Mineralogical Characteristics of Qingshan Granitic Pluton in North Qilian Orogenic Belt and Their Constraints on Petrogenesis
-
摘要: 北祁连造山带经历了洋盆的打开到闭合这一完整的Wilson旋回,并发育有大量与之相关的花岗质岩体.加深对花岗岩的研究可以为重建俯冲-增生/碰撞造山格架提供关键线索.对带内西段的青山二长花岗岩体进行了岩相学以及造岩矿物化学成分的电子探针原位分析,厘定了其矿物形成的物理化学条件,进一步约束了其岩石成因和构造背景.研究表明,青山二长花岗岩中钾长石全部为正长石,斜长石为中酸性的中长石和更长石,黑云母属镁质黑云母,角闪石则为镁角闪石亚类.锆石饱和温度平均为750 ℃,黑云母的结晶温度平均为647 ℃,氧逸度为-15,推测岩体固结压力约为1.85×108 Pa,形成深度约6.73 km.矿物化学特征显示,青山二长花岗岩为具Ⅰ型花岗岩特征的低熔线花岗岩,并具有壳幔岩浆混源的特点,可能为含水条件下形成的钙碱性花岗岩.Abstract: The North Qilian orogenic belt underwent a complete Wilson Cycle through opening and closing of an ocean basin. Deepening the research of granite within can provide pivotal clues to reconstruct the subduction-accretion/collision orogenic framework. On the basis of systematic petrological and petrographical research, this paper conducts electron microprobe analysis on the main rock-forming minerals, aiming to determine the physicochemical conditions during rock formation and provide further constraints on the petrogenesis and tectonic setting. Results show that Qingshan monzogranite is mainly composed of K-feldspar (orthoclase), plagioclase (andesine-oligoclase), biotite(magnesian biotite), amphibole (magnesiohornblende) and quartz. Zircon saturation thermometer shows that the average temperature of initial magma is 750℃. Meanwhile, mineral chemistry analysis reveals that the average crystallization temperature for biotite is 647℃ and the oxygen fugacity during the rock formation is -15, corresponding to solidification depth of 6.73 km and solidification pressure of 1.85×108 Pa. The data in this paper indicates that Qingshan monzogranite is Ⅰ-type subsolvus granite, with the features of crust-mantle mixed source. Thus, it is proposed that Qingshan monzogranite belongs to calc-alkaline granite and produced under water-bearing condition.
-
Key words:
- geothermo barometer /
- petrogenesis /
- mineralogical chemistry /
- monzogranite /
- North Qilian orogenic belt /
- petrology
-
图 1 北祁连造山带构造位置(a)、早古生代花岗岩分布(b)及青山二长花岗岩地质简图(c)
图a据许志琴等(1999);图b据Song et al.(2013)
Fig. 1. Tectonic position of North Qilian orogenic belt (a), distribution of Early Paleozoic granites (b) and geological sketch of Qingshan monzogranite (c)
图 2 青山二长花岗岩野外(a~b)及显微特征(c~d,正交偏光;e~f,单偏光)
Kfs.钾长石;Pl.斜长石;Qz.石英;Bt.黑云母;Amp.角闪石;缩写据Whitney and Evans(2010)
Fig. 2. Outcrops (a-b), crossed polarising filters (c-d) photomicrographs and plane polarized light (e-f) of Qingshan monzogranite
图 3 青山二长花岗岩长石端元组分图解
Fig. 3. End-member discrimination diagram for feldspars from Qingshan monzogranite
图 5 青山二长花岗岩黑云母分类图(a)和黑云母组成与氧缓冲对相关图(b)
图a据Foster(1960);图b据Wones and Eugster(1965)
Fig. 5. Classification diagram for biobite (a) and correlative diagram between biotite composition and oxygen buffer-reagents (b) from Qingshan monzogranite
图 6 青山二长花岗岩角闪石分类
Fig. 6. Classification for amphiboles from Qingshan monzogranite
图 7 青山二长花岗岩黑云母结晶温度Ti-Mg/(Mg+Fe)图
Fig. 7. Temperature isotherms calculated from the surface-fit equation on a Ti versus Mg/(Mg+Fe) diagram for biotites from Qingshan monzogranite
图 8 青山二长花岗岩黑云母lgfH2O-103/K稳定图解(a)和花岗岩温度-压力-水逸度图解(b)
图a据Wones(1981);图b据饶纪龙(1979)
Fig. 8. lgfH2O-103/K stability diagram for biotite (a) and temperature-pressure-water fugacity diagram (b) from Qingshan monzogranite
图 9 青山二长花岗岩黑云母MgO-FeOT/(FeOT+MgO)图解(a)和角闪石Al2O3-TiO2图解(b)
图a据周作侠(1986);图b据姜常义和安三元(1984)
Fig. 9. MgO versus FeOT/(FeOT+MgO) diagram for biotite (a) and Al2O3 versus TiO2 diagram for amphibole (b) from Qingshan monzogranite
图 10 青山二长花岗岩黑云母构造判别图解
Fig. 10. Tectonic discrimination diagrams for biotites from Qingshan monzogranite
表 1 青山二长花岗岩钾长石化学成分(%)
Table 1. Chemical compositions of K-feldspars from Qingshan monzogranite
编号 103-Q1-4 103-Q2-6 104-Q1-2 104-Q1-6 104-Q2-3 105-Q1-4 105-Q1-5 105-Q1-6 105-Q1-7 SiO2 64.55 65.16 64.56 64.55 65.81 65.06 65.26 65.58 65.14 Al2O3 17.83 18.01 17.86 18.24 19.00 18.26 18.26 18.32 18.70 CaO 0.10 0.00 0.04 0.04 0.02 0.02 0.03 0.00 0.03 Na2O 0.89 0.30 1.31 0.43 2.34 1.48 1.27 0.26 0.37 K2O 16.40 16.08 16.36 16.46 13.00 15.69 15.85 16.26 16.51 Si 3.00 3.02 3.00 3.00 2.99 2.99 3.00 3.01 2.99 Al 0.98 0.98 0.98 1.00 1.02 0.99 0.99 0.99 1.01 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Na 0.08 0.03 0.12 0.04 0.21 0.13 0.11 0.02 0.03 K 0.97 0.95 0.97 0.98 0.75 0.92 0.93 0.95 0.97 An 0.45 0.01 0.18 0.21 0.12 0.08 0.13 0.00 0.16 Ab 7.55 2.72 10.85 3.81 21.46 12.55 10.87 2.33 3.26 Or 91.99 97.27 88.97 95.98 78.42 87.36 89.00 97.67 96.58 表 2 青山二长花岗岩斜长石化学成分(%)
Table 2. Chemical compositions of plagioclases from Qingshan monzogranite
编号 104-Q2-4 103-Q1-3 103-Q2-1 103-Q2-2 103-Q2-8 105-Q1-10 SiO2 65.76 58.90 60.43 60.36 63.21 60.37 Al2O3 23.43 25.36 24.25 24.13 23.01 23.93 CaO 1.88 8.85 7.17 7.40 5.14 6.86 Na2O 8.20 6.29 7.30 7.51 8.36 7.78 K2O 0.34 0.22 0.44 0.35 0.32 0.32 Si 2.87 2.64 2.70 2.70 2.80 2.71 Al 1.21 1.34 1.28 1.27 1.20 1.27 Ca 0.09 0.43 0.34 0.35 0.24 0.33 Na 0.69 0.55 0.63 0.65 0.72 0.68 K 0.02 0.01 0.02 0.02 0.02 0.02 An 10.97 43.18 34.31 34.55 24.90 32.18 Ab 86.65 55.53 63.21 63.50 73.28 66.03 Or 2.39 1.29 2.48 1.95 1.82 1.79 表 3 青山二长花岗岩黑云母化学成分(%)
Table 3. Chemical compositions of biotites from Qingshan monzogranite
编号 103-Q1-1 103-Q1-2 103-Q1-5 103-Q2-3 103-Q2-4 103-Q2-10 105-Q1-1 105-Q1-2 105-Q1-3 SiO2 37.41 37.53 37.57 37.68 37.38 37.41 36.29 36.09 35.62 TiO2 4.54 4.44 4.15 4.63 4.59 4.64 4.76 4.03 4.69 Al2O3 13.00 13.05 13.13 12.83 12.59 13.15 13.18 13.70 13.60 FeOT 18.22 17.84 17.95 17.84 17.21 18.32 18.31 19.22 18.84 MnO 0.15 0.02 0.07 0.05 0.13 0.12 0.14 0.19 0.26 MgO 12.51 12.75 12.59 12.40 12.36 12.48 12.45 13.22 12.54 CaO 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.05 1.12 Na2O 0.22 0.13 0.14 0.22 0.39 0.30 0.07 0.05 0.05 K2O 10.25 10.27 10.09 10.21 10.11 10.38 9.89 10.08 9.16 F 0.36 0.16 0.12 0.21 0.27 0.28 0.61 0.31 0.38 Cl 0.04 0.05 0.04 0.05 0.05 0.09 0.02 0.03 0.02 Si 2.82 2.83 2.85 2.85 2.85 2.81 2.75 2.73 2.71 AlⅣ 1.15 1.16 1.15 1.14 1.13 1.16 1.18 1.22 1.22 AlⅥ 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 Ti 0.26 0.25 0.24 0.26 0.26 0.26 0.27 0.23 0.27 Fe3+ 0.19 0.18 0.19 0.20 0.20 0.17 0.20 0.12 0.18 Fe2+ 0.96 0.94 0.95 0.92 0.90 0.98 0.96 1.10 1.01 Mn 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 Mg 1.41 1.44 1.42 1.40 1.41 1.40 1.41 1.49 1.42 Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.09 Na 0.03 0.02 0.02 0.03 0.06 0.04 0.01 0.01 0.01 K 0.99 0.99 0.98 0.98 0.98 0.99 0.96 0.97 0.89 Total 7.81 7.82 7.81 7.80 7.80 7.83 7.80 7.88 7.82 MF 0.55 0.56 0.55 0.55 0.56 0.55 0.55 0.55 0.54 AlVI+Fe3++Ti 0.45 0.44 0.44 0.47 0.46 0.43 0.47 0.35 0.45 Fe2++Mn 0.97 0.94 0.96 0.93 0.91 0.99 0.97 1.11 1.03 T(℃) 648.00 647.00 635.00 653.00 655.00 651.00 656.00 628.00 653.00 表 4 青山二长花岗岩角闪石化学成分(%)
Table 4. Chemical compositions of amphibole from Qingshan monzogranite
编号 103-Q1-6 103-Q1-7 103-Q2-7 103-Q2-9 104-Q1-1 SiO2 50.53 52.03 50.07 49.42 50.88 Al2O3 3.90 3.66 4.87 6.01 4.18 TiO2 0.54 0.56 0.65 0.93 0.52 Cr2O3 0.05 0.01 0.00 0.00 0.02 MgO 14.99 15.20 14.25 13.67 14.22 FeOT 14.04 13.20 14.34 14.27 13.97 MnO 0.20 0.32 0.33 0.30 0.30 CaO 12.49 12.58 12.71 12.11 12.69 Na2O 0.81 0.69 0.87 1.44 0.74 K2O 0.33 0.35 0.45 0.49 0.37 Si 7.33 7.47 7.26 7.19 7.41 Al 0.67 0.53 0.75 0.82 0.59 Ti 0.00 0.00 0.00 0.00 0.00 Sum_T 8.00 8.00 8.00 8.00 8.00 Al 0.00 0.09 0.09 0.22 0.13 Ti 0.06 0.06 0.07 0.10 0.06 Cr3+ 0.01 0.00 0.00 0.00 0.00 Fe3+ 0.33 0.13 0.22 0.02 0.10 Mg 3.24 3.25 3.08 2.96 3.09 Fe 1.37 1.46 1.52 1.70 1.61 Mn 0.00 0.01 0.03 0.00 0.03 Sum_C 5.00 5.00 5.00 5.00 5.00 Fe 0.00 0.00 0.00 0.02 0.00 Mn 0.02 0.03 0.01 0.04 0.01 Ca 1.94 1.94 1.97 1.89 1.98 Na 0.03 0.03 0.01 0.06 0.01 Sum_B 2.00 2.00 2.00 2.00 2.00 Na 0.20 0.16 0.23 0.35 0.20 K 0.06 0.06 0.08 0.09 0.07 Sum_A 0.26 0.22 0.31 0.44 0.27 -
[1] Abdel-Rahman, A.F.M., 1994.Nature of Biotites from Alkaline, Calc-Alkaline, and Peraluminous Magmas.Journal of Petrology, 35(2):525-541. https://doi.org/10.1093/petrology/35.2.525 [2] Anderson, J.L., Smith, D.R., 1995.The Effects of Temperature and fO2 on the Al-in-Hornblende Barometer.American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-614 [3] Blundy, J.D., Holland, T.J.B., 1990.Calcic Amphibole Equilibria and a New Amphibole-Plagioclase Geothermometer.Contributions to Mineralogy and Petrology, 104(2):208-224. https://doi.org/10.1007/bf00306444 [4] Chappell, B.W., White, A.J.R., 1974.Two Contrasting Granite Types.Pacific Geology, 8:173-174. [5] Chen, S., Niu, Y.L., Li, J.Y., et al., 2016.Syn-Collisional Adakitic Granodiorites Formed by Fractional Crystallization:Insights from Their Enclosed Mafic Magmatic Enclaves (MMEs) in the Qumushan Pluton, North Qilian Orogen at the Northern Margin of the Tibetan Plateau.Lithos, 248-251:455-468. https://doi.org/10.1016/j.lithos.2016.01.033 [6] Chen, Y. X., 2014. Granitic Magmatism in Association with Oceanic Subduction and Continental Collision in the North Qilian Orogenic Belt (Dissertation). Peking University, Beijing (in Chinese with English abstract). [7] Chen, Y.X., Song, S.G., Niu, Y.L., et al., 2014.Melting of Continental Crust during Subduction Initiation:A Case Study from the Chaidanuo Peraluminous Granite in the North Qilian Suture Zone.Geochimica et Cosmochimica Acta, 132:311-336. https://doi.org/10.1016/j.gca.2014.02.011 [8] Cui, J.W., Zheng, Y.Y., Sun, X., et al., 2016.Origin of Granodiorite and Mafic Microgranular Enclave in Saizhisi, Qinghai Province:Zircon U-Pb Geochronological, Geochemical and Sr-Nd-Hf Isotopic Constraints.Earth Science, 41(7):1156-1170 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.515 [9] Ding, X.S., 1988.Study of Typomorphic Characteristics of Micas from Granitoids in Central Southern Xizang and Their Geological Significance.Bulletin of the Institute of Mineral Deposits Chinese Academy of Geological Sciences, 1:33-50 (in Chinese). [10] Foster, M.D., 1960.Interpretation of the Composition of Trioctahedral Mica.U.S.Geological Survey Professional Paper, 354-B:11-48. [11] Guo, Y.Y., He, W.Y., Li, Z.C., et al., 2015.Petrogenesis of Geerkuohe Porphyry Granitoid, Western Qinling:Constraints from Mineral Chemical Characteristics of Biotites.Acta Petrologica Sinica, 31(11):3380-3390 (in Chinese with English abstract). https://www.researchgate.net/publication/290297148_Petrogenesis_of_Ge'erkuohe_porphyry_granitoid_western_Qinling_Constraints_from_mineral_chemical_characteristics_of_biotites [12] Henry, D.J., Guidotti, C.V., Thomson, J.A., 2005.The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites:Implications for Geothermometry and Ti-Substitution Mechanisms.American Mineralogist, 90(2-3):316-328. doi: 10.2138/am.2005.1498 [13] Holland, T., Blundy, J., 1994.Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry.Contributions to Mineralogy and Petrology, 116(4):433-447. https://doi.org/10.1007/bf00310910 [14] Hou, Q.Y., Zhao, Z.D., Zhang, H.F., et al., 2005.Indian Ocean MORB-Type Isotopic Signature of Yushigou Ophiolite in North Qilian Mountains and Its Implications.Science in China (Series D):Earth Sciences, 35(8):710-719 (in Chinese). [15] Jiang, C.Y., An, S.Y., 1984.On Chemical Characteristics of Calcic Amphiboles from Igneous Rocks and Their Petrogenesis Significance.Minerals and Rocks, 4(3):1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS198403000.htm [16] Johnson, M.C., Rutherford, M.J., 1989.Experimental Calibration of the Aluminum-in-Hornblende Geobarometer with Application to Long Valley Caldera (California) Volcanic Rocks.Geology, 17(9):837-841.https://doi.org/10.1130/0091-7613(1989)017<0837:ecotai>2.3.co; 2 doi: 10.1130/0091-7613(1989)017<0837:ecotai>2.3.co;2 [17] Kumar, S., Pathak, M., 2010.Mineralogy and Geochemistry of Biotites from Proterozoic Granitoids of Western Arunachal Himalaya:Evidence of Bimodal Granitogeny and Tectonic Affinity.Journal of the Geological Society of India, 75(5):715-730. https://doi.org/10.1007/s12594-010-0058-0 [18] Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997.Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.European Journal of Mineralogy, 9(3):623-651. https://doi.org/10.1127/ejm/9/3/0623 [19] Liu, C.H., Wu, C.L., .Lei, M., et al., 2013.Mineral Composition and Temperature-Pressure Conditions of Dongjiangkou and Zhashui Granites in the Qinling Mountains.Acta Petrologica et Mineralogica, 32(3):341-354 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_yskwxzz201303006.aspx [20] Miller, C.F., 1985.Are Strongly Peraluminous Magmas Derived from Pelitic Sedimentary Sources?The Journal of Geology, 93(6):673-689. https://doi.org/10.1086/628995 [21] Miller, C.F., McDowell, S.M., Mapes, R.W., 2003.Hot and Cold Granites?Implications of Zircon Saturation Temperatures and Preservation of Inheritance.Geology, 31(6):529.https://doi.org/10.1130/0091-7613(2003)031<0529:hacgio>2.0.co; 2 doi: 10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2 [22] Rao, J.L., 1979.Thermodynamics in Geochemistry.Science Press, Beijing (in Chinese). [23] Sai, S.X., Zhao, T.M., Wang, Z.L., et al., 2016.Petrogenesis of Linglong Biotite Granite:Constraints from Mineralogical Characteristics.Acta Petrologica Sinica, 32(8):2477-2493 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20160817&journal_id=ysxb [24] Sang, L. K., Ma, C. Q., 2012. Petrology. Geological Publishing House, Beijing (in Chinese). [25] Schmidt, M.W., 1992.Amphibole Composition in Tonalite as a Function of Pressure:An Experimental Calibration of the Al-in-Hornblende Barometer.Contributions to Mineralogy and Petrology, 110(2-3):304-310. doi: 10.1007/BF00310745 [26] Shi, R.D., Yang, J.S., Wu, C.L., et al., 2004.First SHRIMP Dating for the Formation of the Late Sinian Yushigou Ophiolite, North Qilian Mountains.Acta Geologica Sinica, 78(5):649-657 (in Chinese with English abstract). [27] Smith, J. V., 1974. Feldspar Minerals: 2 Chemical and Textural Properties. Springer, New York. [28] Song, S.G., Niu, Y.L., Su, L., et al., 2013.Tectonics of the North Qilian Orogen, NW China.Gondwana Research, 23(4):1378-1401. https://doi.org/10.1016/j.gr.2012.02.004 [29] Song, S.G., Niu, Y.L., Zhang, L.F., et al., 2009a.Tectonic Evolution of Early Paleozoic HP Metamorphic Rocks in the North Qilian Mountains, NW China:New Perspectives.Journal of Asian Earth Sciences, 35(3-4):334-353. https://doi.org/10.1016/j.jseaes.2008.11.005 [30] Song, S.G., Su, L., Niu, Y.L., et al., 2009b.CH4 Inclusions in Orogenic Harzburgite:Evidence for Reduced Slab Fluids and Implication for Redox Melting in Mantle Wedge.Geochimica et Cosmochimica Acta, 73(6):1737-1754. https://doi.org/10.1016/j.gca.2008.12.008 [31] Song, S.G., Zhang, L.F., Niu, Y.L., et al., 2007.Eclogite and Carpholite-Bearing Metasedimentary Rocks in the North Qilian Suture Zone, NW China:Implications for Early Palaeozoic Cold Oceanic Subduction and Water Transport into Mantle.Journal of Metamorphic Geology, 25(5):547-563. https://doi.org/10.1111/j.1525-1314.2007.00713.x [32] Su, J.P., Zhang, X.H., Hu, N.G., et al., 2004.Geochemical Characteristics and Genesis of Adakite-Like Granites at Yema Nanshan in the Western Segment of the Central Qilian Mountains.Geology in China, 31(4):365-371 (in Chinese with English abstract). [33] Tseng, C.Y., Yang, H.J., Yang, H.Y., et al., 2007.The Dongcaohe Ophiolite from the North Qilian Mountains:A Fossil Oceanic Crust of the Paleo-Qilian Ocean.Chinese Science Bulletin, 52(17):2390-2401. https://doi.org/10.1007/s11434-007-0300-3 [34] Tseng, C.Y., Yang, H.J., Yang, H.Y., et al., 2009.Continuity of the North Qilian and North Qinling Orogenic Belts, Central Orogenic System of China:Evidence from Newly Discovered Paleozoic Adakitic Rocks.Gondwana Research, 16(2):285-293. https://doi.org/10.1016/j.gr.2009.04.003 [35] Uchida, E., Endo, S., Makino, M., 2007.Relationship between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits.Resource Geology, 57(1):47-56. https://doi.org/10.1111/j.1751-3928.2006.00004.x [36] Wang, N., 2016. The Paleozoic Granitic Magmatism and the Continental Dynamic Significance of the Eastern Altyn Tagh Fault Belt (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [37] Wang, N., Wu, C.L., Ma, C.Q., et al., 2016a.Geochemistry, Zircon U-Pb Geochronology and Hf Isotopic Characteristics for Granites in Sanweishan Area, Dunhuang Block.Acta Geologica Sinica, 90(10):2681-2705 (in Chinese with English abstract). [38] Wang, N., Wu, C.L., Ma, C.Q., et al., 2016b.Geochemistry, Zircon U-Pb Geochronology and Hf Isotopic Characteristics for Granites in Southern Dunhuang Block.Acta Petrologica Sinica, 32(12):3753-3780 (in Chinese with English abstract). [39] Wang, N., Wu, C.L., Ma, C.Q., 2017a.The Paleozoic Granitic Magmatism of the Western Altyn Tagh Fault Belt and Its Continental Dynamic Significance.Acta Geoscientica Sinica, 38(Suppl.):33-37 (in Chinese with English abstract). [40] Wang, N., Wu, C.L., Qin, H.P., 2017b.Mineralogical, Geochemical Features of Typical Mesozoic Granites in the Yidun Arc, Western Sichuan and a Discussion on the Magma Origin.Geological Review, 64(3):981-1000 (in Chinese with English abstract). [41] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x [42] Whalen, J.B., Chappell, B.W., 1988.Opaque Mineralogy and Mafic Mineral Chemistry of I-and S-Type Granites of Lachlan Fold Belt, Southeast Australia.American Mineralogist, 73(3):281-296. [43] Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. doi: 10.2138/am.2010.3371 [44] Wones, D.R., 1981.Mafic Silicates as Indicators of Intensive Variables in Granitic Magmas.Mining Geology, 31(168):191-212. [45] Wones, D.R., 1989.Significance of the Assemblage Titanite+Magnetite+Quartz in Granitic Rocks.American Mineralogist, 74(7):744-749. http://rruff.info/doclib/am/vol74/AM74_744.pdf [46] Wones, D.R., Eugster, H.P., 1965.Stability of Biotite:Experiment, Theory, and Application.American Mineralogist, 50(9):1228-1272. http://rruff.info/doclib/am/vol50/AM50_1228.pdf [47] Wu, C.L., Xu, X.Y., Gao, Q.M., et al., 2010.Early Paleozoic Granitoid Magmatism and Tectonic Evolution in North Qilian, NW China.Acta Petrologica Sinica, 26(4):1027-1044 (in Chinese with English abstract). [48] Wu, C.L., Yang, J.S., Yang, H.Y., et al., 2004.Dating of Two Types of Granite from North Qilian, China.Acta Petrologica Sinica, 20(3):425-432 (in Chinese with English abstract). http://www.oalib.com/paper/1473155 [49] Wu, C.L., Yao, S.Z., Yang, J.S., et al., 2006.Double Subduction of the Early Paleozoic North Qilian Oceanic Plate:Evidence from Granites in the Central Segment of North Qilian, NW China.Geology in China, 33(6):1197-1208 (in Chinese with English abstract). [50] Xia, X.H., Song, S.G., 2010.Forming Age and Tectono-Petrogeneses of the Jiugequan Ophiolite in the North Qilian Mountain, NW China.Chinese Science Bulletin, 55(15):1465-1473 (in Chinese). doi: 10.1007/s11434-010-3207-3 [51] Xia, X.H., Song, S.G., Niu, Y.L., 2012.Tholeiite-Boninite Terrane in the North Qilian Suture Zone:Implications for Subduction Initiation and Back-Arc Basin Development.Chemical Geology, 328(11):259-277. https://doi.org/10.1016/j.chemgeo.2011.12.001 [52] Xie, Y.W., Zhang, Y.Q., 1995.Compositional Characteristics and Petrological Significance of Mg-Fe Micas in Alkalic Rocks of the Ailaoshan-Jishajiang Rift System.Acta Mineralogica Sinica, 15(1):82-87 (in Chinese with English abstract). [53] Xu, Z.Q., Yang, J.S., Zhang, J.X., et al.1999.A Comparison between the Tectonic Units on the Two Sides of the Altun Sinistral Strike-Slip Fault and the Mechanism of Lithospheric Shearing.Acta Geologica Sinica, 73(3):193-205 (in Chinese with English abstract). [54] Yu, S.Y., Zhang, J.X., Mattinson C.G., 2014.Paleozoic HP Granulite-Facies Metamorphism and Anatexis in the Dulan Area of the North Qaidam UHP Terrane, Western China:Constraints from Petrology, Zircon U-Pb and Amphibole Ar-Ar Geochronology.Lithos, 198-199:58-76. doi: 10.1016/j.lithos.2014.03.016 [55] Yu S.Y., Zhang J.X., Qin H.P., et al., 2015.Petrogenesis of the Early Paleozoic Low-Mg and High-Mg Adakitic Rocks in the North Qilian Orogenic Belt, NW China:Implications for Transition from Crustal Thickening to Extension Thinning.Journal of Asian Earth Sciences, 107:122-139. https://doi.org/10.1016/j.jseaes.2015.04.018 [56] Yu, S.Y., Zhang, J.X., Real, P.G.D., et al., 2013.The Grenvillian Orogeny in the Altun-Qilian-North Qaidam Mountain Belts of Northern Tibet Plateau:Constraints from Geochemical and Zircon U-Pb Age and Hf Isotopic Study of Magmatic Rocks.Journal of Asian Earth Sciences, 73:372-395. doi: 10.1016/j.jseaes.2013.04.042 [57] Yu, S.Y., Zhang, J.X., Real, P.G.D., 2012.Geochemistry and Zircon U-Pb Ages of Adakitic Rocks from the Dulan Area of the North Qaidam UHP Terrane, North Tibet:Constraints on the Timing and Nature of Regional Tectonothermal Events Associated with Collisional Orogeny.Gondwana Research, 21(1):167-179. doi: 10.1016/j.gr.2011.07.024 [58] Zhao, X.M., Zhang, Z.H., Guo, S.F., et al., 2014.Mineral and Sulfide Isotopic Characteristics of Xiaoliugou W-Mo Deposit in Northwest Qilian Mountian and Their Geological Significance.Mineral Deposits, 33(6):1338-1356 (in Chinese with English abstract). [59] Zhou, Y., Liang, X.Q., Cai, Y.F., et al., 2017.Petrogenesis and Mineralization of Xitian Tin-Tungsten Polymetallic Deposit:Constraints from Mineral Chemistry of Biotite from Xitian A-Type Granite, Eastern Hunan Province.Earth Science, 42(10):1647-1657 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.557 [60] Zhou, Z.X., 1986.The Origin of Intrusive Mass in Fengshandong, Hubei Province.Acta Petrologica Sinica, 2(1):59-70 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB198601007.htm [61] 陈育晓, 2014. 北祁连造山带与俯冲和碰撞相关的花岗质岩浆作用(博士学位论文). 北京: 北京大学. [62] 崔加伟, 郑有业, 孙祥, 等, 2016.青海省赛支寺花岗闪长岩及其暗色包体成因:锆石U-Pb年代学、岩石地球化学和Sr-Nd-Hf同位素制约.地球科学, 41(7): 1156-1170. https://doi.org/10.3799/dqkx.2016.515 [63] 丁孝石, 1988.西藏中南部花岗岩类中云母矿物标型特征及其地质意义.中国地质科学院矿床地质研究所所刊, 1: 33-50. [64] 郭耀宇, 和文言, 李在春, 等, 2015.西秦岭格尔括合花岗闪长斑岩岩石成因:黑云母矿物学特征约束.岩石学报, 31(11): 3380-3390. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20151115&journal_id=ysxb&year_id=2015 [65] 侯青叶, 赵志丹, 张宏飞, 等, 2005.北祁连玉石沟蛇绿岩印度洋MORB型同位素组成特征及其地质意义.中国科学(D辑:地球科学), 35(8): 710-719. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200508003 [66] 姜常义, 安三元, 1984.论火成岩中钙质角闪石的化学组成特征及其岩石学意义.矿物岩石, (3): 1-9. https://www.wenkuxiazai.com/doc/3b69ffa858f5f61fb73666f7.html [67] 刘春花, 吴才来, 雷敏, 等, 2013.秦岭东江口和柞水花岗岩的矿物成分特征及其形成的温压条件.岩石矿物学杂志, 32(3): 341-354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201303006 [68] 饶纪龙, 1979.地球化学中的热力学.北京:科学出版社, 1-237. [69] 赛盛勋, 赵天明, 王中亮, 等, 2016.玲珑黑云母花岗岩成因:矿物学特征约束.岩石学报, 32(8): 2477-2493. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20160817&journal_id=ysxb&year_id=2016 [70] 桑隆康, 马昌前, 2012.岩石学.北京:地质出版社. [71] 史仁灯, 杨经绥, 吴才来, 等, 2004.北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据.地质学报, 78(5): 649-657. http://www.cqvip.com/qk/95080X/200405/10866792.html [72] 苏建平, 张新虎, 胡能高, 等, 2004.中祁连西段野马南山埃达克质花岗岩的地球化学特征及成因.中国地质, 31(4): 365-371. http://www.cqvip.com/QK/90050X/200404/11250709.html [73] 王楠, 2016. 阿尔金断裂带东段古生代花岗岩浆作用及其大陆动力学意义(博士学位论文). 武汉: 中国地质大学. [74] 王楠, 吴才来, 马昌前, 2017a.阿尔金断裂带东段古生代花岗岩浆作用及其大陆动力学意义.地球学报, 38(S1): 33-37. [75] 王楠, 吴才来, 马昌前, 等, 2016a.敦煌地块三危山地区花岗岩体地球化学、锆石U-Pb定年及Hf同位素特征.地质学报, 90(10): 2681-2705. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20161214&year_id=2016&quarter_id=12&falg=1 [76] 王楠, 吴才来, 马昌前, 等, 2016b.敦煌地块南部古生代花岗岩地球化学、锆石U-Pb定年及Hf同位素特征研究.岩石学报, 32(12): 3753-3780. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20161214 [77] 王楠, 吴才来, 秦海鹏, 2017b.川西义敦岛弧中生代典型花岗岩体矿物学、地球化学特征及岩浆来源探讨.地质论评, 63(4): 981-1000. [78] 吴才来, 徐学义, 高前明, 等, 2010.北祁连早古生代花岗质岩浆作用及构造演化.岩石学报, 26(4): 1027-1044. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20100403 [79] 吴才来, 杨经绥, 杨宏仪, 等, 2004.北祁连东部两类Ⅰ型花岗岩定年及其地质意义.岩石学报, 20(3): 425-432. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403006 [80] 吴才来, 姚尚志, 杨经绥, 等, 2006.北祁连洋早古生代双向俯冲的花岗岩证据.中国地质, 33(6): 1197-1208. http://www.cqvip.com/QK/90050X/200606/23559664.html [81] 夏小洪, 宋述光, 2010.北祁连山肃南九个泉蛇绿岩形成年龄和构造环境.科学通报, 55(15): 1465-1473. http://www.cqvip.com/QK/94252X/201015/34284229.html [82] 谢应雯, 张玉泉, 1995.哀牢山-金沙江裂谷系岩石中镁铁云母成分特征及其岩石学意义.矿物学报, 15(1): 82-87. [83] 许志琴, 杨经绥, 张建新, 等, 1999.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制.地质学报, 73(3): 193-205. https://www.wenkuxiazai.com/doc/53c7204169eae009581becd7-2.html [84] 赵辛敏, 张作衡, 郭少丰, 等, 2014.北祁连西段小柳沟钨钼矿床矿物学、硫同位素特征及其地质意义.矿床地质, 33(6): 1338-1356. http://www.oalib.com/paper/4572552 [85] 周云, 梁新权, 蔡永丰, 等, 2017.湘东锡田燕山期A型花岗岩黑云母矿物化学特征及其成岩成矿意义.地球科学, 42(10): 1647-1657. https://doi.org/10.3799/dqkx.2017.557 [86] 周作侠, 1986.湖北丰山洞岩体成因探讨.岩石学报, 2(1): 59-70. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=19860108&journal_id=ysxb