Petrogenesis and Tectonic Implications of Yemaquan Monzogranite from North Altyn
-
摘要: 野马泉二长花岗岩为北阿尔金地区出露面积最大的花岗岩体,为探讨其成因、形成环境及其与北阿尔金区域构造演化的关系,对其进行了岩石学、地球化学、锆石U-Pb年代学及Hf同位素等方面的研究.研究结果表明,野马泉岩体为中-粗粒等粒或似斑状二长花岗岩,岩体侵位时代为450~453 Ma.岩石具较高的Na2O/K2O比值为1.72~2.29,铝饱和指数A/CNK为0.99~1.10,P2O5与SiO2含量呈负相关,具Ⅰ型花岗岩特征.轻稀土富集而重稀土亏损,较弱的负Eu异常,微量元素特征显示富集Rb、Ba、Th、U、K等元素,相对亏损Nb、Ta、P、Ti等元素.锆石εHf(t)值为5.52~10.75,二阶段模式年龄tDM2为0.75~1.09 Ga,其源岩可能主要是0.75~1.09 Ga的新生地壳(基性岩).结合区域构造背景,野马泉二长花岗岩体可能形成于同碰撞-后碰撞环境,为造山带根部基性岩石部分熔融形成.Abstract: Yemaquan monzogranite pluton is the largest outcrop in North Altyn, with a medium-coarse grain and porphyritic texture. This paper aims to discuss the genesis and diagenesis environment of the monzogranite, and the tectonic evolution of North Altyn. Thus, it is necessary to study petrology, geochemistry, zircon U-Pb chronology and Hf isotope of the pluton. The zircon U-Pb age data suggest that the monzogranite was generated at 450-453 Ma. The rock shows significant features of Ⅰ-Type granite with high ratio of Na2O/K2O (1.72-2.29), aluminum saturation index (A/CNK=0.99-1.10) and negative correlation between P2O5% and SiO2%. The REE pattern shows depletion of HREE, relative enrichment of LREE, and slightly negative Eu anomaly. In the primitive mantle-normalized trace-element diagram, the rock shows strong enrichment of Rb, Ba, Th, U, K and depletion of Nb, Ta, P, Ti. The values of εHf(t) range in 5.52-10.75. The two-stage model ages (tDM2) vary from 0.75 to 1.09 Ga. These characteristics indicate that the source rock was formed from the juvenile crust (basites). Considering the regional tectonic setting, it is concluded that the monzogranite was generated by partial melting of the basites at the root of the orogenic belt in the syn-collision to post-collision environment.
-
Key words:
- monzogranite /
- geochemistry /
- U-Pb chronology /
- Hf isotopic characteristics /
- petrogenesis /
- North Altyn
-
图 1 北阿尔金巴什考供盆地以东的研究区地质简图
图a据吴才来等(2016)修改
Fig. 1. Geological sketch map of the study area at the east of Bashikaogong basin, North Altyn
图 2 二长花岗岩野外露头照片和显微照片(正交偏光)
Qz.石英;Pl.斜长石;Kfs.钾长石;Bt.黑云母;Sph.榍石.据Whitney and Evans(2010)
Fig. 2. Field photograph and micrograph of the monzogranite
图 3 二长花岗岩的A/CNK-A/NK图解(a)和K2O-SiO2图解(b)
图a据Maniar and Piccoli(1989);图b据Rickwood(1989)
Fig. 3. A/NK-A/CNK diagram (a) and K2O-SiO2 plots of the monzogranite (b)
图 4 二长花岗岩稀土元素球粒陨石标准化配分模式和微量元素蛛网图
Fig. 4. Chondrite-normalized REE patterns and trace element spider diagrams for the monzogranite
图 8 二长花岗岩的C/MF-A/MF图解(a)和K2O+Na2O+MgO+FeOT+TiO2-(K2O+Na2O)/(MgO+FeOT+TiO2)(b)图解
图a据Altherr et al.(2000);图b据Kaygusuz et al.(2007)
Fig. 8. Geochemical diagrams of C/MF-A/MF (a) and K2O+Na2O+MgO+FeOT+TiO2-(K2O+Na2O)/(MgO+FeOT+TiO2) (b) for the monzogranite
表 1 二长花岗岩主量元素(%)和微量元素(10-6)数据
Table 1. Major (%) and trace element (10-6) compositions of the monzogranite
样号 16CL225 16CL226 16CL227 16CL228 16CL229 16CL230 SiO2 66.94 65.39 65.17 65.04 66.11 67.48 TiO2 0.55 0.55 0.58 0.59 0.57 0.53 Al2O3 15.99 16.70 15.92 16.25 15.27 15.56 Fe2O3 1.35 1.36 1.54 1.28 1.44 1.29 FeO 2.14 2.05 1.98 2.24 2.02 1.85 MnO 0.07 0.08 0.07 0.08 0.07 0.07 MgO 1.80 1.81 1.77 1.80 1.76 1.66 CaO 2.46 3.68 3.51 3.49 3.14 3.31 Na2O 4.54 4.58 4.30 4.55 4.18 4.32 K2O 2.41 2.00 2.36 2.06 2.43 2.38 P2O5 0.18 0.19 0.19 0.20 0.19 0.17 LOI 1.39 1.45 2.44 2.27 2.61 1.24 Total 99.83 99.84 99.84 99.85 99.79 99.85 A/CNK 1.10 1.02 0.99 1.01 1.00 0.99 La 36.99 29.04 37.36 29.81 31.15 28.65 Ce 66.21 60.68 76.60 68.11 67.76 60.18 Pr 7.67 7.14 8.51 8.60 7.85 7.19 Nd 28.54 25.74 29.84 31.70 28.60 25.44 Sm 5.38 4.78 5.37 6.31 5.19 4.64 Eu 1.28 1.27 1.33 1.43 1.29 1.15 Gd 4.57 3.92 4.58 4.81 4.36 3.92 Tb 0.74 0.61 0.67 0.79 0.68 0.60 Dy 4.17 3.45 3.75 4.46 3.80 3.37 Ho 0.76 0.63 0.70 0.81 0.69 0.62 Er 2.20 1.85 1.92 2.35 1.91 1.74 Tm 0.34 0.28 0.29 0.37 0.29 0.27 Yb 2.03 1.83 1.87 2.33 1.86 1.76 Lu 0.28 0.28 0.28 0.33 0.27 0.27 ∑REE 161.17 141.51 173.08 162.21 155.69 139.82 LREE/HREE 9.68 10.01 11.31 8.99 10.25 10.14 δEu 0.77 0.87 0.80 0.77 0.81 0.81 Cs 8.32 5.29 4.73 5.18 3.03 7.73 Rb 88.81 58.65 87.21 65.43 66.94 80.85 Ba 774.07 836.55 848.82 844.56 1015.78 778.97 Th 10.99 8.45 10.60 7.96 9.25 10.47 U 2.79 2.89 2.43 2.32 1.78 2.31 Ta 1.22 1.15 1.03 1.41 1.03 1.02 Nb 14.03 13.91 14.75 18.07 14.86 14.49 Sr 314.57 372.98 330.37 352.32 307.71 329.07 Hf 5.60 5.57 5.25 5.56 4.96 5.07 Zr 219.03 208.31 189.51 196.34 186.24 185.74 Y 20.64 18.60 18.69 22.95 19.10 18.11 Li 31.96 25.09 29.42 35.49 30.05 35.24 Be 2.48 3.19 3.17 3.12 2.30 2.72 Sc 6.73 7.59 9.94 8.36 6.14 5.97 Cr 25.13 22.01 28.39 21.98 16.94 16.46 Co 9.80 9.51 10.72 10.85 8.43 7.95 Ni 17.09 16.56 19.39 18.99 14.43 15.92 Pb 19.84 24.51 22.04 22.76 24.02 23.18 Rb/Sr 0.28 0.16 0.26 0.19 0.22 0.25 Sm/Nd 0.19 0.19 0.18 0.20 0.18 0.18 Nb/Ta 11.50 12.10 14.29 12.78 14.38 14.25 Zr/Hf 39.11 37.38 36.08 35.34 37.58 36.66 表 2 二长花岗岩锆石LA-ICP-MS U-Pb定年测试结果
Table 2. LA-ICP-MS zircon U-Pb isotopic data of the monzogranite
样品测试点 含量(10-6) 同位素比值 年龄(Ma) Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U 1σ 16CL225-01 497 810 0.61 0.0551 0.0003 0.5446 0.0094 0.0717 0.0012 446.4 7.3 16CL225-02 649 898 0.72 0.0551 0.0003 0.5625 0.0090 0.0741 0.0012 460.5 7.1 16CL225-03 587 992 0.59 0.0578 0.0004 0.5786 0.0084 0.0725 0.0010 451.5 6.2 16CL225-04 506 876 0.58 0.0589 0.0004 0.5760 0.0109 0.0710 0.0014 442.0 8.2 16CL225-07 900 706 1.27 0.0556 0.0003 0.5732 0.0124 0.0748 0.0015 465.0 9.3 16CL225-08 163 434 0.38 0.0602 0.0010 0.6222 0.0210 0.0748 0.0017 465.1 10.1 16CL225-09 406 840 0.48 0.0562 0.0004 0.5535 0.0104 0.0715 0.0012 444.9 7.5 16CL225-10 692 1033 0.67 0.0587 0.0006 0.6048 0.0141 0.0748 0.0019 464.9 11.6 16CL225-11 200 365 0.55 0.0594 0.0045 0.6131 0.0663 0.0740 0.0027 460.5 16.4 16CL225-12 667 1323 0.50 0.0566 0.0004 0.5764 0.0133 0.0738 0.0016 459.3 9.5 16CL225-13 742 894 0.83 0.0584 0.0010 0.5928 0.0081 0.0738 0.0016 458.9 9.9 16CL225-14 587 1148 0.51 0.0585 0.0023 0.5818 0.0372 0.0718 0.0018 447.2 10.6 16CL225-18 435 858 0.51 0.0553 0.0004 0.5674 0.0096 0.0744 0.0011 462.6 6.7 16CL225-19 886 1486 0.60 0.0564 0.0004 0.5603 0.0074 0.0721 0.0009 448.6 5.5 16CL225-20 535 837 0.64 0.0572 0.0006 0.5723 0.0126 0.0726 0.0013 451.5 7.6 16CL225-21 379 837 0.45 0.0559 0.0004 0.5465 0.0096 0.0709 0.0013 441.3 7.9 16CL225-22 342 490 0.70 0.0577 0.0006 0.5885 0.0240 0.0739 0.0029 459.5 17.3 16CL225-23 705 990 0.71 0.0568 0.0004 0.5785 0.0084 0.0738 0.0010 459.2 5.8 16CL225-25 754 1232 0.61 0.0581 0.0007 0.6014 0.0298 0.0749 0.0032 465.3 19.1 16CL225-26 359 593 0.61 0.0562 0.0003 0.5497 0.0140 0.0710 0.0018 441.9 10.7 16CL230-01 444 639 0.70 0.0648 0.0015 0.6630 0.0313 0.0739 0.0022 459.7 13.1 16CL230-02 378 698 0.54 0.0552 0.0003 0.5504 0.0113 0.0723 0.0015 449.7 9.0 16CL230-04 229 518 0.44 0.0577 0.0004 0.5780 0.0094 0.0727 0.0012 452.3 7.4 16CL230-05 422 732 0.58 0.0572 0.0004 0.5637 0.0107 0.0715 0.0014 445.0 8.3 16CL230-06 411 758 0.54 0.0564 0.0004 0.5572 0.0104 0.0717 0.0013 446.2 7.9 16CL230-07 548 858 0.64 0.0564 0.0004 0.5689 0.0100 0.0731 0.0014 455.1 8.5 16CL230-09 499 669 0.75 0.0554 0.0005 0.5523 0.0082 0.0722 0.0012 449.6 7.2 16CL230-11 293 517 0.57 0.0564 0.0010 0.5719 0.0139 0.0734 0.0011 456.7 6.5 16CL230-12 316 385 0.82 0.0574 0.0008 0.5811 0.0109 0.0734 0.0010 456.5 6.0 16CL230-15 847 909 0.93 0.0598 0.0008 0.5873 0.0070 0.0712 0.0007 443.3 4.4 16CL230-16 351 704 0.50 0.0567 0.0005 0.5740 0.0063 0.0735 0.0009 456.9 5.4 16CL230-18 416 475 0.87 0.0548 0.0004 0.5518 0.0140 0.0731 0.0018 454.6 11.0 16CL230-19 539 476 1.13 0.0630 0.0008 0.6306 0.0178 0.0725 0.0016 451.3 9.6 16CL230-23 470 547 0.86 0.0555 0.0003 0.5460 0.0080 0.0714 0.0011 444.6 6.5 16CL230-24 431 756 0.57 0.0554 0.0003 0.5529 0.0084 0.0724 0.0011 450.7 6.6 16CL230-25 716 967 0.74 0.0565 0.0005 0.5679 0.0096 0.0729 0.0014 453.4 8.2 表 3 二长花岗岩锆石LA-ICP-MS Hf同位素分析结果
Table 3. LA-ICP-MS zircon Hf isotopic analyses for the samples from the monzogranite
样品测试点 年龄(Ma) 176Yb/
177Hf2σ 176Lu/
177Hf2σ 176Hf/
177Hf2σ εHf(t) TDM1
(Ma)TDM2
(Ma)fLu/Hf 16CL225-01 446.4 0.023356 0.000135 0.000758 0.000003 0.282697 0.000013 6.97 781 984 -0.98 16CL225-02 460.5 0.037430 0.001265 0.001204 0.000037 0.282689 0.000014 6.86 801 1002 -0.96 16CL225-03 451.5 0.030057 0.000374 0.000973 0.000010 0.282701 0.000014 7.15 780 976 -0.97 16CL225-04 442.0 0.049730 0.000411 0.001621 0.000013 0.282709 0.000015 7.04 782 976 -0.95 16CL225-07 465.0 0.075396 0.001801 0.002377 0.000055 0.282727 0.000018 7.92 772 938 -0.93 16CL225-08 465.1 0.040287 0.000431 0.001337 0.000014 0.282688 0.000015 6.87 806 1005 -0.96 16CL225-09 444.9 0.024452 0.000139 0.000799 0.000004 0.282680 0.000012 6.30 806 1026 -0.98 16CL225-10 464.9 0.062159 0.001107 0.002009 0.000033 0.282727 0.000015 8.05 764 930 -0.94 16CL225-11 460.5 0.020878 0.000573 0.000721 0.000016 0.282696 0.000013 7.22 782 979 -0.98 16CL225-12 459.3 0.081491 0.001226 0.002664 0.000029 0.282692 0.000017 6.47 830 1026 -0.92 16CL225-13 458.9 0.067293 0.001554 0.002242 0.000050 0.282710 0.000018 7.25 793 976 -0.93 16CL225-14 447.2 0.063321 0.000959 0.001881 0.000035 0.282702 0.000017 6.83 797 993 -0.94 16CL225-18 462.6 0.041836 0.000203 0.001290 0.000003 0.282748 0.000014 8.94 720 871 -0.96 16CL225-19 448.6 0.049673 0.000793 0.001566 0.000023 0.282704 0.000015 7.00 788 984 -0.95 16CL225-20 451.5 0.025792 0.000324 0.000793 0.000009 0.282689 0.000015 6.78 793 1000 -0.98 16CL225-21 441.3 0.052188 0.000394 0.001532 0.000011 0.282729 0.000017 7.75 752 930 -0.95 16CL225-22 459.5 0.065883 0.001637 0.002081 0.000055 0.282660 0.000016 5.52 863 1086 -0.94 16CL225-23 459.2 0.035430 0.001110 0.001100 0.000030 0.282686 0.000015 6.73 804 1009 -0.97 16CL225-25 465.3 0.042295 0.002500 0.001279 0.000066 0.282699 0.000016 7.27 790 980 -0.96 16CL225-26 441.9 0.080906 0.003871 0.002437 0.000123 0.282700 0.000015 6.46 814 1013 -0.93 16CL230-01 459.7 0.065292 0.001400 0.002075 0.000025 0.282807 0.000019 10.75 649 753 -0.94 16CL230-02 449.7 0.042051 0.000496 0.001321 0.000009 0.282684 0.000015 6.41 811 1022 -0.96 16CL230-04 452.3 0.035893 0.001511 0.001165 0.000049 0.282709 0.000014 7.38 773 962 -0.96 16CL230-05 445.0 0.036728 0.000348 0.001134 0.000006 0.282703 0.000014 7.02 781 979 -0.97 16CL230-06 446.2 0.032393 0.000238 0.001035 0.000005 0.282671 0.000016 5.96 823 1048 -0.97 16CL230-07 455.1 0.036569 0.000402 0.001139 0.000004 0.282675 0.000015 6.26 820 1036 -0.97 16CL230-09 449.6 0.086300 0.001620 0.002675 0.000066 0.282747 0.000020 8.21 750 907 -0.92 16CL230-11 456.7 0.037098 0.000330 0.001212 0.000003 0.282708 0.000018 7.44 774 962 -0.96 16CL230-12 456.5 0.036127 0.000435 0.001159 0.000018 0.282699 0.000016 7.11 787 983 -0.97 16CL230-15 443.3 0.065600 0.001673 0.001995 0.000041 0.282737 0.000017 7.94 750 920 -0.94 16CL230-16 456.9 0.038908 0.000411 0.001209 0.000014 0.282665 0.000016 5.90 837 1060 -0.96 16CL230-18 454.6 0.042958 0.001031 0.001380 0.000021 0.282754 0.000016 8.96 713 863 -0.96 16CL230-19 451.3 0.105026 0.001036 0.003142 0.000031 0.282694 0.000023 6.24 838 1034 -0.91 16CL230-23 444.6 0.020077 0.000253 0.000640 0.000005 0.282695 0.000014 6.88 781 988 -0.98 16CL230-24 450.7 0.030514 0.000580 0.000986 0.000021 0.282660 0.000014 5.67 838 1070 -0.97 16CL230-25 453.4 0.037458 0.000534 0.001201 0.000015 0.282717 0.000016 7.68 762 944 -0.96 -
[1] Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos, 50(1-3):51-73. https://doi.org/10.1016/s0024-4937(99)00052-3 [2] Bea, F., Pereira, M.D., Stroh, A., 1994.Mineral/Leucosome Trace-Element Partitioning in a Peraluminous Migmatite (a Laser Ablation-ICP-MS Study).Chemical Geology, 117(1-4):291-312. https://doi.org/10.1016/0009-2541(94)90133-3 [3] Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008.The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets.Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [4] Chappell, B.W., 1999.Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 [5] Chen, X.H., Gehrels, G., Wang, X.F., et al., 2003.Granite from North Altyn Tagh, NW China:U-Pb Geochronology and Tectonic Setting.Bulletin of Mineralogy, Petrology and Geochemistry, 22(4):294-298 (in Chinese with English abstract). https://arizona.pure.elsevier.com/en/publications/granite-from-north-altyn-tagh-nw-china-u-pb-geochronology-and-tec [6] Corfu, F., 2003.Atlas of Zircon Textures.Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469 [7] Douce, A.E.P., Johnston, A.D., 1991.Phase Equilibria and Melt Productivity in the Pelitic System:Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites.Contributions to Mineralogy and Petrology, 107(2):202-218. https://doi.org/10.1007/bf00310707 [8] Gai, Y.S., Liu, L., Kang, L., et al., 2015.The Origin and Geologic Significance of Plagiogranite in Ophiolite Belt at North Altyn Tagh.Acta Petrologica Sinica, 31(9):2549-2565 (in Chinese with English abstract). https://www.researchgate.net/publication/292388602_The_origin_and_geologic_significance_of_plagiogranite_in_ophiolite_belt_at_North_Altyn_Tagh [9] Han, B.F., 2007.Diverse Post-Collisional Granitoids and Their Tectonic Setting Discrimination.Earth Science Frontiers, 14(3):64-72 (in Chinese with English abstract). doi: 10.1007/s12583-013-0346-x [10] Han, F.B., Chen, B.L., Cui, L.L., et al., 2012.Zircon SHRIMP U-Pb Age of Intermediate-Acid Intrusive Rocks in Kaladawan Area, Eastern Altun Mountains, NW China, and Its Implications.Acta Petrologica Sinica, 28(7):2277-2291 (in Chinese with English abstract). https://www.researchgate.net/publication/290458987_SHRIMP_zircon_U-Pb_geochronology_of_northern_highland_4337_granodiorite_in_Kaladawan_area_of_northern_Altun_Mountains_and_its_tectonic_implications [11] Hao, J., Wang, E.Q., Liu, X.H., et al., 2006.Jinyanshan Collisional Orogenic Belt of the Early Paleozoic in the Altun Mountains:Evidence from Single Zircon U-Pb and 40Ar-39Ar Isotopic Dating for the Arc Magmatite and Ophiolitic Mélange.Acta Petrologica Sinica, 22(11):2743-2752 (in Chinese with English abstract). http://www.oalib.com/paper/4874341 [12] Hao, R.X., Chen, B.L., Chen, Z.L., et al., 2013.Geochemical Characteristics of Basalts from Kaladawan in East Altun Mountains of Xinjiang and Their Implications.Acta Geoscientica Sinica, 34 (3):307-317 (in Chinese with English abstract). https://www.researchgate.net/publication/287779266_Geochemical_characteristics_of_basalts_from_Kaladawan_in_east_Altun_Mountains_of_Xinjiang_and_their_implications [13] Jung, S., Pfänder, J.A., 2007.Source Composition and Melting Temperatures of Orogenic Granitoids:Constraints from CaO/Na2O, Al2O3/TiO2 and Accessory Mineral Saturation Thermometry.European Journal of Mineralogy, 19(6):859-870. https://doi.org/10.1127/0935-1221/2007/0019-1774 [14] Kang, L., Liu, L., Cao, Y.T.et al., 2011.Geochemistry, Zircon LA-ICP-MS U-Pb Ages and Hf Isotopes of Hongliugou Moyite from North Altyn Tagh Tectonic Belt.Geological Bulletin of China, 30(7):1066-1076 (in Chinese with English abstract). https://www.researchgate.net/publication/289176085_Geochemistry_zircon_LA-ICP-MS_U-Pb_ages_and_Hf_isotopes_of_Hongliugou_moyite_from_north_Altyn_Tagh_tectonic_belt [15] Kaygusuz, A., Siebel, W., Şen, C., et al., 2007.Petrochemistry and Petrology of Ⅰ-Type Granitoids in an Arc Setting:The Composite Torul Pluton, Eastern Pontides, NE Turkey.International Journal of Earth Sciences, 97(4):739-764. https://doi.org/10.1007/s00531-007-0188-9 [16] Koschek, G., 1993.Origin and Significance of the SEM Cathodoluminescence from Zircon.Journal of Microscopy, 171(3):223-232. https://doi.org/10.1111/j.1365-2818.1993.tb03379.x [17] Li, S. B., 2013. The Early Paleozoic Tectonic Evolution of Kaladawan Area, Northern Altyn Tagh (Dissertation). Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [18] Liu, L., 1999. High Pressure Metamorphic Rocks and Ophiolite in Altun, and Its Tectonic Significance (Dissertation). Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (in Chinese with English abstract). [19] Liu, L., Chen, D.L., Wang, C., et al., 2009.New Progress on Geochronology of High-Pressure/Ultrahigh-Pressure Metamorphic Rocks from the South Altyn Tagh, the North Qaidam and the North Qinling Orogenic, NW China and Their Geological Significance.Journal of Northwest University (Natural Science Edition), 39(3):472-479 (in Chinese with English abstract). [20] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [21] Ludwig, K. R., 2003. User's Manual for Isoplot 3. 0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [22] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101 [23] Meng, L.T., Chen, B.L., Wang, Y., et al., 2016.Timing of Early Paleozoic Tectonic Regime Transition in North Altun:Evidence from Granite.Geotectonica et Metallogenia, 40(2):295-307 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0024493716303620 [24] Meng, L.T., Chen, B.L., Zhao, N.N., et al., 2017.The Distribution, Geochronology and Geochemistry of Early Paleozoic Granitoid Plutons in the North Altun Orogenic Belt, NW China:Implications for the Petrogenesis and Tectonic Evolution.Lithos, 268-271:399-417. https://doi.org/10.1016/j.lithos.2016.10.022 [25] Qi, X.X., Li, H.B., Wu, C.L., et al., 2005.SHRIMP U-Pb Zircon Dating for Qiashikansayi Granodiorite, the Northern Altyn Tagh Mountains and Its Geological Implications.Chin.Sci.Bull., 50(6):571-576 (in Chinese). doi: 10.1007/BF02897460 [26] Rickwood, P.C., 1989.Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements.Lithos, 22(4):247-263. https://doi.org/10.1016/0024-4937(89)90028-5 [27] Rudnick, R.L., Gao, S., 2003.Composition of the Continental Crust.Treatise on Geochemistry, 1-64. https://doi.org/10.1016/b0-08-043751-6/03016-4 [28] Scherer, E., Münker, C., Mezger, K., 2001.Calibration of the Lutetium-Hafnium Clock.Science, 293(5530):683-687. https://doi.org/10.1093/petrology/egx076 [29] Sisson, T.W., 1994.Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe.Chemical Geology, 117(1-4):331-344. https://doi.org/10.1016/0009-2541(94)90135-x [30] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1093/petrology/egx076 [31] Sylvester, P.J., 1998.Post-Collisional Strongly Peraluminous Granites.Lithos, 45(1-4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 [32] Taylor, S. R., Mclennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford. [33] Thompson, R.N., Morrison, M.A., Hendry, G.L., et al., 1984.An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis:An Elemental Approach [and Discussion].Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 310(1514):549-590. https://doi.org/10.1098/rsta.1984.0008 [34] Tulloch, A.J., Ireland, T.R., Kimbrough, D.L., et al., 2011.Autochthonous Inheritance of Zircon through Cretaceous Partial Melting of Carboniferous Plutons:The Arthur River Complex, Fiordland, New Zealand.Contributions to Mineralogy and Petrology, 161(3):401-421. https://doi.org/10.1007/s00410-010-0539-6 [35] Vervoort, J.D., Patchett, P.J., 1996.Behavior of Hafnium and Neodymium Isotopes in the Crust:Constraints from Precambrian Crustally Derived Granites.Geochimica et Cosmochimica Acta, 60(19):3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3 [36] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [37] Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371 [38] Wu, C.L., Lei, M., Wu, D., et al., 2016.Zircon U-Pb Dating of Paleozoic Granites from South Altun and Response of the Magmatic Activity to the Tectonic Evolution of the Altun Orogenic Belt.Acta Geologica Sinica, 90(9):2276-2315 (in Chinese with English abstract). [39] Wu, C.L., Yang, J.S., Robinson, P.T., et al., 2009.Geochemistry, Age and Tectonic Significance of Granitic Rocks in North Altun, Northwest China.Lithos, 113(3-4):423-436. https://doi.org/10.1016/j.lithos.2009.05.009 [40] Wu, C.L., Yang, J.S., Yao, S.Z., et al., 2005.Characteristics of the Granitoid Complex and Its Zircon SHRIMP Dating at the South Margin of the Bashikaogong Basin, North Altun, NW Chin.Acta Petrologica Sinica, 21(3):846-858 (in Chinese with English abstract). https://www.researchgate.net/publication/279712843_Characteristics_of_the_granitoid_complex_and_its_zircon_SHRIMP_dating_at_the_south_margin_of_the_Bashikaogong_Basin_North_Altun_NW_China [41] Wu, C.L., Yao, S.Z., Zeng, L.S., et al., 2007.Bashikaogong-Shimierbulake Granitic Complex, North Altun, NW China:Geochemistry and Zircon SHRIMP Ages.Science in China (Series D):Earth Sciences, 37(1):10-26 (in Chinese). [42] Wu, F.Y., Jahn, B.M., Wilde, S.A., et al., 2003.Highly Fractionated Ⅰ-Type Granites in NE China (Ⅰ):Geochronology and Petrogenesis.Lithos, 66(3-4):241-273. https://doi.org/10.1016/s0024-4937(02)00222-0 [43] Wu, F., Y., Li, X.H., Yang, J.H., et al., 2007.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). [44] Wu, J., Lan, C.L., Li, J.L., et al., 2002.Geochemical Evidence of MORB and OIB Combination in Hongliugou Ophiolite Melanges, Altun Fault Belt.Acta Petrologica et Mineralogica, 21(1):24-30 (in Chinese with English abstract). https://www.researchgate.net/publication/288852094_Geochemical_evidence_of_MORB_and_OIB_combination_in_Hongliugou_ophiolite_melanges_Altun_fault_belt [45] Wu, S.P., Wang, M.Y., Qi, K.J., 2007.Present Situation of Researches on A-Type Granites:A Review.Acta Petrologica et Mineralogica, 26(1):57-66 (in Chinese with English abstract). [46] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1360/04wd0130 [47] Xu, Z.Q., Yang, J.S., Zhang, J.X., et al., 1999.A Comparison between the Tectonic Units on the Two Sides of the Altun Sinistral Strike-Slip Fault and the Mechanism of Lithospheric Shearing.Acta Geologica Sinica, 73(3):193-205 (in Chinese with English abstract). [48] Yang, J.S., Shi, R.D., Wu, C.L., et al., 2008.Petrology and SHRIMP Age of the Hongliugou Ophiolite at Milan, North Altun, at the Northern Margin of the Tibetan Plateau.Acta Petrologica Sinica, 24(7):1567-1584 (in Chinese with English abstract). [49] Yang, W.Q., Liu, L., Ding, H.B., et al., 2012.Geochemistry, Geochronology and Zircon Hf Isotopes of the Dimunalike Granite in South Altyn Tagh and Its Geological Significance.Acta Petrologica Sinica, 28(12):4139-4150 (in Chinese with English abstract). [50] Yang, Z. J., 2012. Early Palaeozoic Tectonic Evolution in Hongliugou, Altyn, Xinjiang (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [51] Yu, S.Y., Zhang, J.X., Li, S.Z., et al., 2017.Continuity of the North Qilian and North Altun Orogenic Belts of NW China:Evidence from Newly Discovered Palaeozoic Low-Mg and High-Mg Adakitic Rocks.Geological Magazine, 1-21. https://doi.org/10.1017/s0016756817000565 [52] Zhang, J.X., Meng, F.C., Yu, S.Y., et al., 2007.39Ar-40Ar Geochronology of High-Pressure/Low-Temperature Blueschist and Eclogite in the North Altyn Tagh and Their Tectonic Implications.Geology in China, 34(4):558-564 (in Chinese with English abstract). [53] Zhang, J.X., Zhang, Z.M., Xu, Z.Q., et al., 1999.The U-Pb and Sm-Nd Ages for Eclogite from the Western Segment of Altyn Tagh Tectonic Belt.Chinese Science Bulletin, 44(10):1109-1112 (in Chinese). doi: 10.1007/BF02885933.pdf [54] Zhang, Q., Ran, H., Li, C.D., 2012.A-Type Granite:What is the Essence?Acta Petrologica et Mineralogica, 31(4):621-626 (in Chinese with English abstract). [55] 陈宣华, Gehrels, G., 王小凤, 等, 2003.阿尔金山北缘花岗岩的形成时代及其构造环境探讨.矿物岩石地球化学通报, 22(4): 294-298. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200309001002.htm [56] 盖永升, 刘良, 康磊, 等, 2015.北阿尔金蛇绿混杂岩带中斜长花岗岩的成因及其地质意义.岩石学报, 31(9): 2549-2565. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201509007.htm [57] 韩宝福, 2007.后碰撞花岗岩类的多样性及其构造环境判别的复杂性.地学前缘, 14(3): 64-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200703006 [58] 韩凤彬, 陈柏林, 崔玲玲, 等, 2012.阿尔金山喀腊大湾地区中酸性侵入岩SHRIMP年龄及其意义.岩石学报, 28(7): 2277-2291. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201207027 [59] 郝杰, 王二七, 刘小汉, 等, 2006.阿尔金山脉中金雁山早古生代碰撞造山带:弧岩浆岩的确定与岩体锆石U-Pb和蛇绿混杂岩39Ar/40Ar年代学研究的证据.岩石学报, 22(11): 2743-2752. http://www.oalib.com/paper/4874341 [60] 郝瑞祥, 陈柏林, 陈正乐, 等, 2013.新疆阿尔金喀腊大湾地区玄武岩的地球化学特征及地质意义.地球学报, 34(3): 307-317. doi: 10.3975/cagsb.2013.03.06 [61] 康磊, 刘良, 曹玉亭, 等, 2011.北阿尔金构造带红柳沟钾长花岗岩地球化学特征、LA-ICP-MS锆石U-Pb定年和Hf同位素组成.地质通报, 30(7): 1066-1076. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD201107008.htm [62] 李松彬, 2013. 阿尔金北缘喀腊大湾地区早古生代构造演化(硕士学位论文). 北京: 中国地质科学院地质力学研究所. [63] 刘良, 1999. 阿尔金高压变质岩与蛇绿岩及其大地构造意义(博士学位论文). 北京: 中国科学院地质与地球物理研究所. [64] 刘良, 陈丹玲, 王超, 等, 2009.阿尔金、柴北缘与北秦岭高压-超高压岩石年代学研究进展及其构造地质意义.西北大学学报(自然科学版), 39(3): 472-479. http://mall.cnki.net/magazine/Article/XBDZ200903017.htm [65] 孟令通, 陈柏林, 王永, 等, 2016.北阿尔金早古生代构造体制转换的时限:来自花岗岩的证据.大地构造与成矿学, 40(2): 295-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201602010 [66] 戚学祥, 李海兵, 吴才来, 等, 2005.北阿尔金恰什坎萨依花岗闪长岩的锆石SHRIMP U-Pb定年及其地质意义.科学通报, 50(6): 571-576. http://www.oalib.com/paper/1683756 [67] 吴才来, 雷敏, 吴迪, 等, 2016.南阿尔金古生代花岗岩U-Pb定年及岩浆活动对造山带构造演化的响应.地质学报, 90(9): 2276-2315. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201609016.htm [68] 吴才来, 杨经绥, 姚尚志, 等, 2005.北阿尔金巴什考供盆地南缘花岗杂岩体特征及锆石SHRIMP定年.岩石学报, 21(3): 846-858. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200503024 [69] 吴才来, 姚尚志, 曾令森, 等, 2007.北阿尔金巴什考供-斯米尔布拉克花岗杂岩特征及锆石SHRIMP U-Pb定年.中国科学(D辑), 37(1): 10-26. [70] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6): 1217-1238. http://www.doc88.com/p-7925944469437.html [71] 吴峻, 兰朝利, 李继亮, 等, 2002.阿尔金红柳沟蛇绿混杂岩中MORB与OIB组合的地球化学证据.岩石矿物学杂志, 21(1): 24-30. http://d.wanfangdata.com.cn/Periodical/yskwxzz200201003 [72] 吴锁平, 王梅英, 戚开静, 2007.A型花岗岩研究现状及其述评.岩石矿物学杂志, 26(1): 57-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200701009 [73] 许志琴, 杨经绥, 张建新, 等, 1999.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制.地质学报, 73(3): 193-205. https://www.wenkuxiazai.com/doc/53c7204169eae009581becd7-2.html [74] 杨经绥, 史仁灯, 吴才来, 等, 2008.北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年.岩石学报, 24(7): 1567-1584. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20080713&journal_id=ysxb&year_id=2008 [75] 杨文强, 刘良, 丁海波, 等, 2012.南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb年代学与Hf同位素特征及其构造地质意义.岩石学报, 28(12): 4139-4150. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20121226&journal_id=ysxb [76] 杨子江, 2012. 新疆阿尔金红柳沟一带早古生代地质构造演化研究(博士学位论文). 北京: 中国地质科学院. [77] 张建新, 孟繁聪, 于胜尧, 等, 2007.北阿尔金HP/LT蓝片岩和榴辉岩的Ar-Ar年代学及其区域构造意义.中国地质, 34(4): 558-564. https://www.wenkuxiazai.com/doc/e5d964046edb6f1afe001f04.html [78] 张建新, 张泽明, 许志琴, 等.1999.阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄——阿尔金构造带中加里东期山根存在的证据.科学通报, 44(10): 1109-1112. doi: 10.3321/j.issn:0023-074X.1999.10.021 [79] 张旗, 冉皞, 李承东, 2012.A型花岗岩的实质是什么?岩石矿物学杂志, 31(4): 621-626. http://d.wanfangdata.com.cn/Periodical_yskwxzz201204014.aspx