Petrogenesis and Geological Implications of Granitoids from Halasen, East Kunlun
-
摘要: 哈拉森地区位于东昆仑东段,分布着大量花岗岩,对其研究不仅有助于认识东昆仑造山带在晚古生代-早中生代的构造-岩浆演化历史,而且可以为东昆仑古特提斯洋俯冲时限及洋盆闭合时限提供约束.对区内花岗岩进行了岩石学、年代学以及岩石地球化学分析,结果表明哈拉森地区的钾长花岗岩和细粒二长花岗岩锆石LA-ICP-MS U-Pb年龄分别为239.2±1.7 Ma(MSWD=0.19)和232.4±1.2 Ma(MSWD=0.76),属中三叠世花岗质岩浆作用的产物.岩石主微量元素分析显示该地区花岗岩具有高硅铝、富碱和低钛特征,属于高钾钙碱性到钾玄岩系列的过铝质花岗岩,富集轻稀土元素(LREE)及K、Th、Rb等大离子亲石元素(LILE),明显亏损Nb、Ti、P、Ta等高场强元素(HFSE),具有非常明显的Eu负异常(δEu为0.27~0.65).哈拉森地区花岗岩具有高分异Ⅰ型花岗岩的特征,是同碰撞背景下幔源岩浆与其诱发地壳物质熔融产生的长英质岩浆在地壳深部混合,随后这一混合岩浆又经过高程度的分异演化形成的,进一步证明东昆仑古特提斯洋的俯冲作用一直持续到早三叠世,至中三叠世才逐渐转入陆内碰撞造山阶段.Abstract: A large amount of granites widely distributes in Halasen area in the East Kunlun Mountains. The study of the granites not only help us to understand the tectono-magmatic evolution history of East Kunlun orogenic belt in the Late Paleozoic and Early Mesozoic, but also provides constraints for the subduction and closed time limit of the Paleo-Tethys Ocean. In this paper, we constrain geochronology and petrogenesis of the Halasen granites by zircon U-Pb dating and geochemical analyses. The LA-ICP-MS U-Pb analyses show that the formation ages of K-feldspar granite and fine-grained monzogranite are 239.2±1.7 Ma (MSWD=0.19) and 232.4±1.2 Ma (MSWD=0.76), respectively, which are the products of the Middle Triassic granitic magmatism. The geochemistry data show that granites are high-potassium calcalkaline-shoshonite, peraluminous rock which is characterized by high silicon and aluminum, enriched alkali, low titanium, as well as enriched light rare earth elements (LREE) and large ion lithophile elements (LILE, e.g., K, Th and Rb), and depleted in high field-strength elements (HFSE, e.g., Nb, Ti, P, and Ta) with obvious Eu negative anomaly (the value of δEu is between 0.27 and 0.65). Halasen granites belong to highly fractionated Ⅰ-type granite. It is suggested that the Halasen granites were most likely derived from parental magma by mixing of depleted mantle-derived magma and induced crustal-melted felsic magma in the deep crust, and then suffered further differentiation during magma ascent. The subduction of the East Kunlun Paleo-Tethys Ocean lasted to the Early Triassic, and the Middle Triassic witnessed the intracontinental collision.
-
Key words:
- granite /
- geochronology /
- geochemistry /
- Halasen /
- East Kunlun
-
图 1 东昆仑东段大地构造位置(a)和香日德地区地质简图(b)
1.第四系;2.上三叠统鄂拉山组;3.下三叠统洪水川组;4.奥陶系-志留系纳赤台群;5.中元古界小庙岩组;6.古元古界金水口群;7.晚海西-印支期钾长花岗岩;8.晚海西-印支期细粒二长花岗岩;9.晚海西期花岗闪长岩;10.加里东期石英闪长岩;11.脆性断层/韧性断层;12.角度不整合;13.河流;14.研究区;15.采样位置;16.样品数据熊富浩(2014).据王学良(2011)修改
Fig. 1. Tectonic location of eastern part of the East Kunlun orogen (a) and simplified geological map of the Xiangride intrusive rocks (b)
图 5 哈拉森地区花岗岩分类图解
图a底图据Peccerillo and Taylor(1976);图b底图据Maniar and Piccoli(1989)
Fig. 5. Genetic discrimination diagrams for the Halasen granitoids
图 6 哈拉森地区花岗岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)
标准化值据Sun and McDonough(1989);图例同图 5
Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element diagram (b) for the Halasen granitoids
图 7 哈拉森地区花岗岩岩石成因类型
图b底图据Whalen et al.(1987);图例同图 5
Fig. 7. Genetic discrimination diagrams for the Halasen granitoids
图 9 哈拉森地区花岗岩源区性质判别图解
图a底图据Altherra et al.(2000);图b~d底图据Douce(1999);图例同图 5.A.变质泥岩部分熔融;B.变质砂岩部分熔融;C.基性岩(角闪岩)的部分熔融
Fig. 9. Source characteristics discrimination diagrams for the Halasen granitoids
图 8 哈拉森地区花岗岩结晶分异特征
图例同图 5
Fig. 8. Characteristics of Halasen granitoids resulting from crystallization differentiation
图 10 哈拉森地区花岗岩构造环境判别图解(a)和R1-R2判别图解(b)
图a据Pearce et al.(1984);图b据Batchelor and Bowden(1985);图例同图 5.VAG.火山弧花岗岩;syn-COLG.同碰撞花岗岩;WPG.板内花岗岩;ORG.洋脊花岗岩;①地幔分异产物;②板块碰撞前;③板块碰撞后隆起;④造山晚期;⑤非造山;⑥同碰撞;⑦造山期后
Fig. 10. Tectonic setting discrimination diagrams (a) and R1-R2 (b) for the Halasen granitoids
-
[1] Altherra, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos, 50(1-3):51-73. https://doi.org/10.1016/s0024-4937(99)00052-3 [2] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [3] Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [4] Chappell, B.W., White, A.J.K., 1974.Two Contrasting Granite Types.Pacific Geology, 8(2):173-174. [5] Chen, X.H., George, G., Yin, A., et al., 2012.Paleozoic and Mesozoic Basement Magmatisms of Eastern Qaidam Basin, Northern Qinghai-Tibet Plateau:LA-ICP-MS Zircon U-Pb Geochronology and Its Geological Significance.Acta Geologica Sinica (English Edition), 86(2):350-369. https://doi.org/10.1111/j.1755-6724.2012.00665.x [6] Chen, G. C., 2014. Petrology, Genesis and Geological Significance of Late Paleozoic-Early Mesozoic Granitoids in East Kunlun Orogen (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [7] Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016.Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province:Implications on the Evolution of Proto-Tethys Ocean.Earth Science, 41(11):1863-1882 (in Chinese with English abstract). https://doi.org/ 10.3799/dqkx.2016.129 [8] Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2011.Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt.Geoscience, 25(3):510-521 (in Chinese with English abstract). https://www.researchgate.net/publication/285650077_Zircon_U-Pb_age_of_Xiaomiao_Formation_of_Proterozoic_in_the_eastern_section_of_the_East_Kunlun_Orogenic_Belt [9] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. https://doi.org/10.1007/bf00374895 [10] Deng, W.B., Pei, X.Z., Liu, C.J., et al., 2016.LA-ICP-MS Zircon U-Pb Dating of the Chahantaolegai Syenogranites in Xiangride Area of East Kunlun and Its Geological Significance.Geological Bulletin of China, 35(5):687-699 (in Chinese with English abstract). https://www.researchgate.net/publication/304880165_LA-ICP-MS_zircon_U-Pb_dating_of_the_Chahantaolegai_syenogranites_in_Xiangride_area_of_East_Kunlun_and_its_geological_significance [11] Douce, A.E.P., 1999.What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas?Geological Society, London, Special Publications, 168(1):55-75. https://doi.org/10.1144/gsl.sp.1999.168.01.05 [12] Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004.Recycling Lower Continental Crust in the North China Craton.Nature, 432(7019):892-897. https://doi.org/10.1038/nature03162 [13] Guo, X.Z., Jia, Q.Z., Kong, H.L., et al., 2016a.Zircon U-Pb Geochronology and Geochemistry of Harizha Quartz Diorite in the Eastern Section from East Kunlun.Geological Science and Technology Information, 36(5):19-26 (in Chinese with English abstract). [14] Guo, X.Z., Jia, Q.Z., Li, Y.Z., et al., 2016b.Zircon U-Pb Geochronology and Geochemical Characteristics of the Reshui Monzogranite in the Eastern Kunlun and Their Tectonic Significances.Bulletin of Mineralogy, Petrology and Geochemistry, 35(6):1318-1328 (in Chinese with English abstract). [15] Huang, H., Niu, Y.L., Nowell, G., et al., 2014.Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau:Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism.Chemical Geology, 370:1-18. https://doi.org/10.1016/J.Chemgeo.2014.01.010 [16] Jiang, C.F., Wang, Z.Q., Li, J.Y., et al., 2000.Open-Close Tectonics in the Central Orogenic Belt.Geological Publishing House, Beijing (in Chinese). [17] Li, J.C., Jia, Q.Z, Du, W., et al., 2014.LA-ICP-MS Zircon Dating and Geochemical Characteristics of Quartz Diorite in Asiha Gold Deposit in East Segment of the Eastern Kunlun.Journal of Jilin University (Earth Science Edition), 44(4):1188-1199 (in Chinese with English abstract). https://www.researchgate.net/publication/287777006_LA-ICP-MS_zircon_dating_and_geochemical_characteristics_of_quartz_diorite_in_Asiha_gold_deposit_in_east_segment_of_the_eastern_Kunlun [18] Li, X.H., Li, Z.X., Li, W.X., et al., 2007.U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?Lithos, 96(1-2):186-204. https://doi.org/10.1016/j.lithos.2006.09.018 [19] Li, J.C., Kong, H.L., Li, Y.Z., et al., 2017.Ar-Ar Age of Altered Sericite, Zircon U-Pb Age of Quartz Diorite and Geochemistry of the Naomuhun Gold Deposit, East Kunlun.Acta Geologica Sinica, 91(5):979-991 (in Chinese with English abstract). doi: 10.1007/s00126-016-0710-8 [20] Li, R. B., 2012. Research on the Late Paleozoic-Early Mesozoic Orogeny in East Kunlun Orogen (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [21] Li, T.D., Xiao, X.C., 1996.Tectonic Analysis:Structure and Evolution of Lithosphere of Qinghai-Xizang Plateau.People's Republic of China Ministry of Geology and Mineral Resources Geological Memoirs, 20(5):6-20 (in Chinese with English abstract). [22] Liu, H.T., 2005.Petrology, Geochemistry and Geochronology of Late Triassic Volcanics, Kunlun Orogenic Belt, Western China:Implications for Tectonic Setting and Petrogenesis.Geochemical Journal, 39(1):1-20. https://doi.org/10.2343/geochemj.39.1 [23] Liu, B., Ma, C.Q., Zhang, J.Y., et al., 2014.40Ar-39Ar Age and Geochemistry of Subduction-Related Mafic Dikes in Northern Tibet, China:Petrogenesis and Tectonic Implications.International Geology Review, 56(1):57-73. https://doi.org/10.1080/00206814.2013.818804. [24] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [25] Ludwig, K. R., 2001. Users Manual for Isoplot/Ex Rev. 2. 49: A Geochronological Toolkit for Microsoft Excel (Special Publication No. 1a, 55p). Berkeley Geochronological Center Special Publication, Berkeley [26] Luo, M.F., Mo, X.X., Yu, X.H., et al., 2014.Zircon LA-ICP-MS U-Pb Age Dating, Petrogenesis and Tectonic Implications of the Late Triassic Granites from the Xiangride Area, East Kunlun.Acta Petrologica Sinica, 30(11):3229-3241 (in Chinese with English abstract). https://www.researchgate.net/publication/312469854_Zircon_LA-ICP-MS_U-Pb_dating_petrogenesis_and_tectonic_implications_of_the_Late_Triassic_granites_from_the_Xiangride_area_East_Kunlun [27] Ma, C.Q., Xiong, F.H., Yin, S., et al., 2015.Intensity and Cyclicity of Orogenic Magmatism:An Example from a Paleo-Tethyan Granitoid Batholith, Eastern Kunlun, Northern Qinghai-Tibetan Plateau.Acta Petrologica Sinica, 31(12):3555-3568 (in Chinese with English Abstract). [28] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [29] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414 (in Chinese with English abstract). [30] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [31] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745 [32] Qiu, J.S., Xiao, E., Hu, J., et al., 2008.Petrogenesis of Highly Fractionated Ⅰ-Type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Ph Geochronology, Geochemistry and Nd-Hf Isotopes.Acta Petrologica Sinica, 24(11):2468-2484 (in Chinese with English abstract). [33] Ren, J.S., 2004.Some Problems on the Kunlun-Qinling Orogenic System.Northwestern Geology, 37(1):1-5 (in Chinese with English abstract). [34] Richards, J.P., 2003.Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation.Economic Geology, 98(8):1515-1533. https://doi.org/10.2113/98.8.1515 [35] Richards, J.P., 2011.Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins.Ore Geology Reviews, 40(1):1-26. https://doi.org/10.1016/j.oregeorev.2011.05.006 [36] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [37] Sun, Y., Pei, X.Z., Ding, S.P., et al., 2009.Halagatu Magma Mixing Granite in the East Kunlun Mountains—Evidence from Zircon U-Pb Dating.Acta Geologica Sinica, 83(7):1000-1010 (in Chinese with English abstract). [38] Wang, G.C., Wang, Q.H., Jian, P., et al., 2004.Zircon SHRIMP Ages of Precambrian Metamorphic Basement Rocks and Their Tectonic Significance in the Eastern Kunlun Mountains, Qinghai Province, China.Earth Science Frontiers, 11(4):481-490 (in Chinese with English abstract). [39] Wang, X. L., 2011. Studies on Geological Characteristics and Forming Age of Southern Xiangjia Mountain Granitic Pluton at East Section of East Kunlun Orogenic Belt (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [40] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [41] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). [42] Xiong, F. H., 2014. Spatial-Temporal Pattern, Petrogenesis and Geological Implications of Paleo-Tethyan Granitoids in the East Kunlun Orogenic Belt (Eastern Segment) (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [43] Xiong, F.H., Ma, C.Q., Jiang, H.A., et al., 2013.Petrogenetic and Tectonic Significance of Permian Calc-Alkaline Lamprophyres, East Kunlun Orogenic Belt, Northern Qinghai-Tibet Plateau.International Geology Review, 55(14):1817-1834. https://doi.org/10.1080/00206814.2013.804683 [44] Xu, J., Zheng, Y.Y., Sun, X., et al., 2016.Geochronology and Petrogenesis of Miocene Granitic Intrusions Related to the Zhibula Cu Skarn Deposit in the Gangdese Belt, Southern Tibet.Journal of Asian Earth Sciences, 120:100-116. https://doi.org/10.1016/j.jseaes.2016.01.026 [45] Yan, W., Qiu, D.M., Ding, Q.F., et al., 2016.Geochronology, Petrogenesis, Source and Its Structural Significance of Houtougou Monzogranite of Wulonggou Area in Eastern Kunlun Orogeny.Journal of Jilin University (Earth Science Edition), 46(2):443-460 (in Chinese with English abstract). https://www.researchgate.net/publication/304942774_Geochronology_petrogenesis_source_and_its_structural_significance_of_Houtougou_monzogranite_of_Wulonggou_area_in_eastern_Kunlun_orogen [46] Yin, H.F., Zhang, K.X., 1998.Evolution and Characteristics of the Central Orogenic Belt.Earth Science, 23(5):438-442 (in Chinese with English abstract). [47] Zhang, J.Y., Ma, C.Q., Xiong, F.H., et al., 2012.Petrogenesis and Tectonic Significance of the Late Permian-Middle Triassic Calc-Alkaline Granites in the Balong Region, Eastern Kunlun Orogen, China.Geological Magazine, 149(5):892-908. https://doi.org/10.1017/s0016756811001142 [48] Zhang, W., Zhou, H.W., Zhu, Y.H., et al., 2016.The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt:Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton.Earth Science, 41(8):1334-1348 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.520 [49] Zhao, K.D., Jiang, S.Y., Yang, S.Y., et al., 2012.Mineral Chemistry, Trace Elements and Sr-Nd-Hf Isotope Geochemistry and Petrogenesis of Cailing and Furong Granites and Mafic Enclaves from the Qitianling Batholith in the Shi-Hang Zone, South China.Gondwana Research, 22(1):310-324. https://doi.org/10.1016/j.gr.2011.09.010 [50] Zheng, Y.F., Zhang, S.B., Zhao, Z.F., et al., 2007.Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust.Lithos, 96(1-2):127-150. https://doi.org/10.1016/j.lithos.2006.10.003 [51] 陈国超, 2014. 东昆仑造山带(东段)晚古生代-早中生代花岗质岩石特征、成因及地质意义(博士学位论文). 西安: 长安大学. [52] 陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11): 1863-1882. http://www.earth-science.net/WebPage/Article.aspx?id=3384 [53] 陈有炘, 裴先治, 李瑞保, 等, 2011.东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄.现代地质, 25(3): 510-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201103013 [54] 邓文兵, 裴先治, 刘成军, 等, 2016.东昆仑东段香日德地区察汗陶勒盖正长花岗岩LA-ICP-MS锆石U-Pb年龄及其地质意义.地质通报, 35(5): 687-699. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgqydz201605006 [55] 国显正, 贾群子, 孔会磊, 等, 2016a.东昆仑东段哈日扎石英闪长岩时代, 成因及其地质意义.地质科技情报, 36(5): 19-26. http://www.cqvip.com/QK/93477A/201605/670156660.html [56] 国显正, 贾群子, 栗亚芝, 等, 2016b.东昆仑热水二长花岗岩地球化学特征、年代学及其构造意义.矿物岩石地球化学通报.35(6): 1318-1328. [57] 姜春发, 王宗起, 李锦轶, 等, 2000.中央造山带开合构造.北京:地质出版社. [58] 李金超, 贾群子, 杜玮, 等, 2014.东昆仑东段阿斯哈矿床石英闪长岩LA-ICP-MS锆石U-Pb定年及岩石地球化学特征.吉林大学学报(地球科学版), 44(4): 1188-1199. http://www.oalib.com/paper/4355282 [59] 李金超, 孔会磊, 栗亚芝, 等, 2017.青海东昆仑瑙木浑金矿蚀变绢云母Ar-Ar年龄、石英闪长岩锆石U-Pb年龄和岩石地球化学特征.地质学报, 91(5): 979-991. http://www.cnki.com.cn/Article/CJFDTOTAL-NFGT201703006.htm [60] 李瑞保, 2012. 东昆仑造山带(东段)晚古生代-早中生代造山作用研究(博士学位论文). 西安: 长安大学. [61] 李廷栋, 肖序常, 1996.青藏高原地体构造分析——青藏高原岩石圈结构构造和形成演化.中华人民共和国地质矿产部地质专报(五), 20: 6-20. http://edu.wanfangdata.com.cn/Periodical/Detail/kxtb199912005 [62] 罗明非, 莫宣学, 喻学惠, 等, 2014.东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义.岩石学报, 30(11): 3229-3241. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ysxb98201411010 [63] 马昌前, 熊富浩, 尹烁, 等, 2015.造山带岩浆作用的强度和旋回性:以东昆仑古特提斯花岗岩类岩基为例.岩石学报, 31(12): 3555-3568. https://www.researchgate.net/profile/Changqian_Ma2/publication/292501208_Intensity_and_cyclicity_of_orogenic_magmatism_An_example_from_a_Paleo-Tethyan_granitoid_batholith_Eastern_Kunlun_northern_Qinghai-Tibetan_Plateau/links/56c5494e08aeeeffa9e5e512.pdf?origin=publication_list [64] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3): 403-414. https://www.wenkuxiazai.com/doc/e563188071fe910ef12df80b-4.html [65] 邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11): 2468-2484. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ysxb98200811002 [66] 任纪舜, 2004.昆仑-秦岭造山系的几个问题.西北地质, 37(1): 1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200304004.htm [67] 孙雨, 裴先治, 丁仨平, 等, 2009.东昆仑哈拉尕吐岩浆混合花岗岩:来自U-Pb年代学的证据.地质学报, 83(7): 1000-1010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200907008 [68] 王国灿, 王青海, 简平, 等, 2004.东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义.地学前缘, 11(4): 481-490. [69] 王学良, 2011. 东昆仑东段香加南山花岗岩体地质特征及其形成年代研究(硕士学位论文). 西安: 长安大学. [70] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6): 1217-1238. http://www.doc88.com/p-7925944469437.html [71] 熊富浩, 2014. 东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义(博士学位论文). 武汉: 中国地质大学. [72] 严威, 邱殿明, 丁清峰, 等, 2016.东昆仑五龙沟地区猴头沟二长花岗岩年龄、成因、源区及其构造意义.吉林大学学报(地球科学版), 46(2): 443-460. [73] 殷鸿福, 张克信, 1998.中央造山带的演化及其特点.地球科学, 23(5): 438-442. http://www.earth-science.net/WebPage/Article.aspx?id=696 [74] 张炜, 周汉文, 朱云海, 等, 2016.东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学, 地球化学和锆石U-Pb年代学的证据.地球科学, 41(8): 1334-1348. http://www.earth-science.net/WebPage/Article.aspx?id=3341