• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑五龙沟地区晚志留世A型花岗岩成因:U-Pb年代学、地球化学、Nd及Hf同位素制约

    王艺龙 李艳军 魏俊浩 李欢 韩玉 周红智 黄啸坤 柯坤家

    王艺龙, 李艳军, 魏俊浩, 李欢, 韩玉, 周红智, 黄啸坤, 柯坤家, 2018. 东昆仑五龙沟地区晚志留世A型花岗岩成因:U-Pb年代学、地球化学、Nd及Hf同位素制约. 地球科学, 43(4): 1219-1236. doi: 10.3799/dqkx.2018.717
    引用本文: 王艺龙, 李艳军, 魏俊浩, 李欢, 韩玉, 周红智, 黄啸坤, 柯坤家, 2018. 东昆仑五龙沟地区晚志留世A型花岗岩成因:U-Pb年代学、地球化学、Nd及Hf同位素制约. 地球科学, 43(4): 1219-1236. doi: 10.3799/dqkx.2018.717
    Wang Yilong, Li Yanjun, Wei Junhao, Li Huan, Han Yu, Zhou Hongzhi, Huang Xiaokun, Ke Kunjia, 2018. Origin of Late Silurian A-Type Granite in Wulonggou Area, East Kunlun Orogen: Zircon U-Pb Age, Geochemistry, Nd and Hf Isotopic Constraints. Earth Science, 43(4): 1219-1236. doi: 10.3799/dqkx.2018.717
    Citation: Wang Yilong, Li Yanjun, Wei Junhao, Li Huan, Han Yu, Zhou Hongzhi, Huang Xiaokun, Ke Kunjia, 2018. Origin of Late Silurian A-Type Granite in Wulonggou Area, East Kunlun Orogen: Zircon U-Pb Age, Geochemistry, Nd and Hf Isotopic Constraints. Earth Science, 43(4): 1219-1236. doi: 10.3799/dqkx.2018.717

    东昆仑五龙沟地区晚志留世A型花岗岩成因:U-Pb年代学、地球化学、Nd及Hf同位素制约

    doi: 10.3799/dqkx.2018.717
    基金项目: 

    国家自然科学基金项目 41672083

    国家自然科学基金项目 41202054

    中央高校基本科研业务费区域引导专项 CUGQYZX1708

    中国地质调查局地质调查项目 12120114081101

    详细信息
      作者简介:

      王艺龙(1990-), 男, 工程师, 主要从事区域地质调查工作

      通讯作者:

      李艳军, E-mail:liyanjun21023@163.com

    • 中图分类号: P597

    Origin of Late Silurian A-Type Granite in Wulonggou Area, East Kunlun Orogen: Zircon U-Pb Age, Geochemistry, Nd and Hf Isotopic Constraints

    • 摘要: 东昆仑造山带东段五龙沟金矿田内首次发现晚志留世A型花岗岩体.对其开展了锆石U-Pb年代学、岩石地球化学、Nd及Hf同位素研究,探讨岩体成因和构造背景.岩体LA-ICP-MS锆石U-Pb定年结果为420±3 Ma,为晚志留世岩浆活动产物.岩石具有高SiO2(76.0%~78.4%)、K2O(4.64%~5.22%)和Na2O(2.93%~3.25%)含量,低FeOT(0.98%~1.45%)、MgO(0.11%~0.22%)和CaO(0.27%~0.79%)含量特征.样品富集大离子亲石元素(Rb、K、La)和LREE,亏损高场强元素(Nb、P、Ti)和HREE,具有强烈的Eu负异常(Eu/Eu*=0.09~0.12).该岩体104×Ga/Al比值为3.09~3.15,具有A型花岗岩的特征.全岩εNdt)=-2.5~-2.2,对应的二阶段模式年龄tDM2(Nd)=1 339~1 365 Ma.锆石εHft)=-2.8~+2.1,二阶段模式年龄tDM2(Hf)=1 269~1 583 Ma.地球化学、Nd及Hf同位素揭示该岩体为软流圈地幔部分熔融形成的幔源岩浆与其诱发的古老地壳物质混合形成.构造判别图解指示岩体具有A2型花岗岩特征,形成于后碰撞伸展构造环境.结合和勒冈那仁和冰沟A型花岗岩体,认为东昆仑地区至少在晚志留世已进入伸展阶段.

       

    • 图  1  东昆仑构造位置图(a),东昆仑地区地质简图(b)和红旗沟岩体地质简图(c)

      图a据Xu et al.(2001);图b修编自Zhang et al.(2014)

      Fig.  1.  Geotectonic framework (a), geological map of the East Kunlun orogen belt (b) and simplified geological map of the Hongqigou granite (c)

      图  2  五龙沟地区红旗沟正长花岗岩野外照片(a)和镜下照片(正交偏光)(b)

      Kfs.碱性长石;Pl.斜长石;Bi.黑云母;Q.石英

      Fig.  2.  Field pictures (a) and microphotographs (b) of the Hongqigou syenogranite from the Wulonggou area

      图  3  红旗沟正长花岗岩样品(WSMG-1)典型锆石CL图及U-Pb定年结果

      实线圈和虚线圈分别代表U-Pb和Hf同位素分析测试点

      Fig.  3.  Cathodoluminescence images for zircons of sample WSMG-1 showing sites of U-Pb (solid circles) and Hf (dashed circles) analyses

      图  4  红旗沟正长花岗岩K2O-SiO2(a)和A/NK-A/CNK(b)关系

      图a底图据Collins et al.(1982);图b底图据Maniar and Piccoli(1989).数据来源:和勒冈那仁碱长花岗岩据Li et al.(2013);冰沟正长花岗岩据刘彬等(2013a)

      Fig.  4.  K2O vs. SiO2 (a) and A/NK vs. A/CNK (b) diagrams for the Hongqigou syenogranite

      图  5  红旗沟正长花岗岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)

      标准化数据引自Sun and McDonough(1989).数据来源同图 4

      Fig.  5.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element patterns (b) for the Hongqigou syenogranite

      图  6  红旗沟正长花岗岩成因类型判别图解

      底图据Whalen et al.(1987);数据来源同图 4

      Fig.  6.  Petrogenesis discrimination diagrams for the Hongqigou syenogranite

      图  7  红旗沟正长花岗岩锆石Hf同位素组成图解(a)和t-εNd(t)图解(b)

      数据来源:东昆仑基底据余能等(2005);胡晓钦镁铁质岩石据刘彬等(2013b);Yikehalaer花岗闪长岩据Li et al.(2015);猴头沟二长花岗岩据严威等(2016);跃进山辉长岩据刘彬等(2012);冰沟正长花岗岩据刘彬等(2013a);红旗沟辉长岩为项目组未发表数据

      Fig.  7.  Hf isotopic compositions of zircons (a) and t-εNd(t) (b) diagrams for the Hongqigou syenogranite

      图  8  红旗沟正长花岗岩Rb-(Y+Nb)(a)和Rb/30-Hf-Y-3Ta(b)构造环境判别图解

      图a底图据Pearce(1996);图b底图据Harris et al.(1986)数据来源同图 4

      Fig.  8.  Rb vs. Y+Nb (a) and Rb/30-Hf-Y-3Ta (b) discrimination diagrams of the Hongqigou syenogranite

      图  9  红旗沟正长花岗岩R1-104×Ga/Al(a)和Nb-Y-3Ga(b)图解

      图a据Hong et al.(1996);图b据Eby(1992).数据来源同图 4

      Fig.  9.  R1 vs. 104×Ga/Al (a) and Nb-Y-3Ga (b) diagrams of the Hongqigou syenogranite

      表  1  五龙沟地区红旗沟正长花岗岩(WSMG-1)锆石LA-ICP-MS U-Pb定年分析数据

      Table  1.   Zircon LA-ICP-MS U-Pb data of the Hongqigou syenogranite sample (WSMG-1) from Wulonggou area

      点号 232Th
      (10-6)
      238U
      (10-6)
      Th/U U-Th-Pb同位素比值 年龄(Ma)
      207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ
      WSMG-1-01 399 652 0.61 0.05570 0.00135 0.51460 0.01491 0.06701 0.00089 0.02246 0.00077 440 53 422 10 418 5 449 15
      WSMG-1-02 290 317 0.92 0.05530 0.00150 0.51297 0.01615 0.06728 0.00093 0.02009 0.00070 424 59 420 11 420 6 402 14
      WSMG-1-03 130 172 0.75 0.05586 0.00156 0.52080 0.01744 0.06763 0.00099 0.01950 0.00059 447 61 426 12 422 6 390 12
      WSMG-1-04 231 330 0.70 0.05585 0.00141 0.51808 0.01536 0.06728 0.00090 0.02067 0.00069 446 55 424 10 420 5 414 14
      WSMG-1-05 446 605 0.74 0.05529 0.00164 0.50959 0.01696 0.06685 0.00093 0.02315 0.00127 424 64 418 11 417 6 463 25
      WSMG-1-06 273 399 0.68 0.05532 0.00123 0.51679 0.01438 0.06776 0.00091 0.02038 0.00050 425 48 423 10 423 5 408 10
      WSMG-1-07 173 351 0.49 0.05558 0.00190 0.51689 0.01950 0.06748 0.00100 0.02060 0.00122 435 74 423 13 421 6 412 24
      WSMG-1-08 227 234 0.97 0.05546 0.00232 0.51464 0.02357 0.06732 0.00112 0.01983 0.00123 431 91 422 16 420 7 397 24
      WSMG-1-09 167 252 0.66 0.05542 0.00192 0.51702 0.01964 0.06764 0.00101 0.02066 0.00120 429 75 423 13 422 6 413 24
      WSMG-1-10 460 660 0.70 0.05584 0.00141 0.51730 0.01552 0.06718 0.00092 0.02320 0.00102 446 55 423 10 419 6 464 20
      WSMG-1-11 143 148 0.97 0.05558 0.00242 0.51522 0.02438 0.06723 0.00113 0.01984 0.00120 436 94 422 16 420 7 397 24
      WSMG-1-12 225 288 0.78 0.05536 0.00183 0.51131 0.01952 0.06701 0.00103 0.01975 0.00107 426 72 419 13 418 6 395 21
      WSMG-1-13 188 320 0.59 0.05540 0.00127 0.51513 0.01457 0.06745 0.00091 0.02073 0.00064 428 50 422 10 421 5 415 13
      WSMG-1-14 148 221 0.67 0.05584 0.00223 0.51937 0.02298 0.06745 0.00110 0.01981 0.00134 446 86 425 15 421 7 397 27
      WSMG-1-15 124 178 0.69 0.05525 0.00170 0.51052 0.01801 0.06705 0.00099 0.02059 0.00101 422 67 419 12 418 6 412 20
      下载: 导出CSV

      表  2  红旗沟正长花岗岩主量元素(%)、微量元素和稀土元素(10-6)分析结果

      Table  2.   Major elements (%), trace and REE elements (10-6) data of the Hongqigou syenogranite

      样号 WSMG-2 WSMG-3 WSMG-4 WSMG-7 WSMG-8
      SiO2 76.6 78.4 77.4 77.4 76.0
      Al2O3 12.3 11.0 11.8 11.8 12.0
      Fe2O3 1.39 1.09 1.18 1.21 1.61
      MnO 0.01 0.02 0.01 0.01 0.02
      MgO 0.20 0.11 0.12 0.16 0.22
      CaO 0.29 0.79 0.50 0.27 0.51
      Na2O 3.25 2.93 3.19 3.19 3.19
      K2O 5.22 4.64 4.96 4.93 5.02
      TiO2 0.15 0.12 0.12 0.13 0.17
      P2O5 0.02 0.01 0.01 0.02 0.02
      LOI 0.66 1.01 0.80 0.66 1.00
      Total 100.18 100.26 100.23 99.92 99.94
      K2O/Na2O 1.61 1.58 1.55 1.55 1.57
      Na2O+K2O 8.47 7.57 8.15 8.12 8.21
      A/CNK 1.06 0.97 1.02 1.06 1.03
      Tzr(℃) 800 782 787 798 800
      Li 6.22 5.46 4.65 6.20 6.40
      Be 2.54 3.62 2.29 2.69 3.15
      Sc 2.25 1.91 1.95 2.18 2.51
      V 2.69 3.23 2.63 3.09 3.71
      Cr 19.7 19.7 16.5 13.7 13.2
      Co 117.2 98.2 129.6 123.5 110.5
      Ni 117 104 160 150 110
      Cu 2.98 2.69 4.08 2.79 7.84
      Zn 29.0 48.9 26.2 27.9 27.8
      Ga 20.3 18.0 19.4 19.3 20.0
      Rb 219 208 220 213 221
      Sr 52.1 49.4 48.8 50.7 56.5
      Y 72.4 68.5 76.8 73.7 75.8
      Zr 172 150 153 166 178
      Nb 8.67 8.87 6.76 8.49 9.49
      Sn 4.71 4.62 4.89 4.53 6.15
      Cs 3.56 3.58 3.47 3.41 3.68
      Ba 219 193 207 219 237
      La 55.4 53.3 54.0 69.7 52.5
      Ce 112.7 94.6 109.3 84.3 109.9
      Pr 13.0 11.1 12.7 9.82 12.8
      Nd 48.9 42.2 48.1 37.6 48.9
      Sm 9.02 8.14 8.99 7.37 9.40
      Eu 0.30 0.26 0.28 0.29 0.29
      Gd 8.57 7.71 8.58 7.20 9.16
      Tb 1.33 1.24 1.35 1.19 1.52
      Dy 7.25 6.96 7.43 6.98 8.79
      Ho 1.38 1.34 1.44 1.40 1.73
      Er 4.16 3.99 4.40 4.24 5.23
      Tm 0.58 0.56 0.63 0.62 0.76
      Yb 3.76 3.66 4.11 4.04 4.90
      Lu 0.57 0.55 0.62 0.62 0.74
      Hf 4.26 5.66 5.88 6.24 6.85
      Ta 1.62 1.97 1.75 2.48 1.70
      Pb 23.3 25.4 22.6 21.9 22.1
      Th 21.7 20.3 21.7 20.3 26.1
      U 4.55 4.26 3.58 4.81 4.56
      104×Ga/Al 3.13 3.09 3.10 3.09 3.15
      Zr+Nb+Ce+Y 365.7 321.9 346.1 332.5 373.4
      Nb/Ta 5.36 4.50 3.87 3.43 5.58
      ∑REE 266.9 235.6 261.9 235.4 266.6
      LREE 239.3 209.6 233.4 209.1 233.8
      HREE 27.6 26.0 28.6 26.3 32.8
      LREE/HREE 8.66 8.06 8.17 7.96 7.13
      Eu/Eu* 0.10 0.10 0.09 0.12 0.09
      (La/Yb)N 10.6 10.5 9.4 12.4 7.7
      (Gd/Yb)N 1.9 1.7 1.7 1.5 1.6
      注:LOI.烧失量;A/CNK=molar Al2O3/(CaO+Na2O+K2O).
      下载: 导出CSV

      表  3  红旗沟正长花岗岩全岩Sm-Nd同位素分析结果

      Table  3.   Sm-Nd isotopic compositions of the Hongqigou syenogranite

      点号 147Sm/144Nd 143Nd/144Nd ±1σ (143Nd/144Nd)t εNd(t) tDM2(Ma)
      WSMG-8 0.116307 0.512305 0.000018 0.511985 -2.2 1 339
      WSMG-7 0.118468 0.512299 0.000080 0.511973 -2.4 1 359
      WSMG-4 0.113062 0.512280 0.000014 0.511969 -2.5 1 365
      注:εNd(t)值计算采用球粒陨石(CHUR)的147Sm/144Nd=0.1967;143Nd/144Nd=0.512638(Depaolo and Wasserburg, 1979);tDM2(Ma)计算采用亏损地慢(DM)的147Sm/144Nd=0.2136;143Nd/144Nd=0.513151(Jahn and Condie, 1995);147Sm衰变常数λ=6.54×10-12·a-1(Steiger and Jger, 1977).
      下载: 导出CSV

      表  4  红旗沟正长花岗岩(WSMG-1)锆石Hf同位素分析结果

      Table  4.   Hf isotopic data for sample WSMG-1 from the Hongqigou syenogranite

      点号 年龄(Ma) 176Yb/177Hf ±2σ 176Lu/177Hf ±2σ 176Hf/177Hf ±2σ εHf(t) tDM1(Ma) tDM2(Ma) fLu/Hf
      WSMG-1 418 0.037667 0.000759 0.001270 0.000023 0.282536 0.000030 0.5 1021 1374 -0.96
      WSMG-2 420 0.044778 0.001885 0.001507 0.000056 0.282522 0.000030 0.0 1047 1408 -0.95
      WSMG-3 422 0.026073 0.000356 0.000981 0.000013 0.282576 0.000025 2.1 957 1277 -0.97
      WSMG-4 420 0.029585 0.000775 0.001066 0.000027 0.282441 0.000025 -2.8 1149 1583 -0.97
      WSMG-5 417 0.046558 0.000689 0.001642 0.000022 0.282488 0.000024 -1.3 1100 1489 -0.95
      WSMG-6 423 0.024552 0.000026 0.000912 0.000002 0.282482 0.000019 -1.2 1087 1487 -0.97
      WSMG-7 421 0.027438 0.000073 0.000984 0.000004 0.282527 0.000017 0.3 1025 1386 -0.97
      WSMG-8 420 0.038105 0.000543 0.001431 0.000024 0.282558 0.000019 1.3 994 1327 -0.96
      WSMG-9 422 0.021057 0.000102 0.000792 0.000004 0.282493 0.000020 -0.8 1068 1460 -0.98
      WSMG-10 419 0.040054 0.000337 0.001422 0.000010 0.282554 0.000022 1.1 999 1335 -0.96
      WSMG-11 420 0.037694 0.000193 0.001362 0.000006 0.282541 0.000022 0.7 1015 1362 -0.96
      WSMG-12 418 0.023493 0.000175 0.000862 0.000005 0.282516 0.000018 -0.1 1037 1411 -0.97
      WSMG-13 421 0.028334 0.000888 0.001022 0.000031 0.282529 0.000021 0.4 1023 1383 -0.97
      WSMG-14 421 0.031175 0.000322 0.001147 0.000013 0.282548 0.000021 1.0 1000 1344 -0.97
      WSMG-15 418 0.028654 0.001421 0.001044 0.000040 0.282580 0.000031 2.1 952 1269 -0.97
      注:fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1;εHf(t)=10000×{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tDM1=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DMtDM2=tDM(Hf)-(tDM(Hf)-t)×[(fCC-fS)/(fCC-fDM)];(176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)CHUR, 0=0.28272(Blichert-oft et al., 1997),(176Lu/177Hf)DM=0.0332,(176Hf/177Hf)DM=0.282772(Griffin et al., 2000),fCC=0.015,fDM=-0.548,λ=1.867×10-11·a-1(Söderlund et al., 2004).
      下载: 导出CSV
    • [1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
      [2] Blichert-Toft, J., Chauvel, C., Albarède, F., 1997.Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS.Contributions to Mineralogy and Petrology, 127(3):248-260. https://doi.org/10.1007/s004100050278
      [3] Chappell, B.W., White, A.J.R., 1992.I-and S-Type Granites in the Lachlan Fold Belt.Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):1-26. https://doi.org/10.1017/s0263593300007720
      [4] Chen, D.L., Liu, L., Che, Z.C., et al., 2001.Determination and Preliminary Study of Indosinian Aluminous A-Type Granites in the Qimantag Area, Southeastern Xinjiang.Geochimica, 30(6):540-546 (in Chinese with English abstract).
      [5] Chen, H.W., Luo, Z.H., Mo, X.X., et al., 2006.SHRIMP Ages of Kayakedengtage Complex in the East Kunlun Mountains and Their Geological Implications.Acta Petrologica et Mineralogica, 25(1):25-32 (in Chinese with English abstract). https://www.researchgate.net/publication/285453961_SHRIMP_ages_of_Kayakedengtage_complex_in_the_East_Kunlun_Mountains_and_their_geological_implications
      [6] Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016.Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province:Implications on the Evolution of Proto-Tethys Ocean.Earth Science, 41(11):1863-1882 (in Chinese with English abstract). doi: 10.1007/s12583-017-0758-0
      [7] Chen, N.S., Sun, M., He, L., et al., 2002.Precise Timing of the Early Paleozoic Metamorphism and Thrust Deformation in the Eastern Kunlun Orogen.Chinese Science Bulletin, 47(13):1130. https://doi.org/10.1360/02tb9253
      [8] Chen, N.S., Zhu, J., You, Z.D., et al., 1998.A Comparison about Metamorphism among the Oldest Rock Units from Orogenic Belts of Dabie, Eastern Qinling and Eastern Kunlun of the Central Mountain Range, China.Earth Science, 23(5):449-454 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-ZDYG200205015.htm
      [9] Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2011.Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt.Geoscience, 25(3):510-521 (in Chinese with English abstract). https://www.researchgate.net/publication/285650077_Zircon_U-Pb_age_of_Xiaomiao_Formation_of_Proterozoic_in_the_eastern_section_of_the_East_Kunlun_Orogenic_Belt
      [10] Chu, N.C., Taylor, R.N., Chavagnac, V., et al., 2002.Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry:An Evaluation of Isobaric Interference Corrections.Journal of Analytical Atomic Spectrometry, 17(12):1567-1574. https://doi.org/10.1039/b206707b
      [11] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. https://doi.org/10.1007/bf00374895
      [12] Cui, M.H., Meng, F.C., Wu, X.K., 2011.Early Ordovician Island Arc of Qimantag Mountain, Eastern Kunlun:Evidences from Geochemistry, Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks.Acta Petrologica Sinica, 27(11):3365-3379 (in Chinese with English abstract).
      [13] DePaolo, D.J., Wasserburg, G.J., 1979.Petrogenetic Mixing Models and Nd-Sr Isotopic Patterns.Geochimica et Cosmochimica Acta, 43(4):615-627. https://doi.org/10.1016/0016-7037(79)90169-8
      [14] Ding, Q.F., Jiang, S.Y., Sun, F.Y., 2014.Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China:Petrogenesis and Tectonic Implications.Lithos, 205:266-283. https://doi.org/10.1016/j.lithos.2014.07.015
      [15] Eby, G.N., 1992.Chemical Subdivision of the A-Type Granitoids:Petrogenetic and Tectonic Implications.Geology, 20(7):641.https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co; 2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
      [16] Elhlou, S., Belousova, E., Griffin, W.L., et al., 2006.Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation.Geochimica et Cosmochimica Acta, 70(18):A158. https://doi.org/10.1016/j.gca.2006.06.1383
      [17] Feng, C.Y., Wang, S., Li, G.C., et al., 2012.Middle to Late Triassic Granitoids in the Qimantage Area, Qinghai Province, China:Chronology, Geochemistry and Metallogenic Significances.Acta Petrologica Sinica, 28(2):665-678 (in Chinese with English abstract). http://www.oalib.com/paper/1475917
      [18] Feng, J.Y., Pei, X.Z., Yu, S.L., et al., 2010.The Discovery of the Mafic-Ultramafic Melange in Kekesha Area of Dulan County, East Kunlun Region, and Its LA-ICP-MS Zircon U-Pb Age.Geology in China, 37(1):28-38 (in Chinese with English abstract). https://www.researchgate.net/publication/279574162_The_discovery_of_the_mafic-ultramafic_melange_in_Kekesha_area_of_Dulan_County_East_Kunlun_region_and_its_LA-ICP-MS_zircon_U-Pb_age
      [19] Förster, H.J., Tischendorf, G., Trumbull, R.B., 1997.An Evaluation of the Rb vs.(Y+Nb) Discrimination Diagram to Infer Tectonic Setting of Silicic Igneous Rocks.Lithos, 40(2-4):261-293. https://doi.org/10.1016/s0024-4937(97)00032-7
      [20] Gao, J.F., Lu, J.J., Lai, M.Y., et al., 2003.Analysis of Trace Elements in Rock Samples Using HR-ICPMS.Journal of Nanjing University (Natural Sciences), 39(6):844-850 (in Chinese with English abstract).
      [21] Gao, Y.B., Li, W.Y., Qian, B., et al., 2014.Geochronology, Geochemistry and Hf Isotopic Compositions of the Granitic Rocks Related with Iron Mineralization in Yemaquan Deposit, East Kunlun, NW China.Acta Petrologica Sinica, 30(6):1647-1665 (in Chinese with English abstract). https://www.researchgate.net/publication/285649605_Geochronology_geochemistry_and_Hf_isotopic_compositions_of_the_granitic_rocks_related_with_iron_mineralization_in_Yemaquan_deposit_East_Kunlun_NW_China
      [22] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      [23] Hao, J., Liu, X.H., Sang, H.Q., 2003.Geochemical Characteristics and 40Ar/39Ar Age of the Ayak Adamellite and Its Tectonic Significance in the East Kunlun, Xinjiang.Acta Petrologica Sinica, 19(3):517-522 (in Chinese with English abstract). https://www.researchgate.net/publication/315960328_Cenozoic_evolution_of_the_Altyn_Tagh_and_East_Kunlun_fault_zones_inferred_from_detrital_garnet_tourmaline_and_rutile_in_southwestern_Qaidam_Basin_Northern_Tibetan_Plateau
      [24] Hao, N.N., Yuan, W.M., Zhang, A.K., et al., 2014.Late Silurian to Early Devonian Granitoids in the Qimantage Area, East Kunlun Mountains:LA-ICP-MS Zircon U-Pb Ages, Geochemical Features and Geological Setting.Geological Review, 60(1):201-215 (in Chinese with English abstract). https://www.researchgate.net/publication/291303118_Late_silurian_to_Early_Devonian_Granitoids_in_the_Qimantage_Area_East_Kunlun_Mountains_LA-ICP-MS_zircon_U-Pb_ages_geochemical_features_and_geological_seting
      [25] Harris, N.B.W., Pearce, J.A., Tindle, A.G., 1986.Geochemical Characteristics of Collision-Zone Magmatism.Geological Society, London, Special Publications, 19(1):67-81. https://doi.org/10.1144/GSL.SP.1986.019.01.04
      [26] Hong, D.W., Wang, S.G., Han, B.F., et al., 1996.Post-Orogenic Alkaline Granites from China and Comparisons with Anorogenic Alkaline Granites Elsewhere.Journal of Southeast Asian Earth Sciences, 13(1):13-27. https://doi.org/10.1016/0743-9547(96)00002-5
      [27] Jackson, S.E., Pearson, N.J., Griffin, W.L., et al., 2004.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology.Chemical Geology, 211(1-2):47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017
      [28] Jahn, B.M., Condie, K.C., 1995.Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites.Geochimica et Cosmochimica Acta, 59(11):2239-2258. https://doi.org/10.1016/0016-7037(95)00103-7
      [29] Jia, X.H., Wang, Q., Tang, G.J., 2009.A-Type Granites:Research Progress and Implications.Geotectonica et Metallogenia, 33(3):465-480 (in Chinese with English abstract).
      [30] Jiang, C.F., Yang, J.S., Feng, B.G., et al., 1992.Opening-Closing Tectonics in Kunlun Area.Geological Publishing House, Beijing, 224 (in Chinese).
      [31] King, P.L., White, A.J.R., Chappell, B.W., et al., 1997.Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia.Journal of Petrology, 38(3):371-391. https://doi.org/10.1093/petroj/38.3.371
      [32] Li, G.C., Feng, C.Y., Wang, R.J., et al., 2012.SIMS Zircon U-Pb Age, Petrochemistry and Tectonic Implications of Granitoids in Northeastern Baiganhue W-Sn Orefield, Xinjiang.Acta Geoscientica Sinica, 33(2):216-226 (in Chinese with English abstract). http://www.oalib.com/paper/1560063
      [33] Li, H.K., Lu, S.N., Xiang, Z.Q., et al., 2006.SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area, Central Eastern Kunlun Suture Zone.Earth Science Frontiers, 13(6):311-321 (in Chinese with English abstract).
      [34] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2013.Regional Tectonic Transformation in East Kunlun Orogenic Belt in Early Paleozoic:Constraints from the Geochronology and Geochemistry of Helegangnaren Alkali-Feldspar Granite.Acta Geologica Sinica (English Edition), 87(2):333-345. https://doi.org/10.1111/1755-6724.12054
      [35] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2015.Geochemistry and Zircon U-Pb Geochronology of Granitic Rocks in the Buqingshan Tectonic Mélange Belt, Northern Tibet Plateau, China and Its Implications for Prototethyan Evolution.Journal of Asian Earth Sciences, 105:374-389. https://doi.org/10.1016/j.jseaes.2015.02.004
      [36] Li, X., Yuan, W.M., Hao, N.N., et al., 2014.Characteristics and Tectonic Setting of Granite in Wulonggou Area, East Kunlun Mountains.Global Geology, 33(2):275-288 (in Chinese with English abstract).
      [37] Li, Y.Z., Kong, H.L., Li, J.C., et al., 2015.Geochemistry and Zircon U-Pb Geochronology of the Yueliangwan Plagiogranite in the Wulonggou Gold Deposit, Qinghai Province.Bulletin of Mineralogy, Petrology and Geochemistry, 34(2):401-409 (in Chinese with English abstract). https://www.researchgate.net/publication/283132621_Zircon_U-Pb_dating_and_geochemical_characteristics_of_the_tonalite_in_the_Dashuigou_gold_deposit_of_Eastern_Kunlun_Mountains_Qinghai_Province
      [38] Liu, B., Ma, C.Q., Guo, P., et al., 2013a.Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications.Earth Science, 38(5):947-962 (in Chinese with English abstract).
      [39] Liu, B., Ma, C.Q., Jiang, H.A., et al., 2013b.Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region:Evidence from Huxiaoqin Mafic Rocks.Acta Petrologica Sinica, 29(6):2093-2106 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20130617
      [40] Liu, B., Ma, C.Q., Zhang, J.Y., et al., 2012.Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes.Acta Petrologica Sinica, 28(6):1785-1807 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20120607&journal_id=ysxb
      [41] Liu, Y.J., Genser, J., Neubauer, F., et al., 2005.40Ar/39Ar Mineral Ages from Basement Rocks in the Eastern Kunlun Mountains, NW China, and Their Tectonic Implications.Tectonophysics, 398(3-4):199-224. https://doi.org/10.1016/j.tecto.2005.02.007
      [42] Lu, L., Zhang, Y.L., Wu, Z.H., et al., 2013.Zircon U-Pb Dating of Early Paleozoic Granites from the East Kunlun Mountains and Its Geological Significance.Acta Geoscientica Sinica, 34(4):447-454 (in Chinese with English abstract).
      [43] Lu, S.N., 2002.Study on the Precambrian Geology of Northern Qinghai-Tibet Plateau.Geological Publishing House, Beijing, 225 (in Chinese).
      [44] Ludwig, K. R., 2003. User's Manual for Isoplot 3. 0-a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley.
      [45] Luo, M.F., Mo, X.X., Yu, X.H., et al., 2015.Zircon U-Pb Geochronology, Petrogenesis and Implication of the Later Permian Granodiorite form the Wulonggou Area in East Kunlun, Qinghai Province.Earth Science Frontiers, 22(5):182-195 (in Chinese with English abstract). https://www.researchgate.net/publication/282988683_Zircon_U-Pb_geochronology_petrogenesis_and_implication_of_the_Later_Permian_granodiorite_from_the_Wulonggou_Area_in_East_Kunlun_Qinhai_Province
      [46] Luo, Z.H., Ke, S., Cao, Y.Q., et al., 2002.Late Indosinian Mantle-Derived Magmatism in the East Kunlun.Geological Bulletin of China, 21(6):292-297 (in Chinese with English abstract). https://www.researchgate.net/publication/287171794_Late_Indosinian_mantle-derived_magmatism_in_the_East_Kunlun
      [47] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      [48] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414 (in Chinese with English abstract).
      [49] Pan, G.T., Li, X.Z., Wang, L.Q., et al., 2002.Preliminary Division of Tectonic Units of the Qinghai-Tibet Plateau and Its Adjacent Regions.Geological Bulletin of China, 21(11):701-707 (in Chinese with English abstract).
      [50] Pearce, J.A., 1996.Sources and Settings of Granitic Rocks.Episodes, 19(4):120-125.
      [51] Pu, W., Gao, J.F., Zhao, K.D., et al., 2005.Separation Method of Rb-Sr, Sm-Nd Using DCTA and HIBA.Acta Geoscientica Sinica, 41(4):445-450 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJDZ200504016.htm
      [52] Qian, B., Gao, Y.B., Li, K., et al., 2015.Zircon U-Pb-Hf Isotopes and Whole Rock Geochemistry Constraints on the Petrogenesis of Iron-Rare Metal Mineralization Related Alkaline Granitic Intrusive Rock in Yugouzi Area, Eastern Kunlun, Xinjiang.Acta Petrologica Sinica, 31(9):2508-2520 (in Chinese with English abstract). https://www.researchgate.net/publication/292388843_Zircon_U-Pb-Hf_isotopes_and_whole_rock_geochemistry_constraints_on_the_petrogenesis_of_iron-rare_metal_mineralization_related_alkaline_granitic_intrusive_rock_in_Yugouzi_area_eastern_Kunlun_Xinjiang
      [53] Ren, J.H., Liu, Y.Q., Zhou, D.W., et al., 2010.Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Dating of Basic Dykes in the Xiaomiao Area, Eastern Kunlun.Journal of Jilin University (Earth Science Edition), 40(4):859-868 (in Chinese with English abstract).
      [54] Shi, B., Liu, L., 2014.Petrological and Geochemical Characteristics of Early Silurian Granites in Zaohuogou of Eastern Kunlun and Their Geological Significance.Global Geology, 33(4):758-767 (in Chinese with English abstract).
      [55] Shi, B., Zhu, Y.H., Zhong, Z.Q., et al., 2016.Petrological, Geochemical Characteristics and Geological Significance of the Caledonian Peraluminous Granites in Heihai Region, Eastern Kunlun.Earth Science, 41(1):35-54 (in Chinese with English abstract). doi: 10.1007/s12583-017-0745-5
      [56] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
      [57] Steiger, R.H., Jäger, E., 1977.Subcommission on Geochronology:Convention on the Use of Decay Constants in Geo-and Cosmochronology.Earth and Planetary Science Letters, 36(3):359-362. https://doi.org/10.1016/0012-821x(77)90060-7
      [58] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [59] Taylor S. R., McLennan S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.
      [60] Wang, G., Sun, F.Y., Li, B.L., et al., 2013.Zircon U-Pb Geochronology and Geochemistry of the Early Devonian Syenogranite in the Xiarihamu Ore District from East Kunlun, with Implications for the Geodynamic Setting.Geotectonica et Metallogenia, 37(4):685-697 (in Chinese with English abstract).
      [61] Wang, G., Sun, F.Y., Li, B.L.et al., 2014.Petrography, Zircon U-Pb Geochronology and Geochemistry of the Mafic-Ultramafic Intrusion in Xiarihamu Cu-Ni Deposit from East Kunlun, with Implications for Geodynamic Setting.Earth Science Frontiers, 21(6):381-401 (in Chinese with English abstract). https://www.researchgate.net/publication/277963992_Petrography_Zircon_U-Pb_Geochronology_and_Geochemistry_of_the_Mafic-ultramafic_Intrusion_in_Xiarihamu_Cu-Ni_Deposit_from_East_Kunlun_With_Implications_for_Geodynamic_Setting
      [62] Wang, G.C., Wang, Q.H., Jian, P., et al., 2004.Zircon SHRIMP Ages of Precambrian Metamorphic Basement Rocks and Their Tectonic Significance in the Eastern Kunlun Mountains, Qinghai Province, China.Earth Science Frontiers, 11(4):481-490 (in Chinese with English abstract).
      [63] Wang, G.C., Wei, Q.R., Jia, C.X., et al., 2007.Some Ideas of Precambrian Geology in the East Kunlun, China.Geological Bulletin of China, 26(8):929-937 (in Chinese with English abstract).
      [64] Wang, T., Li, B., Chen.J., et al., 2016.Characteristics of Chronology and Geochemistry of the Early Silurian Monzagranite in the Wulonggou Area, East Kunlun and Its Geological Significance.Journal of Mineralogy and Petrology, 36(2):62-70 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S167498711830077X
      [65] Wang, X.X., Hu, N.G., Wang, T., et al., 2012.Late Ordovician Wanbaogou Granitoid Pluton from the Southern Margin of the Qaidam Basin:Zircon SHRIMP U-Pb Age, Hf Isotope and Geochemistry.Acta Petrologica Sinica, 28(9):2950-2962 (in Chinese with English abstract). http://www.oalib.com/paper/1474273
      [66] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      [67] Wu, F.Y., Yang, Y.H., Xie, L.W., et al., 2006.Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology.Chemical Geology, 234(1-2):105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003
      [68] Wu, S.P., Wang, M.Y., Qi, K.J., 2007.Present Situation of Researches on A-Type Granites:A Review.Acta Petrologica et Mineralogica, 26(1):57-66 (in Chinese with English abstract).
      [69] Xu, Z.Q., Yang, J.S., Jiang, M., et al., 2001.Deep Structure and Lithospheric Shear Faults in the East Kunlun-Qiangtang Region, Northern Tibetan Plateau.Science in China (Series D), 44(S1):1-9. https://doi.org/10.1007/bf02911965
      [70] Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006.The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB).Acta Geologica Sinica, 80(12):1793-1806 (in Chinese with English abstract).
      [71] Yan, W., Qiu, D.M., Ding, Q, F., et al., 2016.Geochronology, Petrogenesis, Sources and Its Structural Significance of Houtougou Monzogranite of Wulonggou Area in Eastern Kunlun Orogen.Journal of Jilin University (Earth Science Edition), 46(2):443-460 (in Chinese with English abstract). https://www.researchgate.net/publication/304942774_Geochronology_petrogenesis_source_and_its_structural_significance_of_Houtougou_monzogranite_of_Wulonggou_area_in_eastern_Kunlun_orogen
      [72] Yang, J.S., Robinson, P.T., Jiang, C.F., et al., 1996.Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications.Tectonophysics, 258(1-4):215-231. https://doi.org/10.1016/0040-1951(95)00199-9
      [73] Yang, J.S., Xu, Z.Q., Ma C.Q, et al., 2010.Compound Orogeny and Scientific Problems Concerning the Central Orogenic Belt of China.Geology in China, 37(1):1-11 (in Chinese with English abstract). https://www.researchgate.net/publication/281228388_Compound_orogeny_and_scientific_problems_concerning_the_Central_Orogenic_Belt_of_China
      [74] Yu, N., Jin, W., Ge, W.C., et al., 2005.Geochemical Study on Peraluminous Granite from Jinshuikou in East Kunlun.Global Geology, 24(2):123-128 (in Chinese with English abstract).
      [75] Yue, W.H., Gao, J.G., Zhou, J.X., 2013.LA-ICP-MS Zircon U-Pb Ages and Lithogeochemistry of Basic Dykes in the Guoluolongwa Au Ore Field, Qinghai Province, China.J.Mineral.Petrol., 33(3):93-102 (in Chinese with English abstract). https://www.researchgate.net/publication/287361179_LA-ICP-MS_zircon_U-Pb_ages_and_lithogeochemistry_of_basic_dykes_in_the_guoluolongwa_au_ore_field_qinghai_province_China
      [76] Yue, W.H., Zhou, J.X., Gao, J.G., et al., 2017.Geochemistry, Zircon U-Pb Chronology and Geological Implications of Sederi Diabase, Dulan County, Qinghai Province.Bulletin of Mineralogy, Petrology and Geochemistry, 36(2):270-278 (in Chinese with English abstract). https://www.researchgate.net/publication/287361179_LA-ICP-MS_zircon_U-Pb_ages_and_lithogeochemistry_of_basic_dykes_in_the_guoluolongwa_au_ore_field_qinghai_province_China
      [77] Zhang, J.Y., Ma, C.Q., Xiong, F.H., et al., 2014.Early Paleozoic High-Mg Diorite-Granodiorite in the Eastern Kunlun Orogen, Western China:Response to Continental Collision and Slab Break-off.Lithos, 210-211:129-146. https://doi.org/10.1016/j.lithos.2014.10.003
      [78] Zhang, J.X., Meng, F.C., Wan, Y.S., et al., 2003.Early Paleozoic Tectono-Thermal Event of the Jinshuikou Group on the Southern Margin of Qaidam:Zircon U-Pb SHRIMP Age Evidence.Geological Bulletin of China, 22(6):397-404 (in Chinese with English abstract). https://www.researchgate.net/publication/285649486_Early_Paleozoic_tectono-thermal_event_of_the_Jinshuikou_Group_on_the_southern_margin_of_Qaidam_Zircon_U-Pb_SHRIMP_age_evidence
      [79] Zhang, W., Zhou, H.W., Zhu, Y.H., et al., 2016.The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt:Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton.Earth Science, 41(8):1334-1348 (in Chinese with English abstract). https://www.researchgate.net/publication/307888424_The_evolution_of_Triassic_granites_associated_with_mineralization_within_east_Kunlun_Orogenic_Belt_Evidence_from_the_petrology_geochemistry_and_zircon_U-Pb_geochronology_of_the_mohexiala_pluton
      [80] Zhang, Y.F., Pei, X.Z., Ding, S.P., et al., 2010.LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County, Eastern Section of the East Kunlun Orogenic Belt, China and Its Significance.Geological Bulletin of China, 29(1):79-85 (in Chinese with English abstract). https://www.researchgate.net/publication/285651064_LA-ICP-MS_zircon_U-Pb_age_of_quartz_diorite_at_the_Kekesha_area_of_Dulan_County_eastern_section_of_the_East_Kunlun_orogenic_belt_China_and_its_significance
      [81] Zhao, Z.M., Ma, H.D., Wang, B.Z., et al., 2008.The Evidence of Intrusive Rocks about Collision-Orogeny during Early Devonian in Eastern Kunlun Area.Geological Review, 54(1):47-56 (in Chinese with English abstract).
      [82] Zhu, X.H., Chen, D.L., Liu, L., et al., 2010.Zircon LA-ICP-MS U-Pb Dating of the Wanggaxiu Gabbro Complex in the Dulan Area, Northern Margin of Qaidam Basin, China and Its Geological Significance.Geological Bulletin of China, 29(2):227-236 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201002006
      [83] Zhu, Y.H., Lin, Q.X., Jia, C.X., et al., 2005.SHRIMP Age of Early Paleozoic Volcanic Rocks in East Kunlun Orogenic Belt and Their Geological Implications.Science in China (Series D), 35(12):1112-1119 (in Chinese).
      [84] 谌宏伟, 罗照华, 莫宣学, 等, 2006.东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义.岩石矿物学杂志, 25(1): 25-32. http://www.cqvip.com/QK/94932X/2006001/21189467.html
      [85] 陈丹玲, 刘良, 车自成, 等, 2001.祁漫塔格印支期铝质A型花岗岩的确定及初步研究.地球化学, 30(6): 540-546.
      [86] 陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11): 1863-1882. http://www.earth-science.net/WebPage/Article.aspx?id=3384
      [87] 陈能松, 朱杰, 游振东, 等, 1998.中央山系大别、东秦岭和东昆仑造山带最古老岩系变质过程对比.地球科学, 23(5): 449-454. http://www.earth-science.net/WebPage/Article.aspx?id=680
      [88] 陈有炘, 裴先治, 李瑞保, 等, 2011.东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄.现代地质, 25(3): 510-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201103013
      [89] 崔美慧, 孟繁聪, 吴祥珂, 2011.东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据.岩石学报, 27(11): 3365-3379. http://mall.cnki.net/magazine/Article/YSXB201111017.htm
      [90] 丰成友, 王松, 李国臣, 等, 2012.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义.岩石学报, 28(2): 665-678. http://www.cnki.com.cn/Article/CJFDTotal-XBDI200901007.htm
      [91] 冯建赟, 裴先治, 于书伦, 等, 2010.东昆仑都兰可可沙地区镁铁-超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄.中国地质, 37(1): 28-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201001003
      [92] 高剑峰, 陆建军, 赖鸣远, 等, 2003.岩石样品中微量元素的高分辨率等离子质谱分析.南京大学学报(自然科学版), 39(6): 844-850.
      [93] 高永宝, 李文渊, 钱兵, 等, 2014.东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征.岩石学报, 30(6): 1647-1665. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20140609
      [94] 郝杰, 刘小汉, 桑海清, 2003.新疆东昆仑阿牙克岩体地球化学与40Ar/39Ar年代学研究及其大地构造意义.岩石学报, 19(3): 517-522.
      [95] 郝娜娜, 袁万明, 张爱奎, 等, 2014.东昆仑祁漫塔格晚志留世——早泥盆世花岗岩:年代学、地球化学及形成环境.地质论评, 60(1): 201-215. http://d.wanfangdata.com.cn/Periodical_dzlp201401019.aspx
      [96] 贾小辉, 王强, 唐功建, 2009.A型花岗岩的研究进展及意义.大地构造与成矿学, 33(3): 465-480. http://www.oalib.com/paper/4891714
      [97] 姜春发, 杨经绥, 冯秉贵, 等, 1992.昆仑开合构造.北京:地质出版社, 224.
      [98] 李国臣, 丰成友, 王瑞江, 等, 2012.新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U-Pb年龄、地球化学特征及构造意义.地球学报, 33(2): 216-226. http://mall.cnki.net/magazine/Article/DQXB201202015.htm
      [99] 李怀坤, 陆松年, 相振群, 等, 2006.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究.地学前缘, 13(6): 311-321. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dxqy200606034
      [100] 李希, 袁万明, 郝娜娜, 等, 2014.东昆仑五龙沟花岗岩特征及其构造背景.世界地质, 33(2): 275-288.
      [101] 栗亚芝, 孔会磊, 李金超, 等, 2015.青海五龙沟矿区月亮湾斜长花岗岩地球化学特征及U-Pb年代学研究.矿物岩石地球化学通报, 34(2): 401-409. http://www.cnki.com.cn/Article/CJFDTotal-KYDH201502030.htm
      [102] 刘彬, 马昌前, 郭盼, 等, 2013a.东昆仑中泥盆世A型花岗岩的确定及其构造意义.地球科学, 38(5): 947-962. http://www.earth-science.net/WebPage/Article.aspx?id=2780
      [103] 刘彬, 马昌前, 蒋红安, 等, 2013b.东昆仑早古生代洋壳俯冲与碰撞造山作用的转换:来自胡晓钦镁铁质岩石的证据.岩石学报, 29(6): 2093-2106. https://www.researchgate.net/profile/Bin_Liu109/publication/285649933_Early_Paleozoic_tectonic_transition_from_ocean_subduction_to_collisional_orogeny_in_the_Eastern_Kunlun_region_Evidence_from_Huxiaoqin_Mafic_rocks/links/56e0bf9d08aec4b3333d163a.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
      [104] 刘彬, 马昌前, 张金阳, 等, 2012.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示.岩石学报, 28(6): 1785-1807. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20120607&journal_id=ysxb
      [105] 陆露, 张延林, 吴珍汉, 等, 2013.东昆仑早古生代花岗岩锆石U-Pb年龄及其地质意义.地球学报, 34(4): 447-454. doi: 10.3975/cagsb.2013.04.07
      [106] 陆松年, 2002.青藏高原北部前寒武纪地质初探.北京:地质出版社, 225.
      [107] 罗明非, 莫宣学, 喻学惠, 等, 2015.东昆仑五龙沟晚二叠世花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因及意义.地学前缘, 22(5): 182-195. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505018.htm
      [108] 罗照华, 柯珊, 曹永清, 等, 2002.东昆仑印支晚期幔源岩浆活动.地质通报, 21(6): 292-297. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgqydz200206003
      [109] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3): 403-414. https://www.wenkuxiazai.com/doc/e563188071fe910ef12df80b-4.html
      [110] 潘桂棠, 李兴振, 王立全, 等, 2002.青藏高原及邻区大地构造单元初步划分.地质通报, 21(11): 701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002
      [111] 濮巍, 高剑峰, 赵葵东, 等, 2005.利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd.地球学报, 41(4): 54-54. http://www.oalib.com/paper/1471072
      [112] 钱兵, 高永宝, 李侃, 等, 2015.新疆东昆仑于沟子地区与铁-稀有多金属成矿有关的碱性花岗岩地球化学、年代学及Hf同位素研究.岩石学报, 31(9): 2508-2520. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201509004.htm
      [113] 任军虎, 柳益群, 周鼎武, 等, 2010.东昆仑小庙基性岩脉地球化学及LA-ICP-MS锆石U-Pb定年.吉林大学学报(地球科学版), 40(4): 859-868. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201004017.htm
      [114] 施彬, 刘力, 2014.东昆仑灶火沟早志留世花岗岩岩石学、地球化学特征及地质意义.世界地质, 33(4): 758-767. http://www.cqvip.com/QK/94166X/201404/663330066.html
      [115] 施彬, 朱云海, 钟增球, 等, 2016.东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义.地球科学, 41(1): 35-54. http://www.earth-science.net/WebPage/Article.aspx?id=3217
      [116] 王冠, 孙丰月, 李碧乐, 等, 2013.东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义.大地构造与成矿学, 37(4): 685-697. http://www.cnki.com.cn/Article/CJFDTotal-XBDI201401007.htm
      [117] 王冠, 孙丰月, 李碧乐, 等, 2014.东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义.地学前缘, 21(6): 381-401. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201406042.htm
      [118] 王国灿, 王青海, 简平, 等, 2004.东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义.地学前缘, 11(4): 481-490.
      [119] 王国灿, 魏启荣, 贾春兴, 等, 2007.关于东昆仑地区前寒武纪地质的几点认识.地质通报, 26(8): 929-937. https://www.wenkuxiazai.com/doc/2ab6a5f4960590c69ec376e1.html
      [120] 王涛, 李彬, 陈静, 等, 2016.东昆仑五龙沟地区早志留世花岗岩锆石年代学、地球化学特征及其地质意义.矿物岩石, 36(2): 62-70.
      [121] 王晓霞, 胡能高, 王涛, 等, 2012.柴达木盆地南缘晚奥陶世万宝沟花岗岩:锆石SHRIMP U-Pb年龄、Hf同位素和元素地球化学.岩石学报, 28(9): 2950-2962. http://d.wanfangdata.com.cn/Periodical_ysxb98201209022.aspx
      [122] 吴锁平, 王梅英, 戚开静, 2007.A型花岗岩研究现状及其述评.岩石矿物学杂志, 26(1): 57-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200701009
      [123] 许志琴, 杨经绥, 李海兵, 等, 2006.中央造山带早古生代地体构架与高压/超高压变质带的形成.地质学报, 80(12): 1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002
      [124] 严威, 邱殿明, 丁清峰, 等, 2016.东昆仑五龙沟地区猴头沟二长花岗岩年龄、成因、源区及其构造意义.吉林大学学报(地球科学版), 46(2): 443-460.
      [125] 杨经绥, 许志琴, 马昌前, 等, 2010.复合造山作用和中国中央造山带的科学问题.中国地质, 37(1): 1-11. http://www.cqvip.com/qk/90050x/2010001/33233545.html
      [126] 余能, 金巍, 葛文春, 等, 2005.东昆仑金水口过铝花岗岩的地球化学研究.世界地质, 24(2): 123-128. doi: 10.3321/j.issn:0379-1726.2006.04.004
      [127] 岳维好, 高建国, 周家喜, 2013.青海果洛龙洼金矿基性岩脉锆石U-Pb年龄及岩石地球化学特征.矿物岩石, 33(3): 93-102. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201303014.htm
      [128] 岳维好, 周家喜, 高建国, 等, 2017.青海都兰县色德日辉绿岩地球化学特征、锆石U-Pb年龄及其地质意义.矿物岩石地球化学通报, 36(2): 270-278. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201303014.htm
      [129] 张建新, 孟繁聪, 万渝生, 等, 2003.柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据.地质通报, 22(6): 397-404. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200306003.htm
      [130] 张炜, 周汉文, 朱云海, 等, 2016.东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据.地球科学, 41(8): 1334-1348. http://www.earth-science.net/WebPage/Article.aspx?id=3341
      [131] 张亚峰, 裴先治, 丁仨平, 等, 2010.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义.地质通报, 29(1): 79-85. http://mall.cnki.net/magazine/Article/ZQYD201001010.htm
      [132] 赵振明, 马华东, 王秉璋, 等, 2008.东昆仑早泥盆世碰撞造山的侵入岩证据.地质论评, 54(1): 47-56. http://www.cqvip.com/QK/91067X/200801/26857854.html
      [133] 朱小辉, 陈丹玲, 刘良, 等, 2010.柴达木盆地北缘都兰地区旺尕秀辉长杂岩的锆石LA-ICP-MS U-Pb年龄及地质意义.地质通报, 29(2): 227-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201002006
      [134] 朱云海, 林启祥, 贾春兴, 等, 2005.东昆仑造山带早古生代火山岩锆石SHRIMP年龄及其地质意义.中国科学(D辑:地球科学), 35(12): 1112-1119. http://earth.scichina.com:8080/sciD/CN/abstract/abstract308881.shtml
    • 加载中
    图(9) / 表(4)
    计量
    • 文章访问数:  4441
    • HTML全文浏览量:  1321
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-20
    • 刊出日期:  2018-04-15

    目录

      /

      返回文章
      返回