• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    后碰撞阶段的“俯冲型”岩浆岩:来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据

    张明东 马昌前 王连训 郝峰华 郑少杰 张磊

    张明东, 马昌前, 王连训, 郝峰华, 郑少杰, 张磊, 2018. 后碰撞阶段的“俯冲型”岩浆岩:来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据. 地球科学, 43(4): 1183-1206. doi: 10.3799/dqkx.2018.715
    引用本文: 张明东, 马昌前, 王连训, 郝峰华, 郑少杰, 张磊, 2018. 后碰撞阶段的“俯冲型”岩浆岩:来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据. 地球科学, 43(4): 1183-1206. doi: 10.3799/dqkx.2018.715
    Zhang Mingdong, Ma Changqian, Wang Lianxun, Hao Fenghua, Zheng Shaojie, Zhang Lei, 2018. Subduction-Type Magmatic Rocks in Post-Collision Stage: Evidence from Late Triassic Diorite-Porphyrite of Naomuhungou Area, East Kunlun Orogen. Earth Science, 43(4): 1183-1206. doi: 10.3799/dqkx.2018.715
    Citation: Zhang Mingdong, Ma Changqian, Wang Lianxun, Hao Fenghua, Zheng Shaojie, Zhang Lei, 2018. Subduction-Type Magmatic Rocks in Post-Collision Stage: Evidence from Late Triassic Diorite-Porphyrite of Naomuhungou Area, East Kunlun Orogen. Earth Science, 43(4): 1183-1206. doi: 10.3799/dqkx.2018.715

    后碰撞阶段的“俯冲型”岩浆岩:来自东昆仑瑙木浑沟晚三叠世闪长玢岩的证据

    doi: 10.3799/dqkx.2018.715
    基金项目: 

    国家自然科学基金项目 41272079

    中国地质调查局地质调查项目 DD20160123

    详细信息
      作者简介:

      张明东(1992-), 男, 研究生, 主要从事矿物学岩石学和矿床学方向的研究

      通讯作者:

      马昌前

    • 中图分类号: P581;P597

    Subduction-Type Magmatic Rocks in Post-Collision Stage: Evidence from Late Triassic Diorite-Porphyrite of Naomuhungou Area, East Kunlun Orogen

    • 摘要: 位于青蔵高原东北部的东昆仑造山带在晚二叠世到晚三叠世时期形成了大规模壳幔混合成因的花岗岩类,是研究壳幔相互作用和陆壳生长-再循环的理想场所.对该造山带的瑙木浑沟闪长玢岩岩体开展了详细的岩相学、LA-ICP-MS锆石U-Pb同位素年代学、矿物化学、岩石地球化学和Sr-Nd同位素的研究.结果显示,瑙木浑沟闪长玢岩形成年龄为215.6±3.4 Ma,属于晚三叠世岩浆作用的产物.斑晶主要由斜长石和角闪石构成,斜长石斑晶为中长石和少量拉长石,并具有正环带和反环带两种类型,角闪石斑晶属于浅闪石.闪长玢岩具有准铝质到弱过铝质、相对富Mg#(~51.2)和中-高钾钙碱性特点,轻稀土元素相对富集,重稀土元素相对亏损,富集Rb、Th、Ba和K等大离子亲石元素,亏损Nb、Ta和Ti等高场强元素,具有明显陆缘弧岩浆活动的特征.此外,岩石具有均一的ISr值(0.708 6~0.708 8)和相对较低εNdt)(-5.3~-4.8),并具有相对较古老的模式年龄TDM2(1.38~1.43 Ga).上述矿物学和地球化学特征说明,闪长玢岩可能起源于富集的岩石圈地幔部分熔融形成的幔源岩浆上涌引发古老地壳熔融,并与壳源熔体均匀混合形成母岩浆,形成方式具有明显的MASH特征.结合区域地质研究,认为瑙木浑沟闪长玢岩可能形成于阿尼玛卿洋俯冲至晚期并向大陆碰撞的转换阶段,可能代表了巴颜克拉-松潘甘孜-东昆仑地体拼合的岩浆延迟反应产物.这对于理解造山带背景下从洋壳俯冲到陆-陆碰撞以及后碰撞过程的陆壳增长过程至关重要.

       

    • 图  1  青藏高原构造轮廓图(a),东昆仑东段地质简化图(b)和瑙木浑沟闪长玢岩岩体简化图(c)

      图a据Roger et al.(2008); Xiong et al.(2012)修改; 图b据Xia et al.(2014)修改

      Fig.  1.  Tectonic outline of the Tibetan plateau showing the study area (a), simplified geological map of the eastern part of the EKOB (b) and geological map of the Nuomuhonggou area (c)

      图  2  野外露头和镜下显微照片

      a.野外露头; b.斜长石中发育明显的绢云母化; c.斜长石核部发生明显熔蚀; d.斜长石中发育针状磷灰石; e.聚斑角闪石中包裹有斜长石; f.角闪石:可见两组解理; Pl.斜长石; Amp.角闪石; Mag.磁铁矿; Ser.绢云母化

      Fig.  2.  Outcrop photograph and microscopic photographs

      图  3  斜长石矿物微观特征和斜长石环带An变化图解

      Fig.  3.  The microscopic characteristics of plagioclase minerals and plagioclase An variation diagram

      图  4  锆石CL图像(a)和瑙木浑沟闪长玢岩U-Pb年龄谐和图(b)

      Fig.  4.  Cathodoluminescence (CL) images of zircons (a) and zircon U-Pb concordia diagram of diorite-porphyrites from Naomuhungou (b)

      图  5  长石Or-Ab-An分类类图解(a)和角闪石成分分类图解(b)

      Leake et al.(1997)

      Fig.  5.  The Or-Ab-An diagram of feldspar (a) and compositional classification for amphiboles (b)

      图  6  瑙木浑沟闪长玢岩主量元素判别图解

      a.TAS判别图解,据Middlemost(1994); b.SiO2-K2O判别图解,据Peccerillo and Taylor(1976); c.A/NK-A/CNK判别图解,据Peccerillo and Taylor(1976)

      Fig.  6.  Major element discrimination diagrams for the Nuomuhungou diorite-porphyrites

      图  7  瑙木浑沟闪长玢岩球粒陨石标准化稀土元素模式(a)和原始地幔标准化微量元素蛛网图(b)

      球粒陨石标准化值和原始地幔标准化值据Sun and McDonough(1989)

      Fig.  7.  Chondrite-normalized REE distribution pattern (a) and primitive mantle-normalized trace element spider diagram of Nuomuhungou (b)

      图  8  瑙木浑沟Sr/Y-Y(a)和YbN-(La/Yb)N图解(b)

      Defant and Drummond(1990)

      Fig.  8.  Sr/Y-Y (a) and YbN-(La/Yb)N (b) diagrams of Naomuhungou

      图  9  瑙木浑沟闪长玢岩Th-Th/Nd(a)和La/Yb-La(b)

      Fig.  9.  Th-Th/Nd (a) and La/Yb-La (b) diagrams of Naomuhungou diorite-porphyrites

      图  10  瑙木浑沟闪长玢岩(87Sr/86Sr)i-εNd(t)(a)和侵入岩年龄-εNd(t) (b)图解

      图a底图据Xiong et al.(2012); 图b资料引自Liu et al.(2008)Xiong et al.(2012)Chen et al.(2015)

      Fig.  10.  (87Sr/86Sr)i-εNd(t) (a) and intrusive age (b) diagrams of Naomuhungou diorite-porphyrites

      图  11  瑙木浑沟闪长玢岩CaO-Sr (a)和Zr/Sm-Nb/Ta(b)图解

      图a底图据He et al.(2011); 图b据Xiong et al.(2005)

      Fig.  11.  Sr-CaO (a) and Zr/Sm-Nb/Ta (b) diagrams of the Naomuhungou diorite-porphyrites

      图  12  主量元素比值图解

      Fig.  12.  Major element ratio diagrams

      图  13  角闪石成因图解(a)和Al2O3-TiO2(b)

      图a底图据姜长义和安三元(1984); 图b底图据陈光远等(1993).Ⅰ.岩浆成因区; Ⅱ.接触交代成因区; Ⅲ.区域副变质成因区

      Fig.  13.  The genesis of hornblende plots (a) and Al2O3-TiO2 (b)

      图  14  壳幔混合作用的不同阶段的岩石学响应

      Barbarin et al.(2005)修改

      Fig.  14.  The lithological response at different stages of the mixing of crust and mantle

      图  15  瑙木浑沟闪长玢岩MgO-FeOT-Al2O3图解(a)和R1-R2图解(b)

      Fig.  15.  MgO-FeOT-Al2O3 diagram (a) and R1-R2 diagram (b) of the Naomuhungou diorite-porphyrites

      图  16  瑙木浑沟闪长玢岩Nb*-Ta*图解

      修改自Shao et al.(2017).东昆仑瑙木浑沟闪长玢岩落入靠近大陆地壳区域(BCC: Rudnick and Gao, 2003),低于幔源熔体(过碱性流纹岩数据引自澳大利亚东部,Shao et al., 2015),Nb*=(Nb/Th)PM,Ta*=(Ta/U)PM,平均地壳组成(BCC,LCC,UCC)引自Rudnick and Gao(2003); 原始地幔和洋岛玄武岩(PM,E-MORB,N-MORB)引自Sun and McDonough(1989)

      Fig.  16.  Nb*-Ta* diagram of Naomuhungou diorite-porphyrites

      表  1  闪长玢岩中锆石LA-ICP-MS U-Pb同位素分析结果

      Table  1.   LA-ICP-MS zircon U-Pb ages of diorite-porphyrites

      测试点号 (10-6) Th/U 同位素比值 年龄(Ma)
      Pb Th U 207Pb/235Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      ZH01-4-01 64.52 451.54 597.09 0.76 0.053 879 0.002 552 0.245 905 0.010 845 0.034 011 0.000 546 364.9 112.0 223.2 9.9 215.6 8.8
      ZH01-4-02 81.75 581.56 802.22 0.72 0.050 489 0.002 351 0.230 561 0.010 566 0.033 541 0.000 491 216.7 107.4 210.7 8.5 212.7 8.7
      ZH01-4-03 60.42 425.18 570.40 0.75 0.053 046 0.003 068 0.244 767 0.013096 0.034 480 0.000 545 331.5 131.5 222.3 11.3 218.5 10.7
      ZH01-4-04 67.88 463.26 724.08 0.64 0.050 691 0.002 208 0.236 582 0.009 994 0.034220 0.000 474 233.4 100.0 215.6 8.6 216.9 8.2
      ZH01-4-05 58.04 446.70 537.25 0.83 0.052 652 0.003 061 0.244 852 0.012901 0.034673 0.000 640 322.3 133.3 222.4 10.7 219.7 10.5
      ZH01-4-06 41.73 241.38 406.38 0.59 0.062 116 0.004 318 0.291 916 0.018 024 0.035 363 0.000 626 679.6 150.0 260.1 14.2 224.0 14.2
      ZH01-4-07 28.66 192.08 284.19 0.68 0.054 543 0.004 150 0.234 657 0.015116 0.033 702 0.000 703 394.5 176.8 214 14.3 213.7 12.4
      ZH01-4-08 26.08 180.33 231.47 0.78 0.053 979 0.004 542 0.240 833 0.018 067 0.034 765 0.000 794 368.6 190.7 219.1 16.2 220.3 14.8
      ZH01-4-09 30.81 191.21 296.54 0.64 0.059 589 0.004 112 0.283 055 0.017 804 0.034 802 0.000 673 587.1 150.0 253.1 14.2 220.5 14.1
      ZH01-4-10 56.44 403.73 528.89 0.76 0.050 558 0.002 666 0.243 025 0.012 890 0.034 899 0.000 619 220.4 122.2 220.9 10.1 221.1 10.5
      ZH01-4-11 56.17 445.76 405.46 1.10 0.054 072 0.003 471 0.252 331 0.015 749 0.034 550 0.000 489 372.3 144.4 228.5 15.0 219.0 12.8
      ZH01-4-12 55.16 395.37 641.18 0.62 0.056 100 0.003 013 0.258 025 0.012 728 0.033 972 0.000 541 457.5 120.4 233.1 10.4 215.4 10.3
      ZH01-4-13 41.62 290.34 489.18 0.59 0.050 171 0.003 114 0.227 759 0.012 580 0.033 890 0.000 687 211.2 144.4 208.3 10.2 214.8 10.6
      ZH01-4-14 26.63 159.29 291.59 0.55 0.053 124 0.003 712 0.251 953 0.015 216 0.035 419 0.000 474 344.5 157.4 228.2 13.1 224.4 12.3
      ZH01-4-15 46.16 355.19 487.59 0.73 0.050 784 0.003 155 0.234 112 0.012 767 0.033 757 0.000 548 231.6 144.4 213.6 10.5 214.0 10.5
      ZH01-4-16 39.04 263.55 457.77 0.58 0.050 893 0.003 394 0.247 758 0.015 176 0.035 593 0.000 572 235.3 153.7 224.8 12.1 225.5 12.4
      ZH01-4-17 58.33 379.31 465.90 0.81 0.062 044 0.000 481 0.300 472 0.020 569 0.035 963 0.000 686 675.9 165.6 266.8 19.3 227.8 16.1
      ZH01-4-18 21.99 129.83 223.38 0.58 0.060 845 0.004 657 0.290 284 0.021 313 0.035 669 0.000 736 635.2 164.8 258.8 17.2 225.9 16.8
      ZH01-4-19 46.33 286.83 466.26 0.62 0.052 814 0.003 530 0.253 277 0.014 921 0.036 148 0.000 652 320.4 151.8 229.2 11.9 228.9 12.1
      ZH01-4-20 73.32 563.70 640.88 0.88 0.054 819 0.003 389 0.257 697 0.015 393 0.034 376 0.000 570 405.6 138.9 232.8 11.9 217.9 12.4
      下载: 导出CSV

      表  2  瑙木浑沟闪长玢岩中斜长石成分(%)

      Table  2.   Electron-microprobe compositions of plagioclase from the diorite-porphyrites at Naomuhungou

      点号 SiO2 TiO2 Al2O3 FeO MnO MgO CaO BaO Na2O K2O Total Si Al Ca Na K An Ab Or
      01 60.55 - 25.22 0.17 0.02 0.01 7.32 0.03 6.87 0.54 100.73 2.683 2 1.316 8 0.347 6 0.590 0 0.001 0 35.91 60.95 3.15
      02 58.64 - 25.94 0.18 - 0.01 7.96 - 6.48 0.48 99.74 2.631 6 1.372 2 0.382 7 0.564 1 - 39.27 57.89 2.84
      03 59.25 - 25.65 0.21 0.02 0.00 7.99 - 6.47 0.49 100.09 2.648 1 1.351 3 0.382 8 0.560 3 - 39.42 57.69 2.89
      04 59.55 - 26.00 0.17 0.02 0.01 8.05 0.01 6.54 0.45 100.83 2.641 9 1.359 7 0.382 6 0.562 5 0.000 4 39.43 57.97 2.61
      05 58.78 - 26.16 0.20 0.01 0.02 8.58 - 6.23 0.51 100.48 2.621 8 1.375 2 0.409 8 0.538 9 0.000 0 41.93 55.13 2.94
      06 58.48 0.00 26.34 0.22 - 0.02 8.77 0.03 6.14 0.42 100.46 2.611 4 1.386 1 0.419 6 0.531 9 0.001 2 43.02 54.53 2.45
      07 57.58 0.02 26.71 0.16 0.03 0.01 8.87 0.08 6.02 0.42 99.90 2.587 8 1.414 7 0.427 0 0.524 2 0.002 7 43.79 53.77 2.45
      08 57.17 0.03 26.58 0.22 0.00 0.01 9.03 0.09 6.05 0.18 99.35 2.583 7 1.415 8 0.437 2 0.530 0 0.003 0 44.74 54.23 1.04
      09 55.69 0.01 28.52 0.32 0.02 0.04 10.73 0.08 4.99 0.28 100.67 2.497 9 1.507 9 0.515 8 0.434 2 0.002 9 53.40 44.95 1.65
      10 55.77 0.01 28.53 0.31 0.02 0.03 11.08 0.06 4.85 0.35 101.02 2.495 3 1.504 5 0.531 0 0.420 9 0.002 1 54.63 43.30 2.07
      11 55.62 0.04 28.64 0.37 0.01 0.02 10.89 0.06 4.81 0.31 100.80 2.493 7 1.513 4 0.523 4 0.418 3 0.002 0 54.54 43.59 1.87
      12 52.35 0.03 30.14 0.35 0.00 0.04 13.37 0.01 3.53 0.15 99.98 2.381 8 1.616 3 0.651 9 0.311 6 0.000 3 67.06 32.05 0.89
      13 56.48 0.01 28.12 0.39 0.02 0.04 10.87 0.04 4.85 0.25 101.07 2.521 5 1.479 5 0.519 9 0.420 2 0.001 4 54.48 44.44 1.48
      14 52.88 - 30.12 0.39 0.01 0.03 13.02 0.03 3.46 0.16 100.12 2.397 8 1.609 7 0.632 5 0.304 2 0.001 0 66.85 32.15 1.00
      15 51.93 0.02 30.99 0.39 0.02 0.04 14.40 0.06 3.09 0.12 101.09 2.344 8 1.649 4 0.696 8 0.270 2 0.002 0 71.54 27.74 0.72
      16 50.13 0.02 31.78 0.39 0.02 0.03 14.78 0.08 2.71 0.16 100.09 2.291 1 1.712 1 0.723 6 0.240 1 0.002 8 74.36 24.67 0.97
      17 54.48 0.01 29.16 0.30 - 0.02 12.14 0.06 4.10 0.25 100.53 2.453 2 1.547 3 0.585 8 0.357 5 0.002 2 61.18 37.34 1.48
      18 57.47 - 27.39 0.27 - 0.04 9.72 - 5.51 0.36 100.75 2.563 5 1.439 9 0.464 7 0.476 7 0.000 0 48.31 49.56 2.12
      19 57.49 0.00 27.32 0.30 0.02 0.05 9.88 0.04 5.71 0.29 101.12 2.560 8 1.434 2 0.471 5 0.493 4 0.001 3 48.03 50.26 1.70
      20 58.08 0.01 27.13 0.28 0.00 0.03 9.76 0.07 5.62 0.30 101.29 2.577 7 1.419 2 0.464 3 0.483 5 0.002 4 48.11 50.10 1.78
      21 58.32 - 26.90 0.28 0.01 0.02 9.37 0.06 5.75 0.40 101.11 2.590 7 1.408 4 0.446 2 0.494 9 0.002 0 46.30 51.35 2.35
      注: “-”表示低于检测限.
      下载: 导出CSV

      表  3  瑙木浑沟闪长玢岩中角闪石成分(%)

      Table  3.   Electron-microprobe compositions of hornblende from the diorite-porphyrites at Naomuhungou

      样品号 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
      SiO2 44.44 44.84 45.38 45.76 44.18 45.13 44.60 47.04 45.28 45.54 45.80 45.73 45.36 45.05 45.10
      TiO2 2.46 2.37 2.24 1.64 2.41 2.28 2.37 1.74 2.25 2.23 2.01 2.09 2.05 2.26 2.36
      Al2O3 9.26 8.88 8.82 8.05 8.89 8.97 9.33 7.60 8.87 9.08 8.98 8.70 8.88 9.18 9.04
      FeO 13.78 13.79 13.82 14.43 14.15 14.31 13.74 13.60 13.77 13.99 14.49 14.45 14.39 13.55 13.56
      MnO 0.17 0.17 0.22 0.24 0.23 0.20 0.21 0.26 0.18 0.24 0.21 0.22 0.26 0.23 0.20
      MgO 13.30 13.08 13.55 13.42 13.07 12.96 13.45 14.13 13.68 13.03 13.01 13.03 13.15 13.56 13.42
      CaO 10.73 11.04 10.86 10.84 10.79 10.97 11.02 10.81 10.90 10.85 11.00 10.89 10.89 10.94 10.83
      NiO 0.02 0.04 - 0.02 0.03 0.02 0.04 0.04 0.03 0.06 0.03 0.06 0.06 0.00 0.02
      BaO 0.04 0.04 0.08 0.00 0.08 0.09 0.07 0.02 0.03 0.04 0.01 0.11 0.10 0.01 -
      Na2O 2.03 1.83 1.85 1.68 1.85 2.02 1.93 1.74 1.96 1.94 1.87 1.90 1.84 2.05 2.00
      K2O 0.51 0.52 0.56 0.53 0.51 0.54 0.50 0.44 0.50 0.51 0.53 0.51 0.54 0.52 0.52
      Total 96.73 96.59 97.37 96.61 96.19 97.46 97.25 97.42 97.45 97.50 97.93 97.69 97.52 97.34 97.05
      Si 6.63 6.69 6.71 6.83 6.65 6.69 6.62 6.92 6.69 6.73 6.75 6.76 6.72 6.66 6.69
      Al 1.37 1.31 1.29 1.17 1.35 1.31 1.38 1.08 1.31 1.27 1.25 1.24 1.28 1.34 1.31
      Al 0.26 0.26 0.25 0.25 0.22 0.26 0.25 0.24 0.24 0.31 0.31 0.28 0.28 0.26 0.27
      Ti 0.28 0.27 0.25 0.18 0.27 0.25 0.26 0.19 0.25 0.25 0.22 0.23 0.23 0.25 0.26
      Fe3+ 0.38 0.43 0.41 0.43 0.39 0.39 0.38 0.48 0.39 0.44 0.43 0.43 0.41 0.37 0.40
      Fe2+ 1.34 1.29 1.30 1.37 1.39 1.38 1.33 1.19 1.31 1.29 1.35 1.35 1.37 1.30 1.28
      Mn 0.02 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.02
      Mg 2.96 2.91 2.99 2.99 2.93 2.87 2.98 3.10 3.01 2.87 2.86 2.87 2.91 2.99 2.97
      Ca 1.71 1.77 1.72 1.73 1.74 1.74 1.75 1.70 1.73 1.72 1.74 1.72 1.73 1.73 1.72
      Na 0.59 0.53 0.53 0.49 0.54 0.58 0.56 0.50 0.56 0.56 0.53 0.55 0.53 0.59 0.58
      K 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.08 0.09 0.10 0.10 0.10 0.10 0.10 0.10
      SiT 6.63 6.69 6.71 6.83 6.65 6.69 6.62 6.92 6.69 6.73 6.75 6.76 6.72 6.66 6.69
      AlT 1.37 1.31 1.29 1.17 1.35 1.31 1.38 1.08 1.31 1.27 1.25 1.24 1.28 1.34 1.31
      AlC 0.26 0.26 0.25 0.25 0.22 0.26 0.25 0.24 0.24 0.31 0.31 0.28 0.28 0.26 0.27
      FeC3+ 0.38 0.43 0.41 0.43 0.39 0.39 0.38 0.48 0.39 0.44 0.43 0.43 0.41 0.37 0.40
      TiC 0.28 0.27 0.25 0.18 0.27 0.25 0.26 0.19 0.25 0.25 0.22 0.23 0.23 0.25 0.26
      MgC 2.96 2.91 2.99 2.99 2.93 2.87 2.98 3.10 3.01 2.87 2.86 2.87 2.91 2.99 2.97
      FeC2+ 1.14 1.14 1.09 1.15 1.19 1.23 1.13 0.99 1.11 1.13 1.18 1.18 1.18 1.12 1.10
      FeB2+ 0.21 0.16 0.20 0.22 0.21 0.16 0.20 0.20 0.21 0.16 0.17 0.17 0.19 0.18 0.18
      MnB 0.02 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.02
      CaB 1.71 1.77 1.72 1.73 1.74 1.74 1.75 1.70 1.73 1.72 1.74 1.72 1.73 1.73 1.72
      NaB 0.06 0.06 0.05 0.02 0.03 0.07 0.02 0.06 0.04 0.09 0.07 0.08 0.04 0.06 0.08
      NaA 0.53 0.47 0.48 0.47 0.51 0.51 0.53 0.43 0.52 0.46 0.47 0.47 0.49 0.53 0.50
      KA 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.08 0.09 0.10 0.10 0.10 0.10 0.10 0.10
      注: “-”表示低于检测限.
      下载: 导出CSV

      表  4  瑙木浑沟闪长玢岩全岩主量元素(%)、微量元素(10-6)成分

      Table  4.   Whole rock major (%) and trace element (10-6) contents of the Naomuhungou diorite-porphyrites

      样品 ZH01-1 ZH01-2 ZH01-3 ZH01-4 ZH01-5 ZH01-6 ZH01-7 ZH01-8 ZH01-9 ZH01-10 ZH01-11 ZH01-12 ZH01-13
      主量元素(%)
      SiO2 58.20 58.86 58.38 59.98 59.14 60.74 60.89 60.76 62.54 62.77 64.91 63.68 64.93
      TiO2 0.69 0.69 0.67 0.70 0.72 0.65 0.64 0.65 0.61 0.60 0.64 0.60 0.65
      Al2O3 16.98 17.01 17.1 16.52 16.37 16.26 15.96 16.12 16.42 16.36 16.17 16.44 16.12
      Fe2O3T 5.97 5.96 5.9 5.58 5.75 5.12 5.02 5.08 5.08 4.96 4.87 4.89 5.21
      MnO 0.08 0.09 0.08 0.11 0.10 0.09 0.08 0.08 0.11 0.09 0.09 0.08 0.07
      MgO 2.94 2.54 2.72 2.96 3.34 2.86 2.44 2.31 2.39 2.54 1.49 2.11 1.38
      CaO 5.21 5.69 5.6 6.23 5.69 4.97 5.38 5.74 5.04 4.20 3.91 3.44 3.84
      Na2O 3.03 3.14 3.12 2.95 3.15 3.25 3.11 3.11 3.22 3.57 3.85 4.78 3.80
      K2O 1.73 1.85 1.72 1.80 1.68 2.15 2.00 1.86 2.22 2.58 2.79 2.53 3.03
      P2O5 0.18 0.18 0.18 0.18 0.18 0.18 0.17 0.27 0.16 0.15 0.19 0.16 0.19
      LOI 3.94 4.23 3.47 2.40 2.75 2.73 3.41 3.00 2.40 2.55 1.16 1.25 0.81
      Total 98.95 100.24 98.94 99.41 98.87 99.00 99.10 98.98 100.19 100.37 100.07 99.96 100.03
      Mg# 53.4 49.8 51.8 55.3 57.5 56.6 53.1 51.5 52.3 54.4 41.6 50.1 38.2
      微量元素(10-6)
      Li 37.15 36.20 26.07 7.81 17.90 18.60 15.41 11.09 14.80 13.50 32.10 25.00 17.00
      Be 1.53 1.58 1.58 1.54 1.55 1.53 1.71 1.67 1.31 1.39 1.99 1.47 2.10
      Sc 15.34 14.86 15.40 13.75 14.90 11.64 11.37 11.12 9.00 9.50 7.90 10.50 9.00
      V 108.92 107.58 108.77 99.60 109.14 83.02 81.42 80.96 89.00 77.00 63.00 85.00 64.00
      Cr 15.62 17.24 11.99 30.05 31.75 22.90 23.28 23.75 30.00 30.00 20.00 30.00 20.00
      Co 12.18 11.62 12.67 13.28 14.11 11.36 11.86 12.00 10.20 9.70 8.40 10.10 8.80
      Ni 6.57 7.16 6.55 10.75 10.71 9.45 9.67 10.00 7.60 6.40 3.20 6.80 3.60
      Cu 14.27 15.30 16.07 13.55 17.07 13.82 15.42 15.63 12.40 12.20 17.60 12.80 76.30
      Zn 63.98 67.74 66.89 79.39 68.85 67.83 65.28 68.22 92.00 78.00 90.00 69.00 60.00
      Ga 18.82 18.99 18.95 19.53 19.72 19.15 19.37 18.97 18.60 18.40 20.90 19.20 20.80
      Rb 46.22 50.70 48.73 42.15 41.97 56.34 47.89 32.29 68.40 62.00 110.00 76.10 115.50
      Sr 442.19 465.36 492.9 518.15 532.48 500.86 590.37 573.55 486.00 508.00 493.00 592.00 497.00
      Y 14.34 14.86 15.31 15.86 16.44 14.35 15.49 14.97 16.50 15.10 18.10 16.10 20.80
      Zr 139.10 139.89 141.27 138.31 152.52 152.04 179.65 178.48 215.00 203.00 199.00 222.00 223.00
      Nb 7.26 7.29 7.16 8.23 8.88 8.50 9.26 9.03 9.10 8.70 10.40 9.10 11.50
      Sn 1.12 1.10 1.20 1.10 1.10 1.20 1.30 1.30 2.00 2.00 3.00 2.00 3.00
      Cs 14.39 10.96 13.01 1.33 2.83 1.78 1.30 0.57 1.99 1.50 7.04 10.20 7.64
      Ba 554.25 593.16 595.78 666.27 681.75 684.34 771.30 773.11 755.00 823.00 827.00 849.00 749.00
      La 23.03 22.97 23.19 27.55 27.10 27.78 30.20 29.64 32.90 30.80 32.40 32.70 35.10
      Ce 44.43 44.81 44.39 53.12 53.73 53.76 58.58 57.22 63.70 59.40 63.60 63.00 71.80
      Pr 4.97 5.07 5.03 5.96 6.06 6.09 6.54 6.47 7.13 6.47 7.35 6.79 8.04
      Nd 19.04 19.25 18.90 22.51 23.03 22.26 24.38 24.28 25.80 23.40 26.30 24.70 29.30
      Sm 3.37 3.42 3.37 4.22 4.41 4.07 4.43 4.10 4.88 4.39 5.21 4.69 5.75
      Eu 1.08 1.07 1.10 1.21 1.2 1.12 1.22 1.19 1.32 1.13 1.27 1.18 1.39
      Gd 2.89 3.03 3.02 3.55 3.47 3.14 3.40 3.40 3.82 3.45 4.05 3.77 4.74
      Tb 0.46 0.47 0.49 0.56 0.58 0.50 0.53 0.54 0.53 0.51 0.59 0.50 0.65
      Dy 2.68 2.64 2.81 3.03 3.15 2.78 2.85 2.8 3.24 2.90 3.46 3.08 3.96
      Ho 0.51 0.52 0.55 0.59 0.6 0.53 0.54 0.53 0.56 0.52 0.59 0.54 0.68
      Er 1.48 1.56 1.55 1.59 1.68 1.48 1.51 1.49 1.77 1.63 1.77 1.70 2.10
      Tm 0.21 0.22 0.24 0.24 0.25 0.21 0.24 0.23 0.26 0.22 0.26 0.24 0.32
      Yb 1.35 1.43 1.5 1.49 1.52 1.27 1.40 1.34 1.68 1.57 1.67 1.57 1.99
      Lu 0.23 0.23 0.25 0.23 0.24 0.21 0.22 0.22 0.26 0.24 0.27 0.26 0.31
      Hf 3.41 3.59 3.59 3.74 4.12 4.12 4.65 4.53 5.30 5.20 4.90 5.40 5.70
      Ta 0.43 0.44 0.43 0.53 0.59 0.59 0.62 0.59 0.70 0.60 0.80 0.70 0.90
      Tl 0.29 0.38 0.34 0.35 0.30 0.33 0.32 0.27 0.27 0.33 0.56 0.32 0.50
      Pb 11.62 11.12 13.07 46.59 13.46 16.48 12.99 16.22 22.50 20.10 32.50 15.60 9.70
      Th 4.65 4.77 4.77 7.10 7.03 7.46 7.64 7.32 9.46 8.66 12.10 9.04 12.75
      U 0.96 1.02 1.02 1.81 1.70 1.82 1.85 1.73 2.13 1.99 3.54 2.13 3.85
      ∑REE 105.27 106.22 105.9 125.29 126.44 124.7 135.51 132.91 147.32 136.12 148.20 144.22 165.48
      (La/Yb)N 12.24 11.52 11.09 13.26 12.79 15.69 15.47 15.87 14.05 14.07 13.92 14.94 12.65
      δEu 1.03 0.99 1.03 0.93 0.91 0.92 0.92 0.95 0.90 0.86 0.81 0.83 0.79
      注: Mg#=MgO/(MgO+FeO).
      下载: 导出CSV

      表  5  瑙木浑沟闪长玢岩全岩Sr-Nd同位素成分

      Table  5.   Whole rock Sr-Nd isotopic compositions of the Naomuhungou diorite-porphyrites

      样品 Rb(10-6) Sr(10-6) 87Rb/86Sr 87Sr/86Sr ±2σ (87Sr/86Sr)i Sm(10-6) Nd(10-6) 147Sm/144Nd 143Nd/144Nd 2σ (143Nd/144Nd)i εNd(t) t
      ZH01-1 46.22 442.19 0.294 957 0.709 559 0.000 018 0.708 653 3.37 19.04 0.112 108 0.512 098 0.000 012 0.512 360 -5.1 216
      ZH01-2 50.70 465.36 0.307 578 0.709 584 0.000 020 0.708 639 3.42 19.25 0.111 872 0.512 114 0.000 015 0.512 360 -4.8 216
      ZH01-4 42.15 518.15 0.229 650 0.709 312 0.000 013 0.708 607 4.22 22.51 0.124 370 0.512 087 0.000 047 0.512 360 -5.3 216
      ZH01-7 47.89 590.37 0.158 935 0.709 302 0.000 013 0.708 814 4.43 24.38 0.106 961 0.512 112 0.000 008 0.512 360 -4.8 216
      注: ISr=[(87Sr/86Sr)-(87Rb/86Sr) (eλt-1)]; (143Nd/144Nd)i=[(143Nd/144Nd)-(147Sm/144Nd) (eλt-1)]; εNd(t)=[(143Nd/144Nd)i/(143Nd/144Nd)CHURi-1]×104.(147Sm/144Nd)CHUR=0.196 7; (143Nd/144Nd)CHUR=0.512 638; λ(87Rb)=1.42×10-11 a-1; λ(147Sm)=6.54×10-12 a-1.
      下载: 导出CSV
    • [1] Baier, J., Audétat, A., Keppler, H., 2008.The Origin of the Negative Niobium Tantalum Anomaly in Subduction Zone Magmas.Earth and Planetary Science Letters, 267(1-2):290-300. https://doi.org/10.1016/j.epsl.2007.11.032
      [2] Barbarin, B., 2005.Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California:Nature, Origin, and Relations with the Hosts.Lithos, 80(1-4):155-177. https://doi.org/10.1016/j.lithos.2004.05.010
      [3] Barth, M.G., McDonough, W.F., Rudnick, R.L., 2000.Tracking the Budget of Nb and Ta in the Continental Crust.Chemical Geology, 165(3-4):197-213. https://doi.org/10.1016/S0009-2541(99)00173-4
      [4] Baxter, S., Feely, M., 2002.Magma Mixing and Mingling Textures in Granitoids:Examples from the Galway Granite, Connemara, Ireland.Mineralogy & Petrology, 76(1-2):63-74. doi: 10.1007/s007100200032
      [5] Blundy, J.D., Sparks, R.S.J., 1992.Petrogenesis of Mafic Inclusions in Granitoids of the Adamello Massif, Italy.Journal of Petrology, 33(5):1039-1104. doi: 10.1093/petrology/33.5.1039
      [6] Chappell, B.W., White, A.J.R., 2001.Two Contrasting Granite Types:25 Years Later.Australian Journal of Earth Sciences, 48(4):489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      [7] Chen, B.W., Wang, Y.B., 1996.Some Characteristics of the Orogenic Belts in Qinghai-Tibet Plateau.Journal of Southeast Asian Earth Sciences, 13(3-5):237-242. https://doi.org/10.1016/0743-9547(96)83685-3
      [8] Chen, G.C., Pei.X.Z., Li, R.B., et al., 2013.Late Triassic Magma Mixing in the East Kunlun Orogenic Belt:A Case Study of Helegang Xilikete Granodiorites.Geology in China, 40(4):1044-1065 (in Chinese with English abstract). https://www.researchgate.net/publication/283814750_Late_triassic_magma_mixing_in_the_east_kunlun_orogenic_belt_A_case_study_of_helegang_xilikete_granodiorites
      [9] Chen, G.Y., Sun, D.S., Shao, W., et al., 1993.Genetic Mineralogy and Gold Mineralization from Grandiorite from Guojialing from the Northwestern Jiaodong.China University of Geosciences Press, Beijing (in Chinese).
      [10] Chen, H.W., Luo, Z.H., Mo, X.X., et al., 2005.Underplating Mechanism of Triassic Granite of Magma Mixing Origin in the East Kunlun Orogenic Belt.Geology in China, 32(3):386-395 (in Chinese with English abstract). https://www.researchgate.net/publication/288084144_Underplating_mechanism_of_Triassic_granite_of_magma_mixing_origin_in_the_East_Kunlun_orogenic_belt
      [11] Chen, N.S., Zhu, J., Wang, G.C., et al., 1999.Metamorphic Petrological Features of High-Grade Metamorphic Microlithons in Qingshuiquan Region, Eastern Section of Eastern Kunlun Orogenic Zone.Earth Science, 24(2):116-120 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX902.001.htm
      [12] Chen, X.H., Gehrels, G., Yin, A., et al., 2015.Geochemical and Nd-Sr-Pb-O Isotopic Constrains on Permo-Triassic Magmatism in Eastern Qaidam Basin, Northern Qinghai-Tibetan Plateau:Implications for the Evolution of the Paleo-Tethys.Journal of Asian Earth Sciences, 114(4):674-692. https://doi.org/10.1016/j.jseaes.2014.11.013
      [13] Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2011.Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt.Geoscience, 25(3):510-521 (in Chinese with English abstract). https://www.researchgate.net/publication/285650077_Zircon_U-Pb_age_of_Xiaomiao_Formation_of_Proterozoic_in_the_eastern_section_of_the_East_Kunlun_Orogenic_Belt
      [14] Condie, K.C., 1989.Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary:Identification and Significance.Lithos, 23(1-2):1-18. https://doi.org/10.1016/0024-4937(89)90020-0
      [15] Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0
      [16] Feng, C.Y., Wang, S., Li, G.C., et al., 2012.Middle to Late Triassic Granitoids in the Qimantage Area, Qinghai Province, China:Chronology, Geochemistry and Metallogenic Significances.Acta Petrologica Sinica, 28(2):665-678 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201202025.htm
      [17] Gardien, V., Thompson, A.B., Grujic, D., et al., 1995.Experimental Melting of Biotite + Plagioclase + Quartz ± Muscovite Assemblages and Implications for Crustal Melting.Journal of Geophysical Research:Solid Earth, 100(B8):15581-15591. https://doi.org/10.1029/95jb00916
      [18] Ginibre, C., Wörner, G., 2007.Variable Parent Magmas and Recharge Regimes of the Parinacota Magma System (N.Chile) Revealed by Fe, Mg and Sr Zoning in Plagioclase.Lithos, 98(1-4):118-140. https://doi.org/10.1016/j.lithos.2007.03.004
      [19] Giret, A., Bonin, B., Leger, J.M., 1980.Amphibole Compositional Trends in Oversaturated and Undersaturated Alkaline Plutonic Ring-Complexes.Canadian Mineralist, 18(4):481-495. https://www.researchgate.net/publication/245273226_Amphibole_compositional_trends_in_oversaturated_and_undersaturated_alkaline_plutonic_ring-complexes
      [20] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. https://doi.org/10.1016/0009-2541(94)00145-x
      [21] Harris, N.B.W., Xu, R., Lewis, C.L., et al., 1988.Isotope Geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud.Philosophical Transactions of the Royal Society of London, 327(1594):263-285. doi: 10.1098/rsta.1988.0129
      [22] He, Y.S., Li, S.G., Hoefs, J., et al., 2011.Post-Collisional Granitoids from the Dabie Orogen:New Evidence for Partial Melting of a Thickened Continental Crust.Geochimica et Cosmochimica Acta, 75(13):3815-3838. https://doi.org/10.1016/j.gca.2011.04.011
      [23] Hoskin, P.W.O., Schaltegger, U., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027
      [24] Hu, Y., Niu, Y.L., Li, J.Y., et al., 2016.Petrogenesis and Tectonic Significance of the Late Triassic Mafic Dikes and Felsic Volcanic Rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau.Lithos, 245:205-222. https://doi.org/10.1016/j.lithos.2015.05.004
      [25] Jiang, C.Y., An, S.Y., 1984.On Chemical Characteristics of Calcic Amphiboles from Igneous Rocks and Their Petrogenesis Significance.Journal of Mineralogy and Petrology, (3):4-12 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS198403000.htm
      [26] Kalfoun, F., Ionov, D., Merlet, C., 2002.HFSE Residence and Nb/Ta Ratios in Metasomatised, Rutile-Bearing Mantle Peridotites.Earth and Planetary Science Letters, 199(1-2):49-65. https://doi.org/10.1016/s0012-821x(02)00555-1
      [27] Konstantinovskaia, E.A., Brunel, M., Malavieille, J., 2003.Discovery of the Paleo-Tethys Residual Peridotites along the Anyemaqen-Kunlun Suture Zone (North Tibet).Comptes Rendus-Géoscience, 335(8):709-719. https://doi.org/10.1016/s1631-0713(03)00118-4
      [28] Leake, B.E., 1978.Nomenclature of Amphiboles.The Canadian Mineralogist, 16(4):501-520.
      [29] Leake, B.E., Wooley, A.R., Arps, C.E.S., et al., 1997.Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.The Canadian Mineralogist, 35:219-246. https://doi.org/10.1180/minmag.1997.061.405.13
      [30] Li, B.L., Sun, F.Y., Yu, X.F., et al., 2012.U-Pb Dating and Geochemistry of Diorite in the Eastern Section from Eastern Kunlun Middle Uplifted Basement and Granitic Belt.Acta Petrologica Sinica, 28(4):1163-1172 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20120413
      [31] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2012.Geological Characteristics of Late Palaeozoic-Mesozoic Unconformities and Their Response to Some Significant Tectonic Events in Eastern Part of Eastern Kunlun.Earth Science Frontiers, 19(5):244-254 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201205025.htm
      [32] Li, Y.J., Xu, Q., Yang, G.X., et al., 2016.Intracontinental "Lagged Arc Volcanic Rocks" and Its Geological Significance:Evidence from Early Permian Lagged Arc Magmatism in Northern Urho Area of Western Junggar.Earth Science Frontiers, 23(4):190-199 (in Chinese with English abstract). https://www.researchgate.net/publication/305242831_Intracontinental_lagged_arc_volcanic_rocks_and_its_geological_significance_Evidence_from_early_Permian_lagged_arc_magmatism_in_northern_Urho_area_of_Western_Junggar
      [33] Li, Z.C., Pei, X.Z., Liu, Z.Q., et al., 2013.Geochronology and Geochemistry of the Gerizhuotuo Diorites from the Buqingshan Tectonic Mélange Belt in the Southern Margin of East Kunlun and Their Geologic Implications.Acta Geologica Sinica, 87(8):1089-1103 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201308006.htm
      [34] Liao, Z.L., Mo, X.X., Yu, X.H., et al., 2001.Development Trend of Igneous Petrology Based on the 31st International Geological Congress.Acta Petrologica et Mineralogica, 20(3):360-366 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW200103019.htm
      [35] Lin, W.W., Peng, L.J., 1994.The Estimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite from EMPA Data.Journal of Changchun University of Earth Sciences, 24(2):155-162 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ402.004.htm
      [36] Ling, W.L., Duan, R.C., Xie, X.J., et al., 2009.Contrasting Geochemistry of the Cretaceous Volcanic Suites in Shandong Province and Its Implications for the Mesozoic Lower Crust Delamination in the Eastern North China Craton.Lithos, 113(3-4):640-658. https://doi.org/10.1016/j.lithos.2009.07.001
      [37] Liu, B., Ma, C.Q., Zhang, J.Y., et al., 2013.40Ar-39Ar Age and Geochemistry of Subduction-Related Mafic Dikes in Northern Tibet, China:Petrogenesis and Tectonic Implications.International Geology Review, 56(1):57-73. https://doi.org/10.1080/00206814.2013.818804
      [38] Liu, C.D., Zhou, S., Mo, X.X., et al., 2003.Constraints of Petrochemistry and 40Ar/39Ar Aging of Post-Collision Granites in Eastern Kunlun Orogenic Belt.Journal of East China Geological Institute, 26(4):301-305 (in Chinese with English abstract). https://www.researchgate.net/publication/285076017_Constraints_of_petrochemistry_and_40ar39ar_aging_of_post-collision_granites_in_eastern_kunlun_orogenic_belt_J
      [39] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      [40] Lu, S.N., Li, H.K., Wang, H.C., et al., 2009.Detrital Zircon Population of Proterozoic Meta-Sedimentary Strata in the Qinling-Qilian-Kunlun Orogen.Acta Petrologica Sinica, 25(9):2195-2208 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090913
      [41] Luo, M F., Mo, X.X., Yu, X.H., et al., 2014.Zircon LA-ICP-MS U-Pb Age Dating, Petrogenesis and Tectonic Implications of the Late Triassic Granites from the Xiangride Area, East Kunlun.Acta Petrologica Sinica, 30(11):3229-3241 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201411010.htm
      [42] Luo, M.F., Mo, X.X., Yu, X.H., et al., 2015.Zircon U-Pb Geochronology, Petrogenesis and Implication of the Later Permian Granodiorite from the Wulonggou Area in East Kunlun, Qinghai Province.Earth Science Frontiers, 22(5):182-195 (in Chinese with English abstract). https://www.researchgate.net/publication/282988683_Zircon_U-Pb_geochronology_petrogenesis_and_implication_of_the_Later_Permian_granodiorite_from_the_Wulonggou_Area_in_East_Kunlun_Qinhai_Province
      [43] Luo, Z.H., Ke, S., Cao, Y.Q., et al., 2002.Late Indosinian Mantle-Derived Magmatism in the East Kunlun.Geological Bulletin of China, 21(6):292-297 (in Chinese with English abstract). https://www.researchgate.net/publication/287171794_Late_Indosinian_mantle-derived_magmatism_in_the_East_Kunlun
      [44] Luo, Z.H., Lu, X.X., Chen, B.H., et al., 2009.Introduction to the Metallogenic Theory by Transmagmatic Fluids.Geological Publishing House, Beijing, 68-86(in Chinese).
      [45] Ma, Q., Zheng, J.P., Griffin, W.L., et al., 2012.Triassic "Adakitic" Rocks in an Extensional Setting (North China):Melts from the Cratonic Lower Crust.Lithos, 149:159-173. https://doi.org/10.1016/j.lithos.2012.04.017
      [46] Meng, F.C., Zhang, J.X., Cui, M.H., 2013.Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance.Gondwana Research, 23(2):825-836. https://doi.org/10.1016/j.gr.2012.06.007
      [47] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [48] Mo, X.X., 2011.Magmatism and Evolution of the Tibetan Plateau.Geological Journal of China Universities, 17(3):351-367 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201103003.htm
      [49] Mo, X.X, Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200703005.htm
      [50] Mo, X.X., 2009.A Review of Genesis Study on Magmatic Rocks of the Qinghai-Tibet Plateau:Achievements and Remaining Problems.Geological Bulletin of China, 28(12):1693-1703 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200912002.htm
      [51] Myers, R.E., Cawthorn, R.G., McCarthy, T.S., et al., 1987.Fundamental Uniformity in the Trace Element Patterns of the Volcanics of the Kaapvaal Craton from 3 000 to 2 100 Ma:Evidence for the Lithospheric Origin of These Continental Tholeiites.Geological Society, London, Special Publications, 33(1):315-325. https://doi.org/10.1144/gsl.sp.1987.033.01.21
      [52] Möller, A., O'Brien, P.J., Kennedy, A., et al., 2003.Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry:An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway).Geological Society, London, Special Publications, 220(1):65-81. https://doi.org/10.1144/gsl.sp.2003.220.01.04
      [53] Niu, Y.L., O'Hara, M.J., 2009.MORB Mantle Hosts the Missing Eu (Sr, Nb, Ta and Ti) in the Continental Crust:New Perspectives on Crustal Growth, Crust-Mantle Differentiation and Chemical Structure of Oceanic Upper Mantle.Lithos, 112(1-2):1-17. doi: 10.1016/j.lithos.2008.12.009
      [54] Niu, Y.L., Zhao, Z.D., Zhu, D.C., et al., 2013.Continental Collision Zones are Primary Sites for Net Continental Crust Growth—A Testable Hypothesis.Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      [55] Omrani, J., Agard, P., Whitechurch, H., et al., 2008.Arc-Magmatism and Subduction History beneath the Zagros Mountains, Iran:A New Report of Adakites and Geodynamic Consequences.Lithos, 106(3-4):380-398. https://doi.org/10.1016/j.lithos.2008.09.008
      [56] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      [57] Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      [58] Pei, X.Z., Hu, N., Liu, C.J., et al., 2015.Detrital Composition, Geochemical Characteristics and Provenance Analysis for the Maerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region.Geological Review, 61(2):307-323 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dzlp201502006.aspx
      [59] Qin, J.F., Lai, S.C., Grapes, R., et al., 2010.Origin of Late Triassic High-Mg Adakitic Granitoid Rocks from the Dongjiangkou Area, Qinling Orogen, Central China:Implications for Subduction of Continental Crust.Lithos, 120(3-4):347-367. https://doi.org/10.1016/j.lithos.2010.08.022
      [60] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology, 160(4):335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      [61] Rapp, R.P., Watson, E.B., Miller, C.F., 1991.Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites.Precambrian Research, 51(1-4):1-25. https://doi.org/10.1016/0301-9268(91)90092-o
      [62] Ren, J.H., Liu, Y.Q., Zhou, D.W., et al., 2010.Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Dating of Basic Dykes in the Xiaomiao Area, Eastern Kunlun.Journal of Jilin University (Earth Science Edition), 40(4):859-868 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201004017.htm
      [63] Richards, J.P., 2003.Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation.Economic Geology, 98(8):1515-1533. doi: 10.2113/gsecongeo.98.8.1515
      [64] Roger, F., Jolivet, M., Malavieille, J., 2008.Tectonic Evolution of the Triassic Fold Belts of Tibet.Comptes Rendus Geoscience, 340(2-3):180-189. https://doi.org/10.1016/j.crte.2007.10.014
      [65] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry 3. Elsevier-Pergamon, Oxford, 1-64.
      [66] Shao, F.L., Niu, Y.L., Regelous, M., et al., 2015.Petrogenesis of Peralkaline Rhyolites in an Intra-Plate Setting:Glass House Mountains, Southeast Queensland, Australia.Lithos, 216-217:196-210. https://doi.org/10.1016/j.lithos.2014.12.015
      [67] Shao, F.L., Niu, Y.L., Liu, Y., et al., 2017.Petrogenesis of Triassic Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau and Their Tectonic Implications.Lithos, 282-283:33-44. https://doi.org/10.1016/j.lithos.2017.03.002
      [68] Song, S.G., Su, L., Li, X.H., et al., 2010.Tracing the 850 Ma Continental Flood Basalts from a Piece of Subducted Continental Crust in the North Qaidam UHPM Belt, NW China.Precambrian Research, 183(4):805-816. https://doi.org/10.1016/j.precamres.2010.09.008
      [69] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [70] Sun, Y., Pei, X.Z., Ding, S.P., et al., 2009.Halagatu Magma Mixing Granite in the East Kunlun Mountains—Evidence from Zircon U-Pb Dating.Acta Geologica Sinica, 83(7):1000-1010 (in Chinese with English abstract). http://www.researchgate.net/publication/285831263_Halagatu_magma_mixing_granite_in_the_east_kunlun_mountains-evidence_from_zircon_U-Pb_dating
      [71] Taylor, S.R., 1967.The Origin and Growth of Continents.Tectonophysics, 4(1):17-34. https://doi.org/10.1016/0040-1951(67)90056-x
      [72] Vernon, R.H., 1990.Crystallization and Hybridism in Microgranitoid Enclave Magmas:Microstructural Evidence.Journal of Geophysical Research, 95(B11):17849-17859. https://doi.org/10.1029/jb095ib11p17849
      [73] Vielzeuf, D., Montel, J.M., 1994.Partial Melting of Metagreywackes.Part Ⅰ.Fluid-Absent Experiments and Phase Relationships.Contributions to Mineralogy and Petrology, 117(4):375-393. https://doi.org/10.1007/bf00307272
      [74] Wang, G.C., Wei, Q.R., Jia, C.X., et al., 2007.Some Ideas of Precambrian Geology in the East Kunlun, China.Geological Bulletin of China, 26(8):929-937 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200708002.htm
      [75] Wang, G.C., Zhang, K.X., Liang, B, et al., 1997.Texture and Tectonic Slices of the Eastern Kunlun Orogenic Belt.Earth Science, 22(4):352-356 (in Chinese with English abstract).
      [76] Xia, R., Qing, M., Wang, C.M., et al., 2014.The Genesis of the Ore-Bearing Porphyry of the Tuoketuo Porphyry Cu-Au (Mo) Deposit in the East Kunlun, Qinghai Province:Constraints from Zircon U-Pb Geochronological and Geochemistry.Journal of Jilin University (Earth Science Edition), 44(5):1502-1524 (in Chinese with English abstract). http://www.researchgate.net/publication/286654334_The_genesis_of_the_ore-bearing_porphyry_of_the_Tuoketuo_porphyry_Cu-AuMo_deposit_in_the_East_Kunlun_Qinghai_Province_Constraints_from_zircon_U-Pb_geochronological_and_geochemistry
      [77] Xia, R., Wang, C.M., Deng, J., et al., 2014.Crustal Thickening Prior to 220 Ma in the East Kunlun Orogenic Belt:Insights from the Late Triassic Granitoids in the Xiao-Nuomuhong Pluton.Journal of Asian Earth Sciences, 93:193-210. https://doi.org/10.1016/j.jseaes.2014.07.013
      [78] Xiao, Q.H., Deng, J.F., Qiu, R.Z., et al., 2009.A Preliminary Study of the Relationship between Granitoids and the Growth of Continental Crust:A Case Study of the Formation of Key Orogen Granitoids in China.Geology in China, 36(3):594-622 (in Chinese with English abstract). https://www.researchgate.net/publication/286726135_A_preliminary_study_of_the_relationship_between_granitoids_and_the_growth_of_continental_crust_A_case_study_of_the_formation_of_key_orogen_granitoids_in_China
      [79] Xie, L., Wang, D.Z., Wang, R.C., et al., 2004.Complex Zoning Texture in Plagioclases from the Quartz Diorite Enclave in the Putuo Granitic Complex, Zhejiang Province:Record of Magma Mixing.Acta Petrologica Sinica, 20(6):96-107 (in Chinese with English abstract). http://www.oalib.com/paper/1471684
      [80] Xiong, F. H., 2014. Spatial-Temporal Pattern, Petrogenesis and Geological Implication of Paleo-Tethyan Granitoids in the East Kunlun Orogenic Belt(Eastern Segment)(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [81] Xiong, F.H., Ma, C.Q., Jiang, H., et al., 2014.Geochronology and Geochemistry of Middle Devonian Mafic Dykes in the East Kunlun Orogenic Belt, Northern Tibet Plateau:Implications for the Transition from Prototethys to Paleotethys Orogeny.Chemie Der Erde-Geochemistry, 74(2):225-235. https://doi.org/10.1016/j.chemer.2013.07.004
      [82] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2011.LA-ICP-MS Zircon U-Pb Dating, Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt.Acta Petrologica Sinica, 27(11):3350-3364 (in Chinese with English abstract). http://www.oalib.com/paper/1476006
      [83] Xiong, F.H., Ma, C.Q., Zhang, J.Y., et al., 2012.The Origin of Mafic Microgranular Enclaves and Their Host Granodiorites from East Kunlun, Northern Qinghai-Tibet Plateau:Implications for Magma Mixing during Subduction of Paleo-Tethyan Lithosphere.Mineralogy and Petrology, 104(3-4):211-224. https://doi.org/10.1007/s00710-011-0187-1
      [84] Xiong, X.L., Adam, J., Green, T.H., 2005.Rutile Stability and Rutile/Melt HFSE Partitioning during Partial Melting of Hydrous Basalt:Implications for TTG Genesis.Chemical Geology, 218(3-4):339-359. https://doi.org/10.1016/j.chemgeo.2005.01.014
      [85] Xu, Y.M., Jiang, S.Y., Zhu, Z.Y., et al., 2012.Geochronology, Geochemistry and Mineralization of the Quartz Diorite-Porphyrite and Granodiorite Porphyry in the Shanshangwan Area of the Jiurui Ore District, Jiangxi Privince.Acta Petrologica Sinica, 28(10):3306-3324 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20121018&journal_id=ysxb
      [86] Xu, Z.Q., Li, H.B., Yang, J.S., 2006.An Orogenic Plateau—The Orogenic Collage and Orogenic Types of the Qinghai-Tibet Plateau.Earth Science Frontiers, 13(4):1-17 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200604001.htm
      [87] Yan, Z., Bian, Q.T., Korchagin, O.A., et al., 2008.Provenance of Early Triassic Hongshuichuan Formation in the Southern Margin of the East Kunlun Mountains:Constrains from Detrital Framework, Heavy Mineral Analysis and Geochemistry.Acta Petrologica Sinica, 24(5):1068-1078 (in Chinese with English abstract). https://www.researchgate.net/publication/291645815_Geochemical_characteristics_of_low_to_middle_triassic_sedimentary_rocks_of_eastern_kunlun_orogenic_belt
      [88] Yang, J.S., Robinson, P.T., Jiang, C.F., et al., 1996.Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications.Tectonophysics, 258(1-4):215-231. https://doi.org/10.1016/0040-1951(95)00199-9
      [89] Yang, J.S., Shi, R.D., Wu, C.L., et al., 2009.Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau:Evidence for Paleo-Tethyan Suture in Northwest China.Journal of Earth Science, 20(2):303-331. https://doi.org/10.1007/s12583-009-0027-y
      [90] Yang, Y.H., Zhang, H.F., Chu, Z.Y., et al., 2010.Combined Chemical Separation of Lu, Hf, Rb, Sr, Sm and Nd from a Single Rock Digest and Precise and Accurate Isotope Determinations of Lu-Hf, Rb-Sr and Sm-Nd Isotope Systems Using Multi-Collector ICP-MS and TIMS.International Journal of Mass Spectrometry, 290(2-3):120-126. https://doi.org/10.1016/j.ijms.2009.12.011
      [91] Yin, H.F., Zhang, K.X., 1997.Characteristics of the Eastern Kunlun Orogenic Belt.Earth Science, 22(4):339-342 (in Chinese with English abstract). http://www.researchgate.net/publication/306203698_Characteristics_of_the_eastern_Kunlun_orogenic_belt
      [92] Yuan, W.M., Mo, X.X., Yu, X.H., et al., 2000.The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Mountains.Geological Review, 46(2):203-211 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200002012.htm
      [93] Zong, K.Q., Liu, Y.S., Gao, C.G., et al., 2010.In Situ U-Pb Dating and Trace Element Analysis of Zircons in Thin Sections of Eclogite:Refining Constraints on the Ultra High-Pressure Metamorphism of the Sulu Terrane, China.Chemical Geology, 269(3-4):237-251. https://doi.org/10.1016/j.chemgeo.2009.09.021
      [94] Zorpi, M.J., Coulon, C., Orsini, J.B., et al., 1989.Magma Mingling, Zoning and Emplacement in Calc-Alkaline Granitoid Plutons.Tectonophysics, 157(4):315-329. https://doi.org/10.1016/0040-1951(89)90147-9
      [95] 陈光远, 孙岱生, 邵伟, 等, 1993.胶东郭家岭花岗闪长岩成因矿物学与金矿化.北京:中国地质大学出版社.
      [96] 陈国超, 裴先治, 李瑞保, 等, 2013.东昆仑造山带晚三叠世岩浆混合作用:以和勒冈希里克特花岗闪长岩体为例.中国地质, 40(4): 1044-1065. http://www.doc88.com/p-9147172348878.html
      [97] 谌宏伟, 罗照华, 莫宣学, 等, 2005.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制.中国地质, 32(3): 386-395. http://www.docin.com/p-1096870368.html
      [98] 陈能松, 朱杰, 王国灿, 等, 1999.东昆仑造山带东段清水泉高级变质岩片的变质岩石学研究.地球科学, 24(2): 116-120. http://www.earth-science.net/WebPage/Article.aspx?id=755
      [99] 陈有炘, 裴先治, 李瑞保, 等, 2011.东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄.现代地质, 25(3): 510-521. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201103013
      [100] 丰成友, 王松, 李国臣, 等, 2012.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义.岩石学报, 28(2): 665-678. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201202024
      [101] 姜常义, 安三元, 1984.论火成岩中钙质角闪石的化学组成特征及其岩石学意义.矿物岩石, (3): 4-12. https://www.wenkuxiazai.com/doc/3b69ffa858f5f61fb73666f7.html
      [102] 李碧乐, 孙丰月, 于晓飞, 等, 2012.东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究.岩石学报, 28(4): 1163-1172. https://www.wenkuxiazai.com/doc/e3ebae4cf242336c1fb95e06.html
      [103] 李瑞保, 裴先治, 李佐臣, 等, 2012.东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应.地学前缘, 19(5): 244-254. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205025.htm
      [104] 李佐臣, 裴先治, 刘战庆, 等, 2013.东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义.地质学报, 87(8): 1089-1103. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201401019.htm
      [105] 李永军, 徐倩, 杨高学, 等, 2016.陆内"滞后"弧岩浆岩特征及其地质意义:来自西准噶尔乌尔禾北早二叠世岩浆作用的证据.地学前缘, 23(4): 190-199. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201604020.htm
      [106] 廖忠礼, 莫宣学, 喻学惠, 等, 2001.从31届地质大会看火成岩石学的研究动向.岩石矿物学杂志, 20(3): 360-366. http://www.oalib.com/paper/4337624
      [107] 林文蔚, 彭丽君, 1994.由电子探针分析数据估算角闪石, 黑云母中的Fe3+, Fe2+.长春地质学院学报, 24(2): 155-162. https://image.hanspub.org/xml/23048.xml
      [108] 刘成东, 周肃, 莫宣学, 等, 2003.东昆仑造山带后碰撞花岗岩岩石地球化学和40Ar/39Ar同位素年代学约束.东华理工大学学报(自然科学版), 26(4): 301-305. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hddz200304000&dbname=CJFD&dbcode=CJFQ
      [109] 陆松年, 李怀坤, 王惠初, 等, 2009.秦-祁-昆造山带元古宙副变质岩层碎屑锆石年龄谱研究.岩石学报, 25(9): 2195-2208. http://mall.cnki.net/magazine/article/YSXB200909013.htm
      [110] 罗明非, 莫宣学, 喻学惠, 等, 2014.东昆仑香日德地区晚三叠世花岗岩LA-ICP-MS锆石U-Pb定年、岩石成因和构造意义.岩石学报, 30(11): 3229-3241. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ysxb98201411010
      [111] 罗明非, 莫宣学, 喻学惠, 等, 2015.东昆仑五龙沟晚二叠世花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因及意义.地学前缘, 22(5): 182-195. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505018.htm
      [112] 罗照华, 柯珊, 曹永清, 等, 2002.东昆仑印支晚期幔源岩浆活动.地质通报, 21(6): 292-297. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zgqydz200206003
      [113] 罗照华, 卢欣祥, 陈必河, 等, 2009.透岩浆流体成矿作用导论.北京:地质出版社, 68-86.
      [114] 莫宣学, 2009.青藏高原岩浆岩成因研究:成果与展望.地质通报, 28(12): 1693-1703. doi: 10.3969/j.issn.1671-2552.2009.12.002
      [115] 莫宣学, 2011.岩浆作用与青藏高原演化.高校地质学报, 17(3): 351-367. http://www.cqvip.com/QK/90539X/201103/39866061.html
      [116] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3): 403-414. https://www.wenkuxiazai.com/doc/e563188071fe910ef12df80b-4.html
      [117] 裴先治, 胡楠, 刘成军, 等, 2015.东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析.地质论评, 61(2): 307-323. http://d.wanfangdata.com.cn/Periodical_dzlp201502006.aspx
      [118] 任军虎, 柳益群, 周鼎武, 等, 2010.东昆仑小庙基性岩脉地球化学及LA-ICP-MS锆石U-Pb定年.吉林大学学报(地球科学版), 40(4): 859-868. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201004017.htm
      [119] 孙雨, 裴先治, 丁仨平, 等, 2009.东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据.地质学报, 83(7): 1000-1010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200907008
      [120] 王国灿, 魏启荣, 贾春兴, 等, 2007, 关于东昆仑地区前寒武纪地质的几点认识.地质通报, 26(8): 929-937. https://www.wenkuxiazai.com/doc/2ab6a5f4960590c69ec376e1.html
      [121] 王国灿, 张克信, 梁斌, 等, 1997.东昆仑造山带结构及构造岩片组合.地球科学, 22(4): 352-356. http://www.earth-science.net/WebPage/Article.aspx?id=525
      [122] 夏锐, 卿敏, 王长明, 等, 2014.青海东昆仑托克妥Cu-Au(Mo)矿床含矿斑岩成因:锆石U-Pb年代学和地球化学约束.吉林大学学报(地球科学版), 44(5): 1502-1524. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201405012
      [123] 肖庆辉, 邓晋福, 邱瑞照, 等, 2009.花岗岩类与大陆地壳生长初探——以中国典型造山带花岗岩类岩石的形成为例.中国地质, 36(3): 594-622. http://www.cqvip.com/QK/90050X/200903/31433628.html
      [124] 谢磊, 王德滋, 王汝成, 等, 2004.浙江普陀花岗杂岩体中的石英闪长质包体:斜长石内部复杂环带研究与岩浆混合史记录.岩石学报, 20(6): 96-107. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=200406137&journal_id=ysxb
      [125] 熊富浩, 2014. 东昆仑造山带东段古特提斯域花岗岩类时空分布、岩石成因及其地质意义(博士学位论文). 武汉: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-10491-1014340842.htm
      [126] 熊富浩, 马昌前, 张金阳, 等, 2011.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学.岩石学报, 27(11): 3350-3364. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201111016.htm
      [127] 徐耀明, 蒋少涌, 朱志勇, 等, 2012.九瑞矿集区山上湾矿区石英闪长玢岩和花岗闪长斑岩的年代学、地球化学及成矿意义.岩石学报, 28(10): 3306-3324. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20121018&journal_id=ysxb
      [128] 许志琴, 李海兵, 杨经绥, 2006.造山的高原——青藏高原巨型造山拼贴体和造山类型.地学前缘, 13(4): 1-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200604002
      [129] 闫臻, 边千韬, Korchagin, O.A., 等, 2008.东昆仑南缘早三叠世洪水川组的源区特征:来自碎屑组成、重矿物和岩石地球化学的证据.岩石学报, 24(5): 1068-1078. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20080513&journal_id=ysxb&year_id=2008
      [130] 殷鸿福, 张克信, 1997.东昆仑造山带的一些特点.地球科学, 22(4): 339-342. http://www.earth-science.net/WebPage/Article.aspx?id=532
      [131] 袁万明, 莫宣学, 喻学惠, 等, 2000.东昆仑印支期区域构造背景的花岗岩记录.地质论评, 46(2): 203-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200002012
    • 加载中
    图(16) / 表(5)
    计量
    • 文章访问数:  3088
    • HTML全文浏览量:  1172
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-20
    • 刊出日期:  2018-04-15

    目录

      /

      返回文章
      返回