vs. CaO/Na2O (c), Rb/Sr vs. Rb/Ba (d)
图 8 Rb-Th图解(a)和CaO-FeOT+MgO-(Al2O3-(Na2O+K2O))图解(b)
图a据Chappell et al.(1999);图b据White and Chappell(1977)
Fig. 8. Diagram of Rb-Th (a) and diagram of CaO-FeOT+MgO-(Al2O3-(Na2O+K2O))(b)
图 9 岩石R1-R2构造环境判断图解(a)和岩石Nb-Y图解(b)
图a底图据Batchelor and Bowden(1985);图b底图据Pearce et al.(1984).①地幔分异产物;②板块碰撞前;③碰撞隆起后;④造山晚期;⑤非造山;⑥同碰撞;⑦造山期后
Fig. 9. R1-R2 discrimination diagram (a) and Nb-Y diagram (b)
-
[1] Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos, 50(1-3):51-73. https://doi.org/10.1016/S0024-4937(99)00052-3 [2] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/S0009-2541(02)00195-X [3] Ayres, M., Harris, N., 1997.REE Fractionation and Nd-Isotope Disequilibrium during Crustal Anatexis:Constraints from Himalayan Leucogranites.Chemical Geology, 139(1-4):249-269. doi: 10.1016/S0009-2541(97)00038-7 [4] Barbarin, B., 1996.Genesis of the Two Main Types of Peraluminous Granitoids.Geology, 24(4):295-298.https://doi.org/10.1130/0091-7613(1996)024<0295:gottmt>2.3.co;2 doi: 10.1130/0091-7613(1996)024<0295:gottmt>2.3.co;2 [5] Barth, M.G., McDonough, W.F., Rudnick, R.L., 2000.Tracking the Budget of Nb and Ta in the Continental Crust.Chemical Geology, 165(3-4):197-213. https://doi.org/10.1016/s0009-2541(99)00173-4 [6] Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [7] Best, M. G., Christiansen, E. H., 2001. Igneous Petrology. Blackwell Science, Oxford. [8] Bonin, B., 2007.A-Type Granites and Related Rocks:Evolution of a Concept, Problems and Prospects.Lithos, 97(1-2):1-29. https://doi.org/10.1016/j.lithos.2006.12.007 [9] Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [10] Chappell, B.W., 1999.Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551. doi: 10.1016/S0024-4937(98)00086-3 [11] Chappell, B.W., Simpson, P.R., 1984.Source Rocks of I-and S-Type Granites in the Lachlan Fold Belt, Southeastern Australia[and Discussion].Philosophical Transactions of the Royal Society of London.Mathematical and Physical Sciences (Series A), 310(1514):693-707. doi: 10.1098/rsta.1984.0015 [12] Chappell, B.W., White, A.J.R., 2001.Two Contrasting Granite Types:25 Years Later.Journal of the Geological Society of Australia, 48(4):489-499. doi: 10.1046/j.1440-0952.2001.00882.x [13] Che, Z.C., Liu, L., Liu, H.F., et al., 1995.Discovery and Occurrence of High Pressure Metapelitic Rocks from Altun Mountain Areas, Xinjiang Autonomous Region.Chinese Science Bulletin, 40(14):1298-1300 (in Chinese). [14] Chen, N.S., Li, X.Y., Wang, X.Y., et al., 2006.Zircon SHRIMP U-Pb Age of Neoproterozoic Metagranite in the North Kunlun Unit on the Southern Margin of the Qaidam Block in China.Geological Bulletin of China, 25(11):1311-1314 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200611009.htm [15] Chen, Y.X., Song, S.G., Niu, Y.L., et al., 2014.Melting of Continental Crust during Subduction Initiation:A Case Study from the Chaidanuo Peraluminous Granite in the North Qilian Suture Zone.Geochimica et Cosmochimica Acta, 132:311-336. https://doi.org/10.1016/j.gca.2014.02.011 [16] Collins, W.J., 1998.Evaluation of Petrogenetic Models for Lachlan Fold Belt Granitoids:Implications for Crustal Architecture and Tectonic Models.Australian Journal of Earth Sciences, 45(4):483-500. https://doi.org/10.1080/08120099808728406 [17] Cui, J.W., 2011.Ductile Shearing Age of the South Altun Fault and Its Tectonic Implications.Acta Petrologica Sinica, 27(11):3422-3434. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20111121 [18] Defant, M.J., Xu, J.F., Kepezhinskas, P., et al., 2002.Adakites:Some Variations on a Theme.Acta Petrologica Sinica, 18(2):129-142. http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200202000.htm [19] Diwu, C.R., Sun, Y., Lin, C.L., et al., 2007.Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China.Acta Petrologica Sinica, 23(2):253-262 (in Chinese with English abstract). http://www.oalib.com/paper/1471324 [20] Douce, A. E. P., 1999. What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas?In: Castro, A., Fernandez, C., Vigneresse, J. L., eds., Understanding Granites: Integrating New and Classical Techniques. Geological Society, London, Special Publications, 168(1): 55-75. [21] Douce, A.E.P., Harris, N., 1998.Experimental Constraints on Himalayan Anatexis.Journal of Petrology, 39(4):689-710. https://doi.org/10.1093/petrology/39.4.689 [22] Gao, S., Luo, T.C., Zhang, B.R., et al., 1998.Chemical Composition of the Continental Crust as Revealed by Studies in East China.Geochimica et Cosmochimica Acta, 62(11):1959-1975. https://doi.org/10.1016/s0016-7037(98)00121-5 [23] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [24] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [25] Guo, J.J., Zhao, F.Q., Li, H.K., 1999.Jinningian Collisional Granite Belt in the Eastern Sector of the Central Qilian Massif and Its Implication.Acta Geoscientia Sinica, 20(1):10-15 (in Chinese with English abstract). http://www.oalib.com/paper/1558582 [26] Hansen, J., Skjerlie, K.P., Pedersen, R.B., et al., 2002.Crustal Melting in the Lower Parts of Island Arcs:An Example from the Bremanger Granitoid Complex, West Norwegian Caledonides.Contributions to Mineralogy and Petrology, 143(3):316-335. https://doi.org/10.1007/s00410-001-0342-5 [27] Healy, B., Collins, W.J., Richards, S.W., 2004.A Hybrid Origin for Lachlan S-Type Granites:The Murrumbidgee Batholith Example.Lithos, 78(1-2):197-216. https://doi.org/10.1016/j.lithos.2004.04.047 [28] Hoffman, P.F., 1991.Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?Science, 252:891-901. http://www.ncbi.nlm.nih.gov/pubmed/17772912 [29] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm [30] Inger, S., Harris, N., 1993.Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya.Journal of Petrology, 34(2):345-368. doi: 10.1093/petrology/34.2.345 [31] Johannes, W., Holtz, F., 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Springer-Verlag, Berlin Heibelderg. https://doi.org/10.1007/978-3-642-61049-3 [32] Li, .X., Bogdanova, S.V., Collins, A.S., et al., 2008.Assembly, Configuration, and Break-up History of Rodinia:A Synthesis.Precambrian Research, 160(1-2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021 [33] Li, Q., Zeng, Z.C., Chen, N., et al., 2015.Zircon U-Pb Ages, Geochemical Characteristics and Tectonic Implications of Neoproterozoic Gailike Gneiss in the South Altyn Tagh.Geoscience, 29(6):1271-1283 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-XDDZ201506002.htm [34] Li, Z.X., Zhang, L.H., Powell, C.M., 1995.South China in Rodinia:Part of the Missing Link between Australia-East Antarctica and Laurentia?Geology, 23(5):407.https://doi.org/10.1130/0091-7613(1995)023<0407:scirpo>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0407:scirpo>2.3.co;2 [35] Liu, L., Che, Z.C., Luo, J.H., et al., 1996.Recognition and Implication of Eclogite in the Western Altun Mountains, Xinjiang.Chinese Science Bulletin, 41(16):1485-1488 (in Chinese with English abstract). http://www.oalib.com/paper/1667096 [36] Liu, L., Che, Z.C., Wang, Y., et al., 1999.The Petrological Character and Geotectonic Setting of High Pressure Metamorphic Rock Belts in Altun Mountains.Acta Petrologica Sinica, 15(1):57-64 (in Chinese with English abstract). http://www.oalib.com/paper/1472828 [37] Liu, L., Sun, Y., Luo, J.H., et al., 2003.Ultrahigh Pressure Metamorphism of Granitic Gneiss in the Yinggelisayi Area, Altun Mountains, NW China.Science in China (Series D), 33(12):1184-1192 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg200404004&dbname=CJFD&dbcode=CJFQ [38] Liu, L., Sun, Y., Xiao.P.X., et al., 2002.Discovery of Ultra-High Pressure Magnesite Bearing Garnet Lherzolite (> 3.8GPa) in the Altyn Tagh, Northwest China.Chinese Science Bulletin, 47(9):657-662 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200211000&dbname=CJFD&dbcode=CJFQ [39] Liu, L., Wang, C., Cao, Y.T., et al., 2012.Geochronology of Multi-Stage Metamorphic Events:Constraints on Episodic Zircon Growth from the UHP Eclogite in the South Altyn, NW China.Lithos, 136-139:10-26. https://doi.org/10.1016/j.lithos.2011.09.014 [40] Liu, L., Wang, C., Chen, D.L., et al., 2009.Petrology and Geochronology of HP-UHP Rocks from the South Altyn Tagh, Northwestern China.Journal of Asian Earth Sciences, 35(3-4):232-244. https://doi.org/10.1016/j.jseaes.2008.10.007 [41] Liu, Y.S., Yu, H.F., Xin, H.T., et al., 2009.Tectonic Units Division and Precambrian Significant Geological Events in Altyn Tagh Mountain, China.Geological Bulletin of China, 28 (10):1430-1438 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200910011.htm [42] Lu, F.X., Sang, L.K., 2002.Petrology.Geological Publishing House, Beijing, 82-94 (in Chinese). [43] Lu, S.N., 1998.A Review of Advance in the Research on the Neoproterozoic Rodinia Supercontinent.Geological Review, 44(5):489-495 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp199805006.htm [44] Lu, S.N., Li, H.K., Zhang, C.L., et al., 2008.Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments.Precambrian Research, 160(1-2):94-107. https://doi.org/10.1016/j.precamres.2007.04.025 [45] Ludwig, K. R., 2003. User's Manual for Isoplot 3. 0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [46] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [47] Martin, H., Smithies, R.H., Rapp, R., et al., 2005.An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution.Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048 [48] Mei, H.L., Li, H.M., Lu, S.N., et al., 1999.The Age and Origin of the Liuyuan Granitoid, Northwestern Gansu.Acta Petrologica et Mineralogica, 18(1):14-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW901.002.htm [49] Meng, F.C., Cui, M.H., Wu, X.K., et al., 2013.Magmatic and Metamorphic Events Recorded in Granitic Gneisses from the Qimantage, East Kunlun Mountains, Northwest China.Acta Petrologica Sinica, 29(6):2107-2122 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?journal_id=ysxb&file_no=20130618 [50] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [51] Milani, L., Lehmann, J., Naydenov, K.V., et al., 2015.A-Type Magmatism in a Syn-Collisional Setting:The Case of the Pan-African Hook Batholith in Central Zambia.Lithos, 216-217:48-72. https://doi.org/10.1016/j.lithos.2014.11.029 [52] Moores, E.M., 1991.Southwest U.S.East Antarctic (SWEAT) Connection:A Hypothesis.Geology, 19:425-428. doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2 [53] Patiňo Douce, A.E., 2005.Vapor-Absent Melting of Tonalite at 15-32kbar.Journal of Petrology, 46(2):275-290. http://petrology.oxfordjournals.org/content/46/2/275.short [54] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [55] Qin, X.F., Li, J., Lu, J.P., et al., 2006.Tectonic Evolution of the Western Segment of the Altyn Tagh Collisional Orogen, Northwest China.Geological Bulletin of China, 25(1-2):104-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD2006Z1016.htm [56] Qin, X.F., Xia, B., Li, C.Q., et al., 2008.Geochemical Characteristics and Tectonic Setting of Precambrian Granitic Gneiss in the Western Segment of Altyn Tagh Tectonic Belt.Geoscience, 22(1):34-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200801006.htm [57] Rapp, R.P., Watson, E.B., 1995.Dehydration Melting of Metabasalt at 8-32kbar:Implications for Continental Growth and Crust-Mantle Recycling.Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891 [58] Rapp, R.P., Watson, E.B., Miller, C.F., 1991.Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites.Precambrian Research, 51(1-4):1-25. https://doi.org/10.1016/0301-9268(91)90092-o [59] Santosh, M., Maruyama, S., Yamamoto, S., 2009.The Making and Breaking of Supercontinents:Some Speculations Based on Superplumes, Super Downwelling and the Role of Tectosphere.Gondwana Research, 15(3-4):324-341. https://doi.org/10.1016/j.gr.2008.11.004 [60] Scherer, E., Munker, C., Mezger, K., 2001.Calibration of the Lutetium-Hafnium Clock.Science, 293(5530):683-687. https://doi.org/10.1126/science.1061372 [61] Searle, M.P., Fryer, B.J., 1986.Garnet, Tourmaline and Muscovite-Bearing Leucogranites, Gneisses and Migmatites of the Higher Himalayas from Zanskar, Kulu, Lahoul and Kashmir.Geological Society, London, Special Publications, 19:185-201. doi: 10.1144/GSL.SP.1986.019.01.10 [62] Song, S.G., Wang, M.J., Wang, C., et al., 2015.Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth:A Perspective.Science China Earth Sciences, 58(8):1284-1304. https://doi.org/10.1007/s11430-015-5102-x [63] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 [64] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 [65] Wan, Y.S., Zhang, J.X., Yang, J.S., et al., 2006.Geochemistry of High-Grade Metamorphic Rocks of the North Qaidam Mountains and Their Geological Significance.Journal of Asian Earth Sciences, 28(2-3):174-184. https://doi.org/10.1016/j.jseaes.2005.09.018 [66] Wang, C., Liu, L., Yang, W.Q., et al., 2013.Provenance and Ages of the Altyn Complex in Altyn Tagh:Implications for the Early Neoproterozoic Evolution of Northwestern China.Precambrian Research, 230:193-208. https://doi.org/10.1016/j.precamres.2013.02.003 [67] Wang, C., Liu, L., Che, Z.C., et al., 2006.U-Pb Geochronology and Tectonic Setting of the Granitic Gneiss in Jianggaleisayi Eclogite Belt, the Southern Edge of Altyn Tagh.Geological Journal of China Universities, 12 (1):74-82 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200601009.htm [68] Wang, L.S., Zhang, W., Duan, X.X., et al., 2015.Isotopic Age and Genesis of the Monzogranitic Gneiss at the Huanxingshan in Middle Altyn Tagh.Acta Petrologica Sinica, 31(1):119-132 (in Chinese with English abstract). https://core.ac.uk/display/71731772 [69] Wang, Y.H., Xiao, P.X., Zhang, H.W., et al., 2004.New Results and Major Progress in Regional Geological Survey of the Suwushijie Sheet.Geological Bulletin of China, 23(5-6):560-563 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z1027.htm [70] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x [71] Watson, E.B., Harrison, T.M., 2005.Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth.Science, 308(5723):841-844. https://doi.org/10.1126/science.1110873 [72] White, A.J.R., Chappell, B.W., 1977.Ultrametamorphism and Granitoid Genesis.Tectonophysics, 43:7-22. doi: 10.1016/0040-1951(77)90003-8 [73] Winther, K.T., Newton, R.C., 1996.Experimental Melting of Hydrous Low-K Tholeiite:Evidence on the Origin of Archean Cratons.Bulletin of the Geological Society of Denmark, 39:213-228. http://www.mendeley.com/research/experimental-melting-hydrous-lowk-tholeiite-evidence-origin-archaean-cratons/ [74] Wu, C.L., Gao, Y.H., Lei, M., et al., 2014.Zircon SHRIMP U-Pb Dating, Lu-Hf Isotopic Characteristics and Petrogenesis of the Palaeozoic Granites in Mangya Area, Southern Altun, NW China.Acta Petrologica Sinica, 30(8):2297-2323 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201408014.htm [75] Wu, C.L., Lei, M., Wu, D., et al., 2016.Zircon U-Pb Dating of Paleozoic Granites from South Altun and Response of the Magmatic Activity to the Tectonic Evolution of the Altun Orogenic Belt.Acta Geologica Sinica, 90(9):2276-2315 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201609016.htm [76] Xu, Z.Q., Yang, J.S., Zhang.J.X., et al., 1999.A Comparison between the Tectonic Units on the Two Sides of the Altun Sinistral Strike-Slip Fault and the Mechanism of Lithospheric Shearing.Acta Geologica Sinica, 73(3):193-205 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzxe199903000.htm [77] Yu, S.Y., Zhang, J.X., Li, H.K., et al., 2013a.Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopic Composition of Eclogites and Their Host Gneisses in the Dulan Area, North Qaidam UHP Terrane:New Evidence for Deep Continental Subduction.Gondwana Research, 23(3):901-919. https://doi.org/10.1016/j.gr.2012.07.018 [78] Yu, S.Y., Zhang, J.X., Real, P.G.D., et al., 2013b.The Grenvillian Orogeny in the Altun-Qilian-North Qaidam Mountain Belts of Northern Tibet Plateau:Constraints from Geochemical and Zircon U-Pb Age and Hf Isotopic Study of Magmatic Rocks.Journal of Asian Earth Sciences, 73:372-395. https://doi.org/10.1016/j.jseaes.2013.04.042 [79] Yu, H.F., Lu, S.N., Liu, Y.S., et al., 2002.Composing of the Altyn Tagh Formation-Complex and Its Tectonic Signification.Geological Bulletin of China, 21(12):834-840 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200212005.htm [80] Yu, H.F., Lu, S.N., Mei, H.L., et al., 1999.Characteristics of Neo-Proterozoic Eclogite Granite Zones and Deep Level Ductile Shear Zone in Western China and Their Significance for Continental Reconstruction.Acta Petrologica Sinica, 15(4):532-538 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199904004.htm [81] Yu, S.Y., Zhang, J.X., Gong, J.H., 2011.Zr-in-Rrutile Thermometry in HP/UHT Granulite in the Bashiwake Area of the South Altun and Its Geological Implications.Earth Science Frontiers, 18(2):140-150 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dxqy201102012.aspx [82] Zhang, J.X., Zhang, Z.M., Xu, Z.Q., et al., 2001.Petrology and Geochronology of Eclogites from the Western Segment of the Altyn Tagh, Northwestern China.Lithos, 56(2-3):187-206. https://doi.org/10.1016/s0024-4937(00)00052-9 [83] Zhang, A.D., Liu, L., Sun, Y., et al., 2004.SHRIMP U-Pb Dating of Zircons and Its Geological Significance from UHP Granitoid Gneiss in Altyn Tagh.Chinese Science Bulletin, 49(22):2527-2532 (in Chinese). [84] Zhang, J.X., Li, H.K., Meng, F.C., et al., 2011.Polyphase Tectonothermal Events Recorded in "Metamorphic Basement" from the Altyn Tagh, the Southeastern Margin of the Tarim Basin, Western China:Constraint from U-Pb Zircon Geochronology.Acta Petrologica Sinica, 27(1):23-46 (in Chinese with English abstract). http://www.oalib.com/paper/1474815 [85] Zhang, J.X., Zhang, Z.M., Xu, Z.Q., et al., 1999.The Ages of U-Pb and Sm-Nd for Eclogite from the Western Segment of Altyn Tagh Tectonic Belt.Chinese Science Bulletin, 44(10):1109-1112 (in Chinese). [86] Zhang, Q., Jin, W.J., Li, C.D., et al., 2010.Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents:Index.Acta Petrologica Sinica, 26(4):985-1015 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201004002.htm [87] Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and Its Implications.Acta Petrologica Sinica, 22(9):2249-2269 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200609000.htm [88] Zhao, Z.X., Wei, J.H., Fu, L.B., et al., 2017.The Early Paleozoic Xitieshan Syn-Collisional Granite in the North Qaidam Ultrahigh-Pressure Metamorphic Belt, NW China:Petrogenesis and Implications for Continental Crust Growth.Lithos, 278-281:140-152. https://doi.org/10.1016/j.lithos.2017.01.019 [89] 车自成, 刘良, 刘洪福, 等, 1995.阿尔金山地区高压变质泥质岩石的发现及其产出环境.科学通报, 40(14):1298-1300. doi: 10.3321/j.issn:0023-074X.1995.14.015 [90] 陈能松, 李晓彦, 王新宇, 等, 2006.柴达木地块南缘昆北单元变质新元古代花岗岩锆石SHRIMP U-Pb年龄.地质通报, 25(11):1311-1314. doi: 10.3969/j.issn.1671-2552.2006.11.010 [91] 第五春荣, 孙勇, 林慈銮, 等, 2007.豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学.岩石学报, 23(2):253-262. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20070228&journal_id=ysxb [92] 郭进京, 赵凤清, 李怀坤, 1999.中祁连东段晋宁期碰撞型花岗岩及其地质意义.地球学报, 20(1):10-15. http://www.docin.com/p-514993913.html [93] 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [94] 李琦, 曾忠诚, 陈宁, 等, 2015.阿尔金南缘新元古代盖里克片麻岩年代学、地球化学特征及其构造意义.现代地质, 29(6):1271-1283. http://www.cqvip.com/QK/96868X/201506/666940008.html [95] 刘良, 车自成, 罗金海, 等, 1996.阿尔金山西段榴辉岩的确定及其地质意义.科学通报, 41(16):1485-1488. doi: 10.3321/j.issn:0023-074X.1996.16.013 [96] 刘良, 车自成, 王焰, 等, 1999.阿尔金高压变质岩带的特征及其构造意义.岩石学报, 15(1):57-64. doi: 10.3321/j.issn:1000-0569.1999.01.006 [97] 刘良, 孙勇, 肖培喜, 等, 2002.阿尔金发现超高压(> 3.8GPa)石榴二辉橄榄岩.科学通报, 47(9):657-662. http://www.oalib.com/paper/4277621 [98] 刘良, 孙勇, 罗金海, 等, 2003.阿尔金英格利萨依花岗质片麻岩超高压变质.中国科学(D辑), 33(12):1184-1192. http://www.cqvip.com/QK/98491X/200312/8859006.html [99] 刘永顺, 于海峰, 辛后田, 等, 2009.阿尔金山地区构造单元划分和前寒武纪重要地质事件.地质通报, 28(10):1430-1438. doi: 10.3969/j.issn.1671-2552.2009.10.009 [100] 陆松年, 1998.新元古时期Rodinia超大陆研究进展述评.地质论评, 44(5):489-495. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp199805006&dbname=CJFD&dbcode=CJFQ [101] 路凤香, 桑隆康, 2002.岩石学.北京:地质出版社, 82-94. [102] 梅华林, 李惠民, 陆松年, 等, 1999.甘肃柳园地区花岗质岩石时代及成因.岩石矿物学杂志, 18(1):14-17. http://www.cqvip.com/QK/94932X/1999001/3505165.html [103] 孟繁聪, 崔美慧, 吴祥珂, 等, 2013.东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件.岩石学报, 29(6):2107-2122. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20130618&journal_id=ysxb&year_id=2013 [104] 覃小锋, 李江, 陆济璞, 等, 2006.阿尔金碰撞造山带西段的构造特征.地质通报, 25(1-2):104-112. http://industry.wanfangdata.com.cn/dl/Detail/Conference?id=Conference_7044541 [105] 覃小锋, 夏斌, 黎春泉, 等, 2008.阿尔金构造带西段前寒武纪花岗质片麻岩的地球化学特征及其构造背景.现代地质, 22(1):34-44. http://www.cqvip.com/QK/96868X/200801/26493920.html [106] 王超, 刘良, 车自成, 等, 2006.阿尔金南缘榴辉岩带中花岗片麻岩的时代及构造环境探讨.高校地质学报, 12(1):74-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200601008 [107] 王立社, 张巍, 段星星, 等, 2015.阿尔金环形山花岗片麻岩同位素年龄及成因研究.岩石学报, 31(1):119-132. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20150109&journal_id=ysxb&year_id=2015 [108] 王永和, 校培喜, 张汉文, 等, 2004.苏吾什杰幅地质调查新成果及主要进展.地质通报, 23(5-6):560-563. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200405027 [109] 吴才来, 郜源红, 雷敏, 等, 2014.南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因.岩石学报, 30(8):2297-2323. http://d.wanfangdata.com.cn/Periodical_ysxb98201408014.aspx [110] 吴才来, 雷敏, 吴迪, 等, 2016.南阿尔金古生代花岗岩U-Pb定年及岩浆活动对造山带构造演化的响应.地质学报, 90(9):2276-2315. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201609016.htm [111] 许志琴, 杨经绥, 张建新, 等, 1999.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制.地质学报, 73(3):193-205. https://www.wenkuxiazai.com/doc/53c7204169eae009581becd7-2.html [112] 于海峰, 陆松年, 刘永顺, 等, 2002."阿尔金山岩群"的组成及其构造意义.地质通报, 21(12):834-840. doi: 10.3969/j.issn.1671-2552.2002.12.005 [113] 于海峰, 陆松年, 梅华林, 等, 1999.中国西部新元古代榴辉岩-花岗岩带和深层次韧性剪切带特征及其大陆再造意义.岩石学报, 15(4):532-538. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200012002094.htm [114] 于胜尧, 张建新, 宫江华, 2011.南阿尔金巴什瓦克高压/超高温麻粒岩中金红石Zr温度计及其地质意义.地学前缘, 18(2):140-150. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102016.htm [115] 张安达, 刘良, 孙勇, 等, 2004.阿尔金超高压花岗质片麻岩中锆石SHRIMP U-Pb定年及其地质意义.科学通报, 49(22):2335-2341. doi: 10.3321/j.issn:0023-074X.2004.22.014 [116] 张建新, 李怀坤, 孟繁聪, 等, 2011.塔里木盆地东南缘(阿尔金山)"变质基底"记录的多期构造热事件:锆石U-Pb年代学的制约.岩石学报, 27(1):23-46. http://www.doc88.com/p-901231908735.html [117] 张建新, 张泽明, 许志琴, 等, 1999.阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄——阿尔金构造带中加里东期山根存在的证据.科学通报, 44(10):1109-1112. doi: 10.3321/j.issn:0023-074X.1999.10.021 [118] 张旗, 金惟俊, 李承东, 等, 2010.再论花岗岩按照Sr-Yb的分类:标志.岩石学报, 26(4):985-1015. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20100401 [119] 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=200609238