Ca-Enrichment Characteristics of Parental Magmas of Chromitite in Ophiolite: Inference from Mineral Inclusions
-
摘要: 铬铁矿作为蛇绿岩中的重要矿产,其成矿母岩浆性质及演化一直存在较大争议.铬铁矿的矿物包裹体同时或先于铬铁矿结晶,其成分和类别能很好地记录成矿母岩浆性质和演化过程.土耳其Pozantı-Karsantı蛇绿岩不同类型铬铁岩的铬铁矿中发现了多种类型包裹体:不含水硅酸盐矿物(如橄榄石和单斜辉石)、含水硅酸盐矿物(如角闪石和金云母)、复合型矿物包裹体(如蛇纹石、硅灰石和单斜辉石的复合型包裹体)和不常见矿物(如磷灰石、铂族元素硫化物).含水矿物包裹体的出现以及矿物的高Mg#特征(如橄榄石Fo=95.4~97.1;单斜辉石Mg#=92.0~99.9;角闪石Mg#=88.9~99.8)表明结晶铬铁矿的母岩浆具有富水、富Mg的特征.同时,除钙铬榴石和磷灰石的包裹体外,在铬铁矿中首次发现富Ca矿物方解石和硅灰石,其中方解石和菱镁矿以复合型包裹体形式产出,硅灰石则分布于蛇纹石矿物包裹体中.这些富Ca矿物的出现以及硅酸盐矿物的高CaO含量均揭示了铬铁岩母岩浆的富Ca特征.母岩浆中的Ca组分可能来源于俯冲板块中富Ca岩石/矿物的部分熔融,Ca离子的大量出现使得Cr3+在熔体中更加稳定,同时富Ca矿物的结晶促进了岩浆中Cr的进一步富集而利于铬铁矿的大量结晶沉淀.Abstract: The origin and mechanisms involved in the formation of chromitite deposit in ophiolites remain a controversial subject of continuous debate. One of the important ways to address this issue is to investigate the nature and composition of parental magmas of chromitite, which may be revealed by mineral inclusions in chromite interpreted to have crystallized contemporaneously with or earlier than the host chromite. Various types of inclusions have been found in chromite ores with different textures in the Pozantı-Karsantı ophiolite in Turkey, which include (1) anhydrous silicate type such as olivine and clinopyroxene, (2) hydrous silicate type such as amphibole and phlogopite, (3) composite type such as the association of serpentine, wollastonite and clinopyroxene, (4) and uncommon mineral type such as apatite and platinum group element sulfide. The occurrence of hydrous mineral and the high Mg# of some minerals (e.g., olivine Mg#=95.4-97.1, clinopyroxene Mg#=92.0-99.0, amphibole Mg#=88.9-99.8) suggest that parental magmas of the chromite are rich in Mg and water contents. Besides the inclusions of apatite and uvarovite, it is reported, for the first time, that calcite and wollastonite inclusions in chromite, which, together with high-CaO features in silicate minerals, indicate Ca-enrichment. The elevated Ca contents in melts are favorable in stabilizing Cr3+ in silicate melt, while crystallization of Ca-bearing minerals could result in Cr enrichment in the melts. The Ca-rich component was probably derived from Ca-enriched rocks in subducting slab.
-
Key words:
- ophiolite /
- chromite /
- inclusion /
- parental magma /
- mineralogy /
- petrology
-
图 1 土耳其蛇绿岩分布图(a),Pozantı-Karsantı蛇绿岩地质简图(b)和Pozantı-Karsantı蛇绿岩柱状剖面图(c)
图a据Robertson(2002)修改;图b据Su et al.(2018)修改;图c据Saka et al.(2014)修改
Fig. 1. Distribution of ophiolites in Turkey (a), simplified geologic map (b) and columnar section of the Pozantı-Karsantı ophiolite (c)
图 3 土耳其Pozantı-Karsantı蛇绿岩铬铁矿成分相关性图解
a.铬铁矿Al2O3和TiO2的成分相关性图解,据Kamenetsky et al.(2001);b.铬铁矿Cr#和TiO2的成分相关性图解,据Pagé and Barnes(2009).MOR.大洋中脊;MORB.大洋中脊玄武岩;LIP.大火成岩省玄武岩;OIB.洋岛玄武岩;ARC.岛弧火山岩;SSZ.俯冲带之上
Fig. 3. Correlation diagrams of compositions of chromite in chromitite in the Pozantı-Karsantı ophiolite in Turkey
图 4 土耳其Pozantı-Karsantı蛇绿岩铬铁矿中不同类型的硅酸盐矿物包裹体
a, b.自形橄榄石(Ol);c, d.半自形橄榄石;e, f.自形六边形橄榄石;g, h.他形浑圆状橄榄石;i.单斜辉石(Cpx)矿物集合体;j.近八边形自形单斜辉石;k.半自形单斜辉石;l.他形长条状单斜辉石;m.角闪石(Amp)矿物集合体;n.近菱形自形角闪石;o.半自形长柱状角闪石;p.他形浑圆状角闪石;q.港湾状角闪石;r.金云母(Phl)矿物集合体;s.近五边形自形金云母;t.七边形自形金云母
Fig. 4. BSE images showing various types of silicate inclusions with different shapes and sizes in chromite in the Pozantı-Karsantı ophiolite in Turkey
图 6 土耳其Pozantı-Karsantı蛇绿岩铬铁矿中不常见的矿物包裹体
a.方解石(Cal)和绿泥石的复合型包裹体;b.硅灰石、绿泥石、蛇纹石的复合型包裹体;c.磷灰石(Ap)和单斜辉石的复合型包裹体;d.钙铬榴石(Uv)和单斜辉石的复合型包裹体;e.钙铬榴石;f.斜长石(Pl)和蛇纹石的复合型包裹体;g.半自形角闪石和铂族元素硫化物的复合型包裹体;h.铂族元素硫化物和他形角闪石的复合型包裹体;i.柱状铂族元素硫化物
Fig. 6. BSE images of uncommon mineral inclusions in chromite in the Pozantı-Karsantı ophiolite in Turkey
图 8 土耳其Pozantı-Karsantı蛇绿岩铬铁矿中橄榄石(a)、单斜辉石(b, c)和角闪石(d)包裹体的成分相关性图解
玻安岩和大洋中脊玄武岩数据来自GEOROC,http://georoc.mpch-mainz.gwdg.de/georoc/Start.asp
Fig. 8. Compositional correlation diagrams for olivine (a), clinopyroxene (b, c) and amphibole (d) inclusions in chromite in the Pozantı-Karsantı ophiolite in Turkey
-
[1] Ahmed, A.H., Hanghøj, K., Kelemen, P.B., et al., 2006.Osmium Isotope Systematics of the Proterozoic and Phanerozoic Ophiolitic Chromitites:In Situ Ion Probe Analysis of Primary Os-Rich PGM.Earth and Planetary Science Letters, 245(3-4):777-791. https://doi.org/10.1016/j.epsl.2006.03.021 [2] Arai, S., Okamura, H., Kadoshima, K., et al., 2010.Chemical Characteristics of Chromian Spinel in Plutonic Rocks:Implications for Deep Magma Processes and Discrimination of Tectonic Setting.Island Arc, 20(1):125-137. https://doi.org/10.1111/j.1440-1738.2010.00747.x [3] Arai, S., 1980.Dunite-Harzburgite-Chromitite Complexes as Refractory Residue in the Sangun-Yamaguchi Zone, Western Japan.Journal of Petrology, 21(1):141-165. https://doi.org/10.1093/petrology/21.1.141 [4] Arai, S., 1994.Characterization of Spinel Peridotites by Olivine-Spinel Compositional Relationships:Review and Interpretation.Chemical Geology, 113(3-4):191-204. https://doi.org/10.1016/0009-2541(94)90066-3 [5] Arai, S., Kadoshima, K., Morishita, T., 2006.Widespread Arc-Related Melting in the Mantle Section of the Northern Oman Ophiolite as Inferred from Detrital Chromian Spinels.Journal of the Geological Society, 163(5):869-879. https://doi.org/10.1144/0016-76492005-057 [6] Arai, S., Miura, M., 2016.Formation and Modification of Chromitites in the Mantle.Lithos, 264:277-295. https://doi.org/10.1016/j.lithos.2016.08.039 [7] Avcı, E., Uysal, I., Akmaz, R.M., et al., 2017.Ophiolitic Chromitites from the Klzllyüksek Area of the Pozantı-Karsantı Ophiolite (Adana, Southern Turkey):Implication for Crystallization from a Fractionated Boninitic Melt.Ore Geology Reviews, 90:166-183. https://doi.org/10.1016/j.oregeorev.2016.08.033 [8] Bai, W.J., Robinson, P.T., Fang, Q.S., et al., 2004.The Platinum Element and Base Metal Alloy of Ophiolitic Podiform Chromite from Luobusa, Southern Tibet.Acta Geoscientica Sinica, 25(4):385-396 (in Chinese). [9] Bai, Y., Su, B.X., Chen, C., et al., 2017.Base Metal Mineral Segregation and Fe-Mg Exchange Inducing Extreme Compositions of Olivine and Chromite from the Xiadong Alaskan-Type Complex in the Southern Part of the Central Asian Orogenic Belt.Ore Geology Reviews, 90:184-192. https://doi.org/10.1016/j.oregeorev.2017.01.023 [10] Bao, P.S., 2009.Further Discussion on the Genesis of Podiform Chromite Deposits in the Ophiolites-Questioning about the Rock/Melt Interaction Metallogeny.Geological Bulletin of China, 28(12):1742-1761 (in Chinese with English abstract). https://www.researchgate.net/publication/285981984_Further_discussion_on_the_genesis_of_the_podiform_chromite_deposits_in_the_ophiolites-questioning_about_the_rock_melt_interaction_metallogeny [11] Bao, P.S., Wang, X.B., 1997.Metallogenic Model of the Alumium-Type Podiform Chromite Deposits.Acta Geoscientia Sinica:Bulletin of the Chinese Academy of Geological Sciences, 18(1):25-40 (in Chinese with English abstract). http://www.oalib.com/paper/1558138 [12] Berry, A.J., O'Neill, H.S.C., Scott, D.R., et al., 2006.The Effect of Composition on Cr2+/Cr3+ in Silicate Melts.American Mineralogist, 91(11-12):1901-1908. https://doi.org/10.2138/am.2006.2097 [13] Borisova, A.Y., Ceuleneer, G., Kamenetsky, V.S., et al., 2012.A New View on the Petrogenesis of the Oman Ophiolite Chromitites from Microanalyses of Chromite-Hosted Inclusions.Journal of Petrology, 53(12):2411-2440. https://doi.org/10.1093/petrology/egs054 [14] Chen, C., Su, B.X., Uysal, I., et al., 2015.Iron Isotopic Constraints on the Origin of Peridotite and Chromitite in the Klzllda Ophiolite, Southern Turkey.Chemical Geology, 417(6):115-124. https://doi.org/10.1016/j.chemgeo.2015.10.001 [15] Dilek, Y., Moores, E.M., Panayiotou, A., 1990.Regional Tectonics of the Eastern Mediterranean Ophiolites.Ophiolites, Oceanic, Crustal Analogues, Proceedings of the Symposium "Troodos 1987", Geological Survey Department, Ministry of Agriculture and Natural Resources, 295-309. [16] Feig, S.T., Koepke, J., Snow, J.E., 2006.Effect of Water on Tholeiitic Basalt Phase Equilibria:An Experimental Study under Oxidizing Conditions.Contributions to Mineralogy and Petrology, 152(5):611-638. https://doi.org/10.1007/s00410-006-0123-2 [17] Ford, C.E., Biggar, G.M., Humphries, D.J., et al., 1972.Role of Water in the Evolution of the Lunar Crust; An Experimental Study of Sample 14310; An Indication of Lunar Calc-Alkaline Volcanism.Proceedings of 3rd Lunar Scientific Conference.Geochimica et Cosmochimica Acta, 3:207-229. [18] Guo, G.L., Yang, J.S., Liu, X.D., et al., 2016.In Situ Research on PGM in Luobusa Ophiolitic Chromitites, Tibet:Implications for the Crystallization of the Chromite.Acta Petrologica Sinica, 32(12):3673-3684 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201612008.htm [19] Huang, Z., Yang, J.S., Zhu, Y.W., et al., 2015.The Discovery of Diamonds and Deep Mantle Minerals in Chromitites of Hegenshan Ophiolite, Inner Mongolia.Geology in China, 42(5):1493-1514 (in Chinese with English abstract). https://www.researchgate.net/publication/289545810_The_discovery_of_diamonds_and_deep_mantle_minerals_in_chromitites_of_Hegenshan_ophiolite_Inner_Mongolia [20] Kamenetsky, V.S., 2001.Factors Controlling Chemistry of Magmatic Spinel:An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks.Journal of Petrology, 42(4):655-671. https://doi.org/10.1093/petrology/42.4.655 [21] Lian, D.Y., Yang, J.S., Dilek, Y., et al., 2017a.Geochemical, Geochronological, and Sr-Nd Isotopic Constraints on the Origin of the Mafic Dikes from the Pozanti-Karsanti Ophiolite:Implications for Tectonic Evolution.The Journal of Geology, 125(2):223-239. https://doi.org/10.1086/690222 [22] Lian, D.Y., Yang, J.S., Yildirm, D., et al., 2017b.Diamond, Moissanite and Other Unusual Minerals in Podiform Chromitites from the Pozantı-Karsantı Ophiolite, Southern Turkey:Implications for Deep Mantle Origin and Ultra-Reducing Conditions in Podiform Chromitite.American Mineralogist, 102:1101-1113. https://www.researchgate.net/publication/319631521_Deep_mantle_origin_and_ultra-reducing_conditions_in_podiform_chromitite_Diamond_moissanite_and_other_unusual_minerals_in_podiform_chromitites_from_the_Pozanti-Karsanti_ophiolite_southern_Turkey [23] Maibam, B., Foley, S., Luguet, A., et al., 2017.Characterization of Chromites, Chromite Hosted Inclusions of Silicates and Metal Alloys in Chromitites from the Indo-Myanmar Ophiolite Belt of Northeastern India.Ore Geology Reviews, 90:260-273. https://doi.org/10.1016/j.oregeorev.2017.05.032 [24] Matveev, S., Ballhaus, C., 2002.Role of Water in the Origin of Podiform Chromitite Deposits.Earth and Planetary Science Letters, 203(1):235-243. https://doi.org/10.1016/s0012-821x(02)00860-9 [25] Melcher, F., Grum, W., Simon, G., et al., 1997.Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan:A Study of Solid and Fluid Inclusions in Chromite.Journal of Petrology, 38(10):1419-1458. https://doi.org/10.1093/petroj/38.10.1419 [26] Pagé, P., Barnes, S.J., 2009.Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Quebec, Canada.Economic Geology, 104:997-1018. https://doi.org/10.2113/gsecongeo.104.7.997 [27] Paktunc, A.D., 1990.Origin of Podiform Chromite Deposits by Multistage Melting, Melt Segregation and Magma Mixing in the Upper Mantle.Ore Geology Reviews, 5(3):211-222. https://doi.org/10.1016/0169-1368(90)90011-b [28] Parlak, O., Höck, V., Delaloye, M., 2002.The Supra-Subduction Zone Pozanti-Karsanti Ophiolite, Southern Turkey:Evidence for High-Pressure Crystal Fractionation of Ultramafic Cumulates.Lithos, 65(1-2):205-224. https://doi.org/10.1016/s0024-4937(02)00166-4 [29] Parlak, O., Rlzaolu, T., Bacl, U., et al., 2009.Tectonic Significance of the Geochemistry and Petrology of Ophiolites in Southeast Anatolia, Turkey.Tectonophysics, 473(1-2):173-187. https://doi.org/10.1016/j.tecto.2008.08.002 [30] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [31] Polat, A., Casey, J.F., 1995.A Structural Record of the Emplacement of the Pozanti-Karsanti Ophiolite onto the Menderes-Taurus Block in the Late Cretaceous, Eastern Taurides, Turkey.Journal of Structural Geology, 17(12):1673-1688. https://doi.org/10.1016/0191-8141(95)00061-h [32] Robertson, A.H.F., 2002.Overview of the Genesis and Emplacement of Mesozoic Ophiolites in the Eastern Mediterranean Tethyan Region.Lithos, 65(1-2):1-67. https://doi.org/10.1016/s0024-4937(02)00160-3 [33] Robinson, P.T., Trumbull, R.B., Schmitt, A., et al., 2015.The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites.Gondwana Research, 27(2):486-506. https://doi.org/10.1016/j.gr.2014.06.003 [34] Rollinson, H., 2005.Chromite in the Mantle Section of the Oman Ophiolite:A New Genetic Model.The Island Arc, 14(4):542-550. https://doi.org/10.1111/j.1440-1738.2005.00482.x [35] Rollinson, H., 2008.The Geochemistry of Mantle Chromitites from the Northern Part of the Oman Ophiolite:Inferred Parental Melt Compositions.Contributions to Mineralogy and Petrology, 156(3):273-288. https://doi.org/10.1007/s00410-008-0284-2 [36] Rollinson, H., Adetunji, J., 2015.The Geochemistry and Oxidation State of Podiform Chromitites from the Mantle Section of the Oman Ophiolite:A Review.Gondwana Research, 27(2):543-554. https://doi.org/10.1016/j.gr.2013.07.013 [37] Saka, S., Uysal, I., Akmaz, R.M., et al., 2014.The Effects of Partial Melting, Melt-Mantle Interaction and Fractionation on Ophiolite Generation:Constraints from the Late Cretaceous Pozantı-Karsantı Ophiolite, Southern Turkey.Lithos, 202-203:300-316. https://doi.org/10.1016/j.lithos.2014.05.027 [38] Schiano, P., Clocchiatti, R., Lorand, J.P., et al., 1997.Primitive Basaltic Melts Included in Podiform Chromites from the Oman Ophiolite.Earth and Planetary Science Letters, 146(3-4):489-497. https://doi.org/10.1016/s0012-821x(96)00254-3 [39] Su, B.X., Teng, F.Z., Hu, Y., et al., 2015.Iron and Magnesium Isotope Fractionation in Oceanic Lithosphere and Sub-Arc Mantle:Perspectives from Ophiolites.Earth and Planetary Science Letters, 430:523-532. https://doi.org/10.1016/j.epsl.2015.08.020 [40] Su, B.X., Zhou, M.F., Robinson, P.T., 2016.Extremely Large Fractionation of Li Isotopes in a Chromitite-Bearing Mantle Sequence.Scientific Reports, 6:22370. https://doi.org/10.1038/srep22370 [41] Su, B.X., Chen, C., Pang, K.N., et al., 2018.Various Melt Penetration in Oceanic Lithosphere:Li Isotope Records in Pozantı-Karsantı Ophiolite in Southern Turkey.Journal of Petrology.https://doi: 10.1093/petrology/egy023. [42] Tamura, A.S., 2005.Unmixed Spinel in Chromitite from the Iwanai-Dake Peridotite Complex, Hokkaido, Japan:A Reaction between Peridotite and Highly Oxidized Magma in the Mantle Wedge.American Mineralogist, 90:473-480. https://doi.org/10.2138/am.2005.1570 [43] Tian, Y.Z., Yang, J.S., Zhang, Z.M., et al., 2015.Discovery and Implication of Unusual Mineral Group from Sarthay High-Al Chromitites, Xinjiang.Acta Petrologica Sinica, 31(12):3650-3662 (in Chinese with English abstract). https://www.researchgate.net/publication/292680496_Discovery_and_implication_of_unusual_mineral_group_from_Sarthay_high-Al_chromitites_Xinjiang [44] Uysal, I., Kaliwoda, M., Karsli, O., et al., 2007.Compositional Variations as a Result of Partial Melting and Melt-Peridotite Interaction in an Upper Mantle Section from the Ortaca Area, Southwestern Turkey.The Canadian Mineralogist, 45(6):1471-1493. https://doi.org/10.3749/canmin.45.6.1471 [45] Wang, X.B., Bao, P.S., 1987.The Genesis of Podiform Chromitite Deposits-A Case Study of the Luobusa Ophiolitic Chromite Deposite, Tibet.Acta Geologica Sinica, (2):167-181 (in Chinese with English abstract). [46] Wang, X.B., Hao, Z.G., Bao, P.S., et al., 1992.Genetic Types and Some Metallogenic Characteristics of Chromite Deposits in Ophiolites whithin Phanerozoic Orogenic Belts of China.Mineral Deposits, 11(1):21-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ199201002.htm [47] Xiao, Y., Teng, F.Z., Su, B.X., et al., 2016.Iron and Magnesium Isotopic Constraints on the Origin of Chemical Heterogeneity in Podiform Chromitite from the Luobusa Ophiolite, Tibet.Geochemistry, Geophysics, Geosystems, 17(3):940-953. https://doi.org/10.1002/2015gc006223 [48] Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2015.Origin of Podiform Chromitite, a New Model Based on the Luobusa Ophiolite, Tibet.Gondwana Research, 27(2):525-542. https://doi.org/10.1016/j.gr.2014.04.008 [49] Yamamoto, S., Komiya, T., Hirose, K., et al., 2009.Coesite and Clinopyroxene Exsolution Lamellae in Chromites:In-Situ Ultrahigh-Pressure Evidence from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet.Lithos, 109(3-4):314-322. https://doi.org/10.1016/j.lithos.2008.05.003 [50] Yang, J.S., Meng, F.C., Xu X.Z., et al., 2015a.Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals.Gondwana Research, 27(2):459-485. https://doi.org/10.1016/j.gr.2014.07.004 [51] Yang, J.S., Robinson, P.T., Dilek, Y., 2015b.Diamond-Bearing Ophiolites and Their Geological Occurrence.Episodes, 38(4):344-364. https://doi.org/10.18814/epigsi/2015/v38i4/82430 [52] Yang, J.S., Robinson, P.T., Dilek, Y., 2014.Diamonds in Ophiolites.Elements, 10(2):127-130. https://doi.org/10.2113/gselements.10.2.127 [53] Zhou, M.F., Robinson, P.T., Bai, W.J., 1994.Formation of Podiform Chromitites by Melt/Rock Interaction in the Upper Mantle.Mineralium Deposita, 29(1):98-101. https://doi.org/10.1007/bf03326400 [54] Zhou, M.F., Robinson, P.T., Malpas, J., et al., 1996.Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet):Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle.Journal of Petrology, 37(1):3-21. https://doi.org/10.1093/petrology/37.1.3 [55] Zhou, M.F., Robinson, P.T., Malpas, J., et al., 2005.REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet.Journal of Petrology, 46(3):615-639. https://doi.org/10.1093/petrology/egh091 [56] Zhou, M.F., Robinson, P.T., Su, B.X., et al., 2014.Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits:The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments.Gondwana Research, 26(1):262-283. https://doi.org/10.1016/j.gr.2013.12.011 [57] 白文吉, Robinson, P.T., 方青松, 等, 2004.藏南罗布莎蛇绿岩豆荚状铬铁矿中的铂族元素和贱金属合金.地球学报, 25(4):385-396. http://www.docin.com/p-4143555.html [58] 鲍佩声, 2009.再论蛇绿岩中豆荚状铬铁矿的成因-质疑岩石/熔体反应成矿说.地质通报, 28(12):1742-1761. http://www.doc88.com/p-0347697921074.html [59] 鲍佩声, 王希斌, 1997.富铝型豆荚状铬铁矿床的成矿模式.地球学报, 18(1):25-40. http://www.cqvip.com/Main/Detail.aspx?id=2447254 [60] 郭国林, 杨经绥, 刘晓东, 等, 2016.西藏罗布莎铬铁矿中的原位铂族矿物研究:铬铁矿结晶环境的指示.岩石学报, 32(12):3673-3684. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20161208&flag=1 [61] 黄竺, 杨经绥, 朱永旺, 等, 2015.内蒙古贺根山蛇绿岩的铬铁矿中发现金刚石等深部地幔矿物.中国地质, 42(5):1493-1514. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201505021 [62] 田亚洲, 杨经绥, 张仲明, 等, 2015.新疆萨尔托海高铝铬铁矿中异常矿物群的发现及意义.岩石学报, 31(12):3650-3662. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20151210&journal_id=ysxb&year_id=2015 [63] 王希斌, 鲍佩声, 1987.豆荚状铬铁矿床的成因——以罗布莎为例.地质学报, (2):167-181. http://wap.cnki.net/touch/web/Journal/Article/DIZI201702003.html [64] 王希斌, 郝梓国, 鲍佩声, 等, 1992.中国造山带蛇绿岩中铬铁矿床的成因类型及其成矿的若干特征.矿床地质, 11(1):21-34. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199201002.htm