Proto-Tethys Record in Paleo-Tethys Belt of East Kunlun: Evidence from Kuhai Mafic Blocks
-
摘要: 研究苦海地区是否发育原特提斯洋盆有助于揭示阿尼玛卿构造带和秦岭勉略构造带是否具有相似的演化过程,确定"秦-祁-昆"原特提斯洋的南界.产出于苦海地区的镁铁质岩构造就位于上古生界强片理化浊积岩中,显示出混杂特征.LA-ICP-MS锆石年代学研究显示该地区雪穷辉长岩块结晶年龄为610~630 Ma,雅日玄武安山岩结晶年龄约为504 Ma.微量元素和同位素地球化学分析表明,雪穷镁铁质岩浆起源于大陆岩石圈地幔,未受到地壳混染,形成于板内环境,雅日镁铁质岩浆起源于受俯冲沉积物产生的流体交代的地幔楔,源区受到一定地壳混染,形成于俯冲环境,反映秦昆结合地区存在早古生代大洋的俯冲-增生作用.结合区域资料,阿尼玛卿构造带和勉略构造带都有新元古代晚期至早古生代的大洋物质记录,表明这一时期阿尼玛卿和勉略构造带有可对比性,原特提斯洋的南界达到阿尼玛卿和勉略构造带.Abstract: The junction of the East Kunlun orogen and the West Qinling orogen is a key area for contrasting the tectonic evolution of the East Kunlun orogen with West Qinling orogen and determining the south margin of "Qinling-Qilian-Kunlun" proto-Tethys ocean. Kuhai mafic rocks, situated in the junction, were structurally placed into a Late Paleozoic foliated turbidites, indicating typical characteristics of mélange. The LA-ICP-MS zircon U-Pb dating indicates that the gabbros in Xueqiong were crystallized at 610-630 Ma, and the mafic rocks in Yari were crystallized with an age of about 504 Ma. Geochemical and isotopic studies show that Xueqiong gabbros were derived from subcontinent lithosphere mantle in a rift setting. Yari mafic rocks were derived from enrichment mantle wedge modified by subduction metasomatic fluids in subduction, representing the existence of the ocean. According to regional data analysis, the situation that proto-tethys materials mixed in paleo-tethys mélange belt may demonstrates a subduction-accretion process occurred in the junction of the East Kunlun orogen and the West Qinling orogen. From Late Neoproterozoic to the Early Palaeozoic, A'nyemaqen ocean had similar tectonic evolution with Mianlüe ocean. The margin of proto-Tethys ocean reached A'nyemaqen and Mianlüe mélange.
-
Key words:
- Kuhai Group /
- mélange /
- zircon U-Pb chronology /
- geochemistry
-
图 1 秦昆结合部地质简图
据闫臻等(2012)修改.新元古代晚期-早古生代岩浆年龄数据: 1.亿可哈拉尔沟花岗-英云闪长岩(边千韬等,2007); 2.得力斯坦蛇绿岩(刘战庆等, 2011a, 2011b); 3.白日切特流纹岩、花岗闪长岩(刘战庆等,2011b); 4.玛积雪山辉长岩(李王晔,2008); 5.德尔尼闪长岩(李王晔等,2007); 6.苦海辉长岩(李王晔等,2007); 7.龙通英云闪长岩(张智勇等,2005); 8.呼若合石英闪长岩(张智勇等,2005); 9.雅日花岗闪长岩(张智勇等,2005); 10.扎那和二长花岗岩(张智勇等,2005)
Fig. 1. Geological sketch map of the junctional zone of Qinling and Kunlun
图 4 苦海地区雪穷辉长岩及雅日玄武安山岩野外照片(a~d)和正交偏光镜下照片(e~h)
a.雪穷中粒辉长岩,辉石堆晶明显,有一定的矿物定向; b.雪穷细粒辉长岩,边部片理化发育,与强变形长石杂砂岩呈构造接触; c.雅日细斑晶玄武安山岩,夹有层状凝灰岩; d.雅日粗斑晶玄武安山岩,块状构造,可见斜长石斑晶; e.雪穷细粒辉长岩,蚀变强烈,斜长石、辉石分别被绢云母、阳起石取代; f.雪穷中粒辉长岩,暗色矿物颗粒明显,有堆晶结构; g.雅日细斑晶玄武安山岩,斑晶多为斜长石,自形程度较好,基质间隐结构,有流动定向; h.雅日粗斑晶玄武安山岩,风化强烈,但可以看到斑晶自形程度较好,基质具有间粒结构.Act.阳起石; Pl.斜长石; Spn.榍石; Ep.绿帘石; Chl.绿泥石
Fig. 4. Field photos (a-d) and microphotographs (e-h) of Xueqiong gabbros and Yari basaltic andesites
图 5 雪穷中粒辉长岩(13MD08-5)锆石CL图像(a),U-Pb谐和图、加权平均年龄(b)和锆石REE分布(c)
图c标准化值据Sun and McDonough(1989)
Fig. 5. CL images (a), zircon U-Pb concordia, weighted average age diagram (b) and zircon REE patterns (c) from the Xueqiong medium-grain gabbros (13MD08-5)
图 6 雪穷细粒辉长岩(14MD06-1)锆石CL图像(a)、U-Pb谐和图、加权平均年龄(b)、锆石REE分布图(c)
图c标准化值据Sun and McDonough(1989)
Fig. 6. CL images (a), zircon U-Pb concordia, weighted average age diagram (b) and zircon REE patterns(c) from the Xueqiong fine-grain gabbros(14MD06-1)
图 7 雅日粗斑晶玄武安山岩(13XH05-4)锆石CL图像(a)、U-Pb谐和图、加权平均年龄(b)、锆石REE分布图(c)
图c标准化值据Sun and McDonough(1989)
Fig. 7. CL images (a), zircon U-Pb concordia, weighted average age diagram (b) and zircon REE patterns (c) from the Yari basaltic andesites (13XH05-4)
图 8 苦海镁铁质岩岩石分类命名(a)和SiO2-FeOT/MgO图解(b)
图a据Winchester and Floyd(1977); 图b据Miyashiro(1975)
Fig. 8. Zr/TiO2×0.000 1-Nb/Y diagram (a) and SiO2-FeOT/MgO diagram (b) of mafic rocks in Kuhai
图 9 原始地幔标准化微量元素蛛网图(a, c)和球粒陨石标准化稀土元素配分模式图(b, d)
a, b.雪穷辉长岩; c, d.雅日镁铁质岩石辉长岩.图a, c据标准化值据Sun and McDonough(1989); 图b, d据标准化值据Sun and McDonough(1989); Ethiopian裂谷数据来自Shinjo et al.(2011)
Fig. 9. Primitive mantle-normalized trace element abundances (a, c) and chondrite-normalized REE abundances (b, d)
图 12 苦海地区镁铁质岩Sm/Yb-La/Yb图解(a)和Th/Ta-La/Yb图解(b)
图a据Su et al.(2012); 图b据Condie(1997).Ethiopian裂谷数据来自Shinjo et al.(2011).DM.亏损地幔; PM.原始地幔; PSML.后太古宙大陆下岩石圈; HIMU.高U/Pb地幔源区; EM1和EM2.富集地幔; LC.下地壳; UC.上地壳; MORB.洋中脊玄武岩; OIB.洋岛玄武岩
Fig. 12. Sm/Yb-La/Yb diagram (a) and Th/Ta-La/Yb diagram (b) of mafic rocks in Kuhai
图 13 微量元素构造环境判别图解
图a据Pearce(2008); 图b据Wood et al.(1979),Ethiopian裂谷数据来自Shinjo et al.(2011)
Fig. 13. Trace element tectonic discriminative diagrams
-
[1] Bailey, E.H., Irwin, W.P., Jones, D.L., 1964.Franciscan and Related Rocks, and Their Significance in the Geology of Western California.California Division of Mines and Geology Bulletin, 183:77. https://searchworks.stanford.edu/view/1133181 [2] Bas, M.J.L., 2000.IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks.Journal of Petrology, 41(10):1467-1470. https://doi.org/10.1093/petrology/41.10.1467 [3] Bedini, R.M., Bodinier, J.L., Dautria, J.M., et al., 1997.Evolution of LILE-Enriched Small Melt Fractions in the Lithospheric Mantle:A Case Study from the East African Rift.Earth and Planetary Science Letters, 153(1-2):67-83. https://doi.org/10.1016/s0012-821x(97)00167-2 [4] Bian, Q.T., Luo, X.Q., Chen, H.H., et al., 1999.Zircon U-Pb Age of Granodiorite-Tonalite in the A'nymaqen Ophiolitic Belt and Its Tectonic Significance.Scientia Geologica Sinica, 34(4):420-426 (in Chinese with English abstract). http://www.researchgate.net/publication/293092949_Zircon_U-Pb_age_of_granodiorite-tonalite_in_the_A'nyemaqen_ophiolitic_belt_and_its_tectonic_significance [5] Bian, Q.T., Yin, L.M., Sun, S.F., et al., 2001, Discovery of Ordovician Acritarch in the Buqingshan Opiolite in East Kunlun.Chinese Science Bulletin, 46(2):167-171 (in Chinese). [6] Bian, Q.T., Pospelov, I.I., Li, H.M., et al., 2007.Discovery of the End-Early Paleozoic Adakite in the Buqingshan Area, Qinghai Province, and Its Tectonics Implications.Acta Petrologica Sinica, 23(5):925-934 (in Chinese with English abstract). http://www.researchgate.net/publication/282180375_Discovery_of_the_end-Early_Paleozoic_adakite_in_the_Buqingshan_area_Qinghai_province_and_its_tectonic_implications [7] Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148:243-258. doi: 10.1016/S0012-821X(97)00040-X [8] Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016.Geochemical Characteristics of Late Ordovician Granodiotite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province:Implications on the Evolution of Proto-Tethys Ocean.Earth Science, 41(11):1863-1882 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0024493717303705 [9] Condie, K.C., 1997.Sources of Proterozoic Mafic Dyke Swarms:Constraints from Th/Ta and La/Yb Ratios.Precambrian Research, 81(1-2):3-14. https://doi.org/10.1016/s0301-9268(96)00020-4 [10] Cowan, D.S., 1985.Structural Styles in Mesozoic and Cenozoic Mélanges in the Western Cordillera of North America.Geological Society of America Bulletin, 96(4):451-462.https://doi.org/10.1130/0016-7606(1985)96<451:ssimac>2.0.co;2 doi: 10.1130/0016-7606(1985)96<451:ssimac>2.0.co;2 [11] Crawford, A.J., Falloon, T.J., Eggins, S., 1987.The Origin of Island Arc High-Alumina Basalts.Contributions to Mineralogy and Petrology, 97(3):417-430. https://doi.org/10.1007/bf00372004 [12] DePaolo, D.J., 1981.Trace Element and Isotopic Effects of Combined Wall Rock Assimilation and Fractional Crystallization.Earth and Planetary Science Letters, 53(2):189-202. https://doi.org/10.1016/0012-821x(81)90153-9 [13] Du, G.H., Luan, B.R., Li, Y.H., 1982.A Discussion on the Age Ascription of Gneiss in "P1b" Stratum in Xinghai Area.Geology of Qinghai, (2):30-36 (in Chinese). [14] Du, Y.S., Sheng, J.H., Feng, Q.L., et al., 1998.New Recognition of Non-Smith Stratigraphy and Paleoceanography of Mianxian-Lueyang Paleosuture in South Qinling, China.Geoscience, 12(1):25-31(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ801.002.htm [15] Elliott, T., Plank, T., Zindler, A., et al., 1997.Element Transport from Slab to Volcanic Front at the Mariana Arc.Journal of Geophysical Research:Solid Earth, 102(B7):14991-15019. https://doi.org/10.1029/97jb00788 [16] Gao, Y.L., Wu, X.N., Zuo, G.Z., 1988.The Characters and Tectonic Significance of Ophiolite First Discovered in the East Kunlun.Bull.Xi'an Inst.Geol.Min.Res., Chinese Acad.Geol.Sci., (21):21-32(in Chinese with English abstract). https://www.researchgate.net/publication/284814008_The_characters_and_tectonic_significance_of_ophiolite_first_discovered_in_the_East_Kunlun_area [17] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64:133-147 doi: 10.1016/S0016-7037(99)00343-9 [18] Halama, R., 2004.Crustal Contamination of Mafic Magmas:Evidence from a Petrological, Geochemical and Sr-Nd-Os-O Isotopic Study of the Proterozoic Isortoq Dike Swarm, South Greenland.Lithos, 74(3-4):199-232. https://doi.org/10.1016/j.lithos.2004.03.004 [19] Hamilton, W.B., 1988.Plate Tectonics and Island Arcs.Geological Society of America Bulletin, 100(10):1503-1527.https://doi.org/10.1130/0016-7606(1988)100<1503:ptaia>2.3.co;2 doi: 10.1130/0016-7606(1988)100<1503:ptaia>2.3.co;2 [20] Hawkesworth, C.J., Gallagher, K., Hergt, J.M., et al., 1993.Mantle and Slab Contributions in ARC Magmas.Annual Review of Earth and Planetary Sciences, 21(1):175-204. https://doi.org/10.1146/annurev.ea.21.050193.001135 [21] Hsü, K., 1971.Franciscan Mélanges as a Model for Eugeosynclinal Sedimentation and under Thrusting Tectonics.Journal of Geophysical Research, 76(5):1162-1170. https://doi.org/10.1029/jb076i005p01162 [22] Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. https://doi.org/10.1039/c2ja30078h [23] Huang, Y.M., Hawkesworth, C., Smith, I., et al., 2000.Geochemistry of Late Cenozoic Basaltic Volcanism in Northland and Coromandel, New Zealand:Implications for Mantle Enrichment Processes.Chemical Geology, 164(3-4):219-238. doi: 10.1016/S0009-2541(99)00145-X [24] Ishikawa, T., Tera, F., 1999.Two Isotopically Distinct Fluid Components Involved in the Mariana Arc:Evidence from Nb /B Ratios and B, Sr, Nd, and Pb Isotope Systematics.Geology, 27(1):83-86. doi: 10.1130/0091-7613(1999)027<0083:TIDFCI>2.3.CO;2 [25] Jiang, C.F., Yang, J, S., Feng, B.G., et al., 1992.Opening-Closing Tectonics of Kunlun Mountains.Geological Publishing House, Beijing (in Chinese). [26] Kanmera, K., Sano, H., Isozaki, Y., 1990. Akiyoshi Terrane. Publication of IGCP Project, Japan. [27] Lassiter, J. C., DePaolo, D. J., 1997. Plume/ Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constrains. American Geophysical Union. Washington D. C. . doi: 10.1029/GM100p0335/summary [28] Lechler, P.J., Desilets, M.O., 1987.A Review of the Use of Loss on Ignition as a Measurement of Total Volatiles in Whole-Rock Analysis.Chemical Geology, 63(3-4):341-344. https://doi.org/10.1016/0009-2541(87)90171-9 [29] Li, H.K., Lu, S.N., Xiang, Z.Q., et al., 2006.SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area, Central Eastern Kunlun Suture Zone.Earth Science Frontiers, 13(6):311-321 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200606039.htm [30] Li, J.L., 2004.Basic Characteristics of Accretion-Type Orogens.Geological Bulletin of China, 23(9-10):947-951 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2004Z2017.htm [31] Li, R.B., Pei, X.Z., Li, Z.C., et al., 2017.Late Cambrian SSZ-Type Ophiolites in Acite Zone, East Kunlun Orogen of Northern Tibet Plateau:Insights from Zircon U-Pb Isotopes and Geochemistry of Oceanic Crust Rocks.Acta Geologica Sinica (English Edition), 91(S1):66-67. https://doi.org/10.1111/1755-6724.13189 [32] Li, R.B., Pei, X.Z., Yang, S.H., et al., 2015.Mid-Neoproterozoic Tadong Amphibolites at the Junction of the East Kunlun and Western Qinling Orogens—A Record of Continental Rifting during the Break-up of Rodinia.International Geology Review, 58(4):455-470. https://doi.org/10.1080/00206814.2015.1089423 [33] Li, R.B., Pei, X.Z., Yang, S.H., et al., 2016.LA-ICP-MS Zircon Age of Metamorphism Rocks in the Rouqigang Area of Western Gonghe Basin:Maximum Depositional Ages of Protoliths and Provenance Feature.Acta Geologica Sinica, 90(1):93-114 (in Chinese with English abstract). doi: 10.1080/00206814.2015.1089423 [34] Li, W. Y., 2008. Geochronology and Geochemistry of Ophiolites and Island-Arc-Type Igneous Rocks in the Western Qinling Orogen and the Eastern Kunlun Orogen: Implication for the Evolution of the Tethyan Ocean (Dissertation). University of Science and Technology of China, Hefei(in Chinese with English abstract). [35] Li, W.Y., Li, S.G., Guo, A.L., et al., 2007.SHRIMP Zircon U-Pb Ages and Trace Element Geochemistry of Kuhai Gabbros and Dur'ngoi Diorite of South Margin of Eastern Kunlun, Qinghai:Restriction of South Margin of "Qi-Chai-Kun" Archipelagic Ocean, from Late Neoproterozoic to Early Ordovician.Science in China (Series D), 37(Suppl.1):288-294 (in Chinese). [36] Liu, B., Ma, C.Q., Jiang, H.A., et al., 2013.Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Easter Kunlun Region:Evidence from Huxiaoqin Mafic Rocks.Acta Petrologica Sinica, 29(6):2093-2106 (in Chinese with English abstract). https://www.researchgate.net/publication/285649933_Early_Paleozoic_tectonic_transition_from_ocean_subduction_to_collisional_orogeny_in_the_Eastern_Kunlun_region_Evidence_from_Huxiaoqin_Mafic_rocks [37] Liu, Q., Meng, F.C., Li, S.R., et al, 2016.Geochronology of Zircon from the Paragneiss of Kuhai Group in Southern East Kunlun Terrane.Acta Petrologica et Mineralogica, 35(3):469-483 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201603007.htm [38] Liu, Y., Gao, S., Hu, Z., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [39] Liu, Y.J., Genser, J., Neubauer, F., et al., 2005.40Ar/39Ar Mineral Ages from Basement Rocks in the Eastern Kunlun Mountains, NW China, and Their Tectonic Implications.Tectonophysics, 398(3-4):199-224. https://doi.org/10.1016/j.tecto.2005.02.007 [40] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [41] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [42] Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011a.LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication.Acta Geologica Sinica, 85(2):185-194 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201102005.htm [43] Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011b.Geological Characteristics of the Buqingshan Tectonic Melange Belt in the Southern Margin of East Kunlun and Its Tectonic Implications.Geological Bulletin of China, 30(8):1182-1195 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201108002.htm [44] Liu, Z.Q., Pei, X.Z., Li, R.B., et al., 2011c.Early Paleozoic Intermediate-Acid Magmatic Activity in Bairiqiete Area along the Buqingshan Tectonic Mélange Belt on the Southern Margin of East Kunlun: Constraints from Zircon U-Pb Dating and Geochemistry.Geology in China, 38(5):1150-1167 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201105004.htm [45] Maury, R.C., Defant, M.J., Joron, J.L., 1992.Metasomatism of the Sub-Arc Mantle Inferred from Trace Elements in Philippine Xenoliths.Nature, 360(6405):661-663. https://doi.org/10.1038/360661a0 [46] Meen, J.K., Eggler, D.H., Ayers, J.C., 1989.Experimental Evidence for Very Low Solubility of Rare-Earth Elements in CO2-Rich Fluids at Mantle Conditions.Nature, 340(6231):301-303. https://doi.org/10.1038/340301a0 [47] Mir, A.R., Alvi, S.H., Balaram, V., 2010.Geochemistry of Mafic Dikes in the Singhbhum Orissa Craton:Implications for Subduction-Related Metasomatism of the Mantle beneath the Eastern Indian Craton.International Geology Review, 52(1):79-94. https://doi.org/10.1080/00206810903211948 [48] Miyashiro, A., 1975.Classification, Characteristics, and Origin of Ophiolites.The Journal of Geology, 83(2):249-281. https://doi.org/10.1086/628085 [49] Moore, G.F., Karig, D.E., 1980.Structural Geology of Nias Island, Indonesia; Implications for Subduction Zone Tectonics.American Journal of Science, 280(3):193-223. https://doi.org/10.2475/ajs.280.3.193 [50] Naumann, T.R., Geist, D.J., 1999.Generation of Alkalic Basalt by Crystal Fractionation of Tholeiitic Magma.Geology, 27(5):423-426.https://doi.org/10.1130/0091-7613(1999)027<0423:goabbc>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0423:goabbc>2.3.co;2 [51] Ni, H.W., Zhang, L., Guo, X., 2016.Water and Partial Melting of Earth's Mantle.Science China Earth Sciences, 59(4):720-730. https://doi.org/10.1007/s11430-015-5254-8 [52] Paslick, C., Halliday, A., James, D., et al., 1995.Enrichment of the Continental Lithosphere by OIB Melts:Isotopic Evidence from the Volcanic Province of Northern Tanzania.Earth and Planetary Science Letters, 130(1-4):109-126. https://doi.org/10.1016/0012-821x(95)00002-t [53] Pearce, J.A.1982.Trace Element Characteristics of Lavas from Destructive Plate Boundaries.Andesites, 525-548. https://www.wenkuxiazai.com/doc/9e07c639f121dd36a32d82ac-3.html [54] Pearce, J.A., 2008.Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust.Lithos, 100(1-4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [55] Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses.Earth and Planetary Science Letters, 19(2):290-300. https://doi.org/10.1016/0012-821x(73)90129-5 [56] Polat, A., Kerrich, R., 2001.Magnesian Andesites, Nb-Enriched Basalt-Andesites, and Adakites from Late Archean 2.7 Ga Wawa Greenstone Belts, Superior Province, Canada:Implications for Late Archean Subduction Zone Petrogenetic Processes.Contributions to Mineralogy and Petrology, 141(1):36-52. https://doi.org/10.1007/s004100000223 [57] Qi, S.S., Song, T.Z., 2002.Knowledge Again on the "Kuhai Group" and Its Tectonic Evolution.Management & Strategy of Qinghai Land & Resources, (1):22-30 (in Chinese with English abstract). [58] Qi, S.S., Wang, B.Z., Liu, S.J., 2001.Discovery of High-Pressure Mélange Slice in Xinghai Area and Its Tectonic Significance.Geology of Qinghai, (1):9-15 (in Chinese with English abstract). [59] Rudnick, R.L., 1995.Making Continental Crust.Nature, 378(6557):571-578. https://doi.org/10.1038/378571a0 [60] Ryerson, F.J., Watson, E.B., 1987.Rutile Saturation in Magmas:Implications for Ti Nb Ta Depletion in Island-Arc Basalts.Earth and Planetary Science Letters, 86(2-4):225-239. https://doi.org/10.1016/0012-821x(87)90223-8 [61] Saito, T., Okada, Y., Fujisaki, W., et al., 2014.Accreted Kula Plate Fragment at 94 Ma in the Yokonami-Melange, Shimanto-Belt, Shikoku, Japan.Tectonophysics, 623(7):136-146. http://www.sciencedirect.com/science/article/pii/S0040195114001620 [62] Shervais, J.W., Choi, S.H., Sharp, W.D., et al., 2011.Serpentinite Matrix Mélange:Implications of Mixed Provenance for Mélange Formation.Geological Society of America Special Papers, 480:1-30. https://doi.org/10.1130/2011.2480(01) [63] Shinjo, R., Chekol, T., Meshesha, D., et al., 2011.Geochemistry and Geochronology of the Mafic Lavas from the Southeastern Ethiopian Rift (the East African Rift System):Assessment of Models on Magma Sources, Plume-Lithosphere Interaction and Plume Evolution.Contributions to Mineralogy and Petrology, 162(1):209-230. https://doi.org/10.1007/s00410-010-0591-2 [64] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219:311-324. doi: 10.1016/S0012-821X(04)00012-3 [65] Su, Y.P., Zheng, J.P., Griffin, W.L., et al., 2012.Geochemistry and Geochronology of Carboniferous Volcanic Rocks in the Eastern Junggar Terrane, NW China:Implication for a Tectonic Transition.Gondwana Research, 22(3-4):1009-1029. https://doi.org/10.1016/j.gr.2012.01.004 [66] Sun, C.R., 1997.Lithostratigraphy of Qinghai Province.China University of Geosciences Press, Wuhan (in Chinese). [67] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [68] Sun, Y.G., Zhang, G.W., Wang, J., et al., 2004.40Ar/39Ar Age of the Basic Sill Swarms of Two Periods in the Junction Area of Qinling and Kunlun and Its Tectonic Significance.Acta Geologica Sinica, 78(1):65-71 (in Chinese with English abstract). http://www.researchgate.net/publication/284799480_40Ar39Ar_age_of_the_basic_sill_swarms_of_two_periods_in_the_junctions_area_of_Qinling_and_Kunlun_and_its_tectonic_significance [69] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications. Oxford. [70] Wakabayashi, J., 2012.Subducted Sedimentary Serpentinite Mélanges:Record of Multiple Burial-Exhumation Cycles and Subduction Erosion.Tectonophysics, 568-569:230-247. https://doi.org/10.1016/j.tecto.2011.11.006 [71] Wang, B.Z., Zhang, Z.Y., Zhang, S.Q., et al., 2000a.Geological Features of Lower Paleozoic Ophiolite in Kuhai-Saishitang Region, Eastern Section of Eastern Kunlun.Earth Science, 25(6):592-598 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200006009.htm [72] Wang, B.Z., Zhu, Y.T., Zhang Z.Y., et al., 2000b.Characteristics of Non-Smith Strata in Junction Part of Kunlun and Qinling Orogenic Belts—An Example from the Kuhai-Saishitang-Yangqu Tectonic Mélange Belt.Geology of Qinghai, (1):9-17, 38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTJL200001001.htm [73] Wang, G.C., Wang, Q.H., Jian, P., et al., 2004.Zircon SHRIMP Ages of Precambrian Metamorphic Basement Rocks and Their Tectonic Significance in the Eastern Kunlun Mountains, Qinghai Province, China.Earth Science Frontiers, 11(4):481-490 (in Chinese with English abstract). http://www.researchgate.net/publication/285649553_Zircon_SHRIMP_ages_of_Precambrian_metamorphic_basement_rocks_and_their_tectonic_significance_in_the_eastern_Kunlun_Mountains_Qinghai_Province_China [74] Wilson, B. M. 1989. Igneous Petrogenesis A Global Tectonic Approach. Springer, Netherlands. http://www.researchgate.net/publication/238438403_Igneous_Petrogenesis_A_Global_Tectonic_Approach [75] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [76] Wood, D.A., Joron, J.L., Treuil, M., 1979.A Re-Appraisal of the Use of Trace Elements to Classify and Discriminate between Magma Series Erupted in Different Tectonic Settings.Earth and Planetary Science Letters, 45(2):326-336. https://doi.org/10.1016/0012-821x(79)90133-x [77] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Application in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200702002.htm [78] Wu, Y.B., Zheng, Y.F., 2004.Study of Zircon Genetic Mineralogy and Its Restriction on the Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). [79] Xu, T., Pei, X.Z., Li, R.B., et al., 2017.Ages and Geochemical Features of the Heigouxia Volcanic Rocks in the Mianxian-Lüeyang Area of South Qinling Orogen:Evidence for Existence and Subduction of Neoproterozoic Mianxian-Lüeyang Ocean.Geological Review, 63(2):375-394 (in Chinese with English abstract). http://en.cnki.com.cn/Journal_en/A-A011-DZLP-2017-02.htm [80] Xu, Z.Q., Cui, J.W., Zhang, J.X., 1996.Deformation Tectonic Dynamics of Continental Mountain Chain, Metallurgical Industry Press, Beijing (in Chinese). [81] Yan, Q.R., Wang, Z.Q., Yan, Z., et al., 2007.SHRIMP Analyses for Ophiolitic-Mafic Blocks in the Kangxian-Mianxian Section of the Mianxian-Lueyang Melange:Their Geological Implications.Geological Review, 53(6):755-764 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200706010.htm [82] Yan, Z., Wang, Z.Q., Li, J.L., et al., 2012.Tectonic Settings and Accretionary Orogenesis of the West Qinling Terrane, Northeastern Margin of the Tibet Plateau.Acta Petrologica Sinica, 28(6):1808-1828 (in Chinese with English abstract). http://npd.nsfc.gov.cn/projectDetail.action?pid=40821061 [83] Yang, J.S., Xu, Z.Q., Ma C.Q., et al., 2010.Compound Orogeny and Scientific Problems Concerning the Central Orogenic Belt of China.Geology in China, 37(1):1-11 (in Chinese with English abstract). https://www.researchgate.net/publication/281228388_Compound_orogeny_and_scientific_problems_concerning_the_Central_Orogenic_Belt_of_China [84] Yin, H.F., Zhang, K.X., 1998.Evolution and Characteristics of the Central Orogenic Belt.Earth Science, 23(5):438-442 (in Chinese with English abstract). http://www.researchgate.net/publication/284098508_Evolution_and_characteristics_of_the_central_orogenic_belt [85] Zhang, K.X., Huang, J.C., Luo, M.S., et al., 1999a.Sedimentary Geochemical Features of A'nimaqing Mélange Zone in Eastern Kunlun Mountain.Earth Science, 24(2):111-115 (in Chinese with English abstract). [86] Zhang, K.X., Huang, J.C., Yin, H.F., et al., 1999b.The Application of Radiolarian Fossils in Non-Smith Strata:Example from East Kunlun Animaqing Mélange Belt.Science in China (Series D), 29(6):542-550 (in Chinese). doi: 10.1007/s12583-016-0711-7 [87] Zhang, Z.Y., Yin, H.F., Wang, B.Z., et al., 2004.Presence and Evidence of Kuhai-Saishitang Branching Ocean in Copulae between Kunlun-Qinling Mountains.Earth Science, 29(6):691-696 (in Chinese with English abstract). https://www.researchgate.net/publication/283412423_Presence_and_evidence_of_Kuhai-Saishitang_branching_ocean_in_copulae_between_Kunlun-Qinling_Mountains [88] Zhang, Z.Y., Zhang, K.X., Zhu, Y.H., et al., 2005.Silurian-Devonian Intrusive Rocks and Tectonic Environment in Copulae of Kunlun-Qinling Mountains.Earth Science, 30(2):159-167 (in Chinese with English abstract). https://www.researchgate.net/publication/292883396_Silurian-Devonian_intrusive_rocks_and_tectonic_environment_in_copulae_of_Kunlun-Qinling_mountains [89] Zhao, F.F., Sun, F.Y., Liu, J.L., 2017.Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implication for Geodynamic Setting.Earth Science, 42(6):927-940 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201706006.htm [90] Zhao, J.H., Zhou, M.F., 2009.Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China.Lithos, 107(3-4):152-168. https://doi.org/10.1016/j.lithos.2008.09.017 [91] Zong, K.Q., Liu, Y.S., Gao, C.G., et al., 2010.In Situ U-Pb Dating and Trace Element Analysis of Zircons in Thin Sections of Eclogite:Refining Constraints on the Ultra High-Pressure Metamorphism of the Sulu Terrane, China.Chemical Geology, 269(3-4):237-251. https://doi.org/10.1016/j.chemgeo.2009.09.021 [92] 边千韬, Pospelov, I.I., 李惠民, 等, 2007.青海省布青山早古生代末期埃达克岩的发现及其构造意义.岩石学报, 23(5): 925-934. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200801001022.htm [93] 边千韬, 罗小全, 陈海泓, 等, 1999.阿尼玛卿蛇绿岩带花岗-英云闪长岩锆石U-Pb同位素定年及大地构造意义.地质科学, 34(4): 420-426. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkx199904002&dbname=CJFD&dbcode=CJFQ [94] 边千韬, 尹磊明, 孙淑芬, 等, 2001.东昆仑布青山蛇绿混杂岩中发现奥陶纪疑源类.科学通报, 46(2): 167-171. http://www.irgrid.ac.cn/handle/1471x/486867?mode=full&submit_simple=Show+full+item+record [95] 陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11): 1863-1882. http://www.earth-science.net/WebPage/Article.aspx?id=3384 [96] 杜光辉, 栾保荣, 李荫汉, 1982.兴海地区"P1b"地层中片麻岩时代的归属讨论.青海地质, (2): 30-36. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gtjl198202002&dbname=CJFD&dbcode=CJFQ [97] 杜远生, 盛吉虎, 冯庆来, 等, 1998.南秦岭勉略古缝合带非史密斯地层和古海洋新知.现代地质, 12(1): 25-31. http://edu.wanfangdata.com.cn/Periodical/Detail/gdlxb199904006 [98] 高延林, 吴向农, 左国朝, 1988.东昆仑山清水泉蛇绿岩特征及其大地构造意义.中国地质科学院西安地质矿产研究所所刊, (21): 21-32. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198800005003.htm [99] 姜春发, 杨经绥, 冯秉贵, 等, 1992.昆仑开合构造.北京:地质出版社. [100] 李怀坤, 陆松年, 相振群, 等, 2006.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究.地学前缘, 13(6): 311-321. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200606039&dbname=CJFD&dbcode=CJFQ [101] 李继亮, 2004.增生型造山带的基本特征.地质通报, 23(9-10): 947-951. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200409018 [102] 李瑞保, 裴先治, 杨栓海, 等, 2016.共和盆地西缘柔起岗地区变质岩系锆石U-Pb年龄——原岩最老沉积时代及物源研究.地质学报, 90(1): 93-114. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201601006 [103] 李王晔, 2008. 西秦岭-东昆仑造山带蛇绿岩及岛弧型岩浆岩的年代学和地球化学研究(博士学位论文). 合肥: 中国科学技术大学. [104] 李王晔, 李曙光, 郭安林, 等, 2007.青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学——对"祁-柴-昆"晚新元古代-早奥陶世多岛洋南界的制约.中国科学(D辑:地球科学), 37(增刊1): 288-294. http://www.oalib.com/paper/4873766 [105] 刘彬, 马昌前, 蒋红安, 等, 2013.东昆仑早古生代洋壳俯冲与碰撞造山作用的转换:来自胡晓钦镁铁质岩石的证据.岩石学报, 29(6): 2093-2106. https://www.researchgate.net/profile/Bin_Liu109/publication/285649933_Early_Paleozoic_tectonic_transition_from_ocean_subduction_to_collisional_orogeny_in_the_Eastern_Kunlun_region_Evidence_from_Huxiaoqin_Mafic_rocks/links/56e0bf9d08aec4b3333d163a.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail [106] 刘强, 孟繁聪, 李胜荣, 等, 2016.东昆仑南地体苦海岩群副片麻岩锆石年代学研究.岩石矿物学杂志, 35(3): 469-483. http://www.cqvip.com/QK/94932X/201603/668935936.html [107] 刘战庆, 裴先治, 李瑞保, 等, 2011a.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义.地质学报, 85(2): 185-194. http://www.oalib.com/paper/4873766 [108] 刘战庆, 裴先治, 李瑞保, 等, 2011b.东昆仑南缘布青山构造混杂岩带的地质特征及大地构造意义.地质通报, 31(8): 1182-1195. http://www.cqvip.com/QK/95894A/201108/38931645.html [109] 刘战庆, 裴先治, 李瑞保, 等, 2011c.东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动:来自锆石U-Pb测年及岩石地球化学证据.中国地质, 38(5): 1150-1167. http://mall.cnki.net/magazine/Article/DIZI201105004.htm [110] 祁生胜, 宋泰钟, 2002.对原"苦海群"的重新认识及其构造演化特征.青海国土经略, (1): 22-30. http://www.cqvip.com/Main/Detail.aspx?id=6411872 [111] 祁生胜, 王秉璋, 刘生军, 2001.兴海地区中高压混杂岩片的发现及其构造意义.青海地质, (1), 9-15. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gtjl200101002&dbname=CJFD&dbcode=CJFQ [112] 孙崇仁, 1997.青海省岩石地层.武汉:中国地质大学出版社. [113] 孙延贵, 张国伟, 王瑾, 等, 2004.秦昆结合区两期基性岩墙群40Ar/39Ar定年及其构造意义.地质学报, 78(1): 65-71. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxe200401008&dbname=CJFD&dbcode=CJFQ [114] 王秉璋, 张智勇, 张森琦, 等, 2000a.东昆仑东端苦海-赛什塘地区晚古生代蛇绿岩的地质特征.地球科学, 25(6): 592-598. http://www.earth-science.net/WebPage/Article.aspx?id=997 [115] 王秉璋, 朱迎堂, 张智勇, 等, 2000b.昆秦接合部造山带非史密斯地层的一些特点——苦海-赛什塘-羊曲构造混杂带剖析.青海地质, (1): 9-17, 38. http://www.cnki.com.cn/Article/CJFDTOTAL-SCDB502.000.htm [116] 王国灿, 王青海, 简平, 等, 2004.东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义.地学前缘, 11(4): 481-490. http://d.old.wanfangdata.com.cn/Periodical/dxqy200404014 [117] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2): 185-220. https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/279910636_Lu-Hf_isotopic_systematics_and_their_application_in_petrology/links/55cead3708aee19936fc5d6b.pdf [118] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [119] 徐通, 裴先治, 李瑞保, 等, 2017.南秦岭勉略构造带黑沟峡火山岩年代学及地球化学特征——新元古代勉略洋盆存在及俯冲的记录.地质论评, 63(2): 375-394. http://d.old.wanfangdata.com.cn/Periodical/dzlp201702010 [120] 许志琴, 崔军文, 张建新, 1996.大陆山链变形构造动力学.北京:冶金工业出版社. [121] 闫全人, 王宗起, 闫臻, 等, 2007.秦岭勉略构造混杂带康县-勉县段蛇绿岩块-铁镁质岩块的SHRIMP年代及其意义.地质论评, 53(6): 755-764. http://www.oalib.com/paper/4886360 [122] 闫臻, 王宗起, 李继亮, 等, 2012.西秦岭楔的构造属性及其增生造山过程.岩石学报, 28(6): 1808-1828. https://www.wenkuxiazai.com/doc/b46ffae9ce2f0066f533229a-2.html [123] 杨经绥, 许志琴, 马昌前, 等, 2010.复合造山作用和中国中央造山带的科学问题.中国地质, 37(1): 1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201001001 [124] 殷鸿福, 张克信, 1998.中央造山带的演化及其特点.地球科学, 23(5): 438-442. http://www.earth-science.net/WebPage/Article.aspx?id=696 [125] 张克信, 黄继春, 骆满生, 等, 1999a.东昆仑阿尼玛卿混杂岩带沉积地球化学特征.地球科学, 24(2): 111-115. http://www.earth-science.net/WebPage/Article.aspx?id=775 [126] 张克信, 黄继春, 殷鸿福, 等, 1999b.放射虫等生物群在非史密斯地层研究中的应用——以东昆仑阿尼玛卿混杂岩带为例.中国科学(D辑), 29(6): 542-550. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd199906009 [127] 张智勇, 殷鸿福, 王秉璋, 等, 2004.昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据.地球科学, 29(6): 691-696. http://www.earth-science.net/WebPage/Article.aspx?id=1471 [128] 张智勇, 张克信, 朱云海, 等, 2005.昆秦接合部志留-泥盆纪侵入岩及其构造环境.地球科学, 30(2): 159-167. http://www.earth-science.net/WebPage/Article.aspx?id=1433