• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    罗布莎豆荚状铬铁矿床中刚玉的含Ti矿物包裹体特征

    徐向珍 杨经绥 熊发挥 郭国林

    徐向珍, 杨经绥, 熊发挥, 郭国林, 2018. 罗布莎豆荚状铬铁矿床中刚玉的含Ti矿物包裹体特征. 地球科学, 43(4): 1025-1037. doi: 10.3799/dqkx.2018.706
    引用本文: 徐向珍, 杨经绥, 熊发挥, 郭国林, 2018. 罗布莎豆荚状铬铁矿床中刚玉的含Ti矿物包裹体特征. 地球科学, 43(4): 1025-1037. doi: 10.3799/dqkx.2018.706
    Xu Xiangzhen, Yang Jingsui, Xiong Fahui, Guo Guolin, 2018. Characteristics of Titanium-Bearing Inclusions Found in Corundum of Luobusa Podiform Chromitite, Tibet. Earth Science, 43(4): 1025-1037. doi: 10.3799/dqkx.2018.706
    Citation: Xu Xiangzhen, Yang Jingsui, Xiong Fahui, Guo Guolin, 2018. Characteristics of Titanium-Bearing Inclusions Found in Corundum of Luobusa Podiform Chromitite, Tibet. Earth Science, 43(4): 1025-1037. doi: 10.3799/dqkx.2018.706

    罗布莎豆荚状铬铁矿床中刚玉的含Ti矿物包裹体特征

    doi: 10.3799/dqkx.2018.706
    基金项目: 

    国家自然科学基金项目 41672046

    国家自然科学基金项目 41720104009

    中国地质调查局工作项目 DD20160023-01

    国家自然科学基金项目 41373029

    详细信息
      作者简介:

      徐向珍(1980-), 女, 副研究员, 主要从事地幔矿物

    • 中图分类号: P575

    Characteristics of Titanium-Bearing Inclusions Found in Corundum of Luobusa Podiform Chromitite, Tibet

    • 摘要: 通过能谱和电子探针分析了西藏罗布莎豆荚状铬铁矿石刚玉中的含钛合金和含钛氧化物包裹体特征,分析发现刚玉中含Ti合金矿物包裹体主要有Ti-N、Ti-B、Ti-C、Ti-Si-P和Ti-Si-Fe以及Ti-Al-Zr氧化物.Ti-N合金呈磨圆状、梅花状,粒度约17 μm×35 μm;Ti-B合金呈长柱状,10 μm×58 μm;Ti-C合金呈自形、他形,粒度约40 μm×50 μm;Ti-Si-P和Ti-Si-Fe合金成分不均一,呈一个熔融体包裹在刚玉中;Ti-Al-Zr氧化物成分纯净.结合铬铁矿石中发现大量的微粒金刚石和碳硅石等超高压异常地幔矿物,提出罗布莎铬铁矿石中的刚玉及其中的特殊矿物包裹体组合形成于高压环境的深部地幔.

       

    • 图  1  西藏罗布莎豆荚状铬铁矿床地质简图

      Zhou et al.(1996)修改

      Fig.  1.  Simplified geological map of Luobusa chromite deposit in Tibet

      图  2  康金拉铬铁矿区豆荚状铬铁矿中刚玉及其包裹体

      a.刚玉及其Ti-N、Ti-B包裹体的二次电子图;b.刚玉及其Ti-N包裹体的二次电子图;c, d.刚玉及其Ti-C包裹体的二次电子图

      Fig.  2.  Corundum and its inclusions from the podiform chromitite in Kangjinla, Tibet

      图  3  康金拉铬铁矿区豆荚状铬铁矿中刚玉及其包裹体

      a.刚玉及其Ti-C、Ti-Si-P包裹体的二次电子图;b.刚玉及其Ti-Si-P包裹体的二次电子图;c, d.刚玉及其Ti-C、Ti-Si-Fe包裹体的二次电子图

      Fig.  3.  Corundum and its inclusions from the podiform chromitite in Kangjinla, Tibet

      图  4  康金拉铬铁矿区豆荚状铬铁矿中刚玉Ti-C包裹体的二次电子图(a)与能谱面成分扫描图(b, c)

      a.刚玉及其Ti-C包裹体的二次电子图;b.Ti元素的能谱面成分扫描图;c.C元素的能谱面成分扫描图

      Fig.  4.  Second image (a) and X-ray maps (b, c) showing Ti-C inclusion in the corundum from the podiform chromitite in Kangjinla, Tibet

      图  5  康金拉铬铁矿区豆荚状铬铁矿中刚玉的Ti-C包裹体的二次电子图(a)与能谱面成分扫描图(b~e)

      a.刚玉及其Ti-C包裹体的二次电子图;b.C元素的能谱面成分扫描图;c.O元素的能谱面成分扫描图;d.Ti元素的能谱面成分扫描图;e.Si元素的能谱面成分扫描图

      Fig.  5.  Second image (a) and X-ray maps (b-e) showing Ti-C inclusion in the corundum from the podiform chromitite in Kangjinla, Tibet

      图  6  康金拉铬铁矿区豆荚状铬铁矿中刚玉的Ti-Si-P包裹体二次电子图(a)与线成分扫描图(b~f)

      a.刚玉及其Ti-Si-P包裹体的二次电子图;b.Al元素的线成分扫描图;c.O元素的线成分扫描图;d.Ti元素的线成分扫描图;e.Si元素的线成分扫描图;f.P元素的线成分扫描图

      Fig.  6.  Second image (a) and line scanning graphs (b-f) of Ti-Si-P inclusion in the corundum from the podiform chromitite in Kangjinla, Tibet

      图  7  康金拉铬铁矿区豆荚状铬铁矿中刚玉的Ti-Si-P包裹体二次电子图(a)与能谱面成分扫描图(b~f)

      a.刚玉及其Ti-Si-P包裹体的二次电子图;b.Al元素的面成分扫描图;c.O元素的面成分扫描图;d.Ti元素的面成分扫描图;e.Si元素的面成分扫描图;f.P元素的面成分扫描图

      Fig.  7.  Second image (a) and X-ray maps (b-f) showing Ti-Si-P inclusion in the corundum from the podiform chromitite in Kangjinla, Tibet

      图  8  康金拉铬铁矿区豆荚状铬铁矿中刚玉的Ti-Si-Fe包裹体二次电子图(a)与线成分扫描图(b~i)

      a.刚玉及其Ti-Si-Fe包裹体的二次电子图;b.Al元素的线成分扫描图;c.O元素的线成分扫描图;d.Ti元素的线成分扫描图;e.Si元素的线成分扫描图;f.P元素的线成分扫描图;g.Fe元素的线成分扫描图;h.Cr元素的线成分扫描图;i.V元素的线成分扫描图

      Fig.  8.  Second image (a) and line scanning graphs (b-i) of Ti-Si-Fe inclusion in the corundum from the podiform chromitite in Kangjinla, Tibet

      图  9  康金拉铬铁矿区豆荚状铬铁矿中刚玉的Ti-Si-Fe包裹体二次电子图(a)与能谱面成分扫描图(b~i)

      a.刚玉及其Ti-Si-Fe包裹体的二次电子图;b.Al元素的能谱面成分扫描图;c.O元素的能谱面成分扫描图;d.C元素的能谱面成分扫描图;e.Ti元素的能谱面成分扫描图;f.Si元素的能谱面成分扫描图;g.P元素的能谱面成分扫描图;h.Fe元素的能谱面成分扫描图;i.Cr元素的能谱面成分扫描图

      Fig.  9.  Second image (a) and X-ray maps (b-i) showing Ti-Si-Fe inclusion in the corundum from the podiform chromitite in Kangjinla, Tibet

      表  1  康金拉铬铁矿区豆荚状铬铁矿石中刚玉含Ti合金包裹体化学成分(%)

      Table  1.   Chemical compositions of titanium-bearing alloy inclusions in corundum from the podiform chromitite in Kangjinla, Tibet

      样品号 Fe P N Cr Zr Si Ti B V C Mn 合计
      KCr-13-1-1.2 0.00 0.02 20.30 0.02 0.00 0.00 75.69 0.00 0.54 0.00 0.00 96.57
      KCr-13-1-1.3 0.02 0.00 0.00 0.00 0.08 0.00 68.66 29.55 0.00 0.00 0.03 98.33
      KCr-13-1-3.2 0.00 0.00 17.74 0.03 0.08 0.02 75.69 0.00 0.49 1.32 0.00 95.37
      KCr-13-1-5.2 0.43 2.25 2.08 0.57 0.38 37.87 44.25 0.33 0.71 5.70 0.16 94.73
      KCr-13-1-5.3 0.96 6.79 4.43 1.53 0.16 18.45 61.27 0.00 1.49 2.98 0.31 98.36
      KCr-13-1-5.4 1.23 8.43 3.59 0.62 0.47 23.01 58.96 0.22 0.81 2.88 0.24 100.46
      KCr-13-1-5.5 - - - - - - 78.29 - - 21.71 - 100.00
      KCr-13-2-2.2 - - - - - - 84.33 - - 15.67 - 100.00
      KCr-13-2-2.3 - - - - - - 82.24 - - 17.76 - 100.00
      KCr-13-2-2.4 - - - - - - 85.05 - - 14.95 - 100.00
      KCr-13-2-2.5 - - - - - - 85.37 - - 14.63 - 100.00
      KCr-13-3-1.4 - - - - - - 87.49 - - 12.51 - 100.00
      KCr-13-3-1.5 - - - - - - 82.87 - - 17.13 - 100.00
      KCr-13-3-1.6 - - - - - - 77.90 - - 22.10 - 100.00
      KCr-13-3-1.7 28.00 0.94 0.00 2.95 0.00 38.43 29.38 0.00 1.32 0.00 1.31 102.33
      KCr-13-3-1.8 0.00 0.27 0.00 1.24 0.00 55.23 43.15 0.00 2.25 0.00 0.00 102.14
      KCr-13-3-1.9 29.77 0.85 0.00 2.46 0.00 37.45 29.85 0.00 0.89 0.00 1.35 102.63
      注:合计数为100的是归一化的能谱数据;“-”未探测;其他数据为电子探针数据.
      下载: 导出CSV

      表  2  康金拉铬铁矿区豆荚状铬铁矿石中刚玉含Ti氧化物包裹体化学成分(%)

      Table  2.   Chemical compositions of titanium-bearing oxide inclusions in corundum from the podiform chromitite in Kangjinla, Tibet

      样品号 Al2O3 ZrO2 TiO2 合计
      KCr-13-3-1.2 18.91 27.97 53.35 100.23
      KCr-13-3-1.3 18.61 24.33 57.34 100.28
      下载: 导出CSV
    • [1] Allégre, C.J., Courtillot, V., Tapponnier, P., et al., 1984.Structure and Evolution of the Himalaya-Tibet Orogenic Belt.Nature, 307(5946):17-22. https://doi.org/10.1038/307017a0
      [2] Arai, S., 1997.Origin of Podiform Chromitites.Journal of Asian Earth Sciences, 15 (2-3):303-310.https://doi.org/10.1016/s1367-9120 (97)00015-1 doi: 10.1016/s1367-9120(97)00015-1
      [3] Bai, W.J., Shi, N.C., Fang, Q.S., et al., 2006.Luobusaite:A New Mineral.Acta Geologica Sinica (English Edition), 80(5):656-659. https://doi.org/10.1111/j.1755-6724.2006.tb00289.x
      [4] Bai, W.J., Yang, J.S., Fang, Q.S., et al., 2001.Study on a Storehouse of Ultrahigh Pressure Mantle Minerals-Podiform Chromite Deposits.Earth Science Frontiers, 8(3):111-121 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200103017.htm
      [5] Bai, W.J., Yang, J.S., Fang, Q.S., et al., 2003.An Unusual Mantle Mineral Group in Ophiolites of Tibet.Geology in China, 30(2):144-150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200302005.htm
      [6] Bai, W.J., Yang, J.S., Fang, Q.S., et al., 2004.Chemical Compositions of Alloys from Podiform Chromitites in the Luobusa Ophiolite, Tibet.Acta Geologica Sinica, 78(5):675-682 (in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/263766
      [7] Bai, W.J., Zhou, M.F., Robinson, P.T., 1993.Possibly Diamond-Bearing Mantle Peridotites and PodiformChromitites in the Luobusa and Dongqiao Ophiolites, Tibet.Canadian Journal of Earth Sciences, 30(8):1650-1659. https://doi.org/10.1139/e93-143
      [8] Ballhaus, C., 1998.Origin of Podiform Chromite Deposits by Magma Mingling.Earth and Planetary Science Letters, 156(3-4):185-193. https://doi.org/10.1016/s0012-821x(98)00005-3
      [9] Cheng, K.Q., Tian, P.X., Shi, N.C., et al., 1983.New Mineral-Tongbaite Cr3C2.Chinese Journal of Nature, 6(6):478-479 (in Chinese). http://agris.fao.org/agris-search/export!exportTopEndNoteXML.action?agrovocString=Mineral+soils&onlyFullText=false
      [10] Coenraads, R.R., Vichit, P., Sutherland, F.L., 1995.An Unusual Sapphire-Zircon-Magnetite Xenolith from the Chanthaburi Gem Province, Thailand.Mineralogical Magazine, 59(396):465-479. https://doi.org/10.1180/minmag.1995.059.396.08
      [11] Dawson, J.B., 1968.Recent Researches on Kimberlite and Diamond Geology.Economic Geology, 63(5):504-511. https://doi.org/10.2113/gsecongeo.63.5.504
      [12] Ding, Z.H., 2009.Genesis of Megacrystal Corundum from Shandong Province-Evidence from Mineral Inclusions.Acta Mineralogica Sinica, 29(4):442-446 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB200904008.htm
      [13] Dobrzhinetskaya, L.F., Wirth, R., Yang, J.S., et al., 2009.High-Pressure Highly Reduced Nitrides and Oxides from Chromitite of a Tibetan Ophiolite.Proceedings of the National Academy of Sciences, 106(46):19233-19238. https://doi.org/10.1073/pnas.0905514106
      [14] Dobrzhinetskaya, L.F., Wirth, R., Yang, J.S., et al., 2014.Qingsongite, Natural Cubic Boron Nitride:The First Boron Mineral from the Earth's Mantle.American Mineralogist, 99(4):764-772. https://doi.org/10.2138/am.2014.4714
      [15] Fang, Q., Bai, W., Yang, J.S., et al., 2009.Qusongite (WC):A New Mineral.American Mineralogist, 94(2-3):387-390. https://doi.org/10.2138/am.2009.3015
      [16] Frost, D.J., McCammon, C.A., 2008.The Redox State of Earth's Mantle.Annual Review of Earth and Planetary Sciences, 36(1):389-420. https://doi.org/10.1146/annurev.earth.36.031207.124322
      [17] Gasparik, T., Hutchison, M.T., 2000.Experimental Evidence for the Origin of Two Kinds of Inclusions in Diamonds from the Deep Mantle.Earth and Planetary Science Letters, 181(1-2):103-114. https://doi.org/10.1016/s0012-821x(00)00179-5
      [18] Griffin, W.L., Gain, S.E.M., Adams, D.T., et al., 2016.First Terrestrial Occurrence of Tistarite (Ti2O3):Ultra-Low Oxygen Fugacity in the Upper Mantle beneath Mount Carmel, Israel.Geology, 44(10):815-818. https://doi.org/10.1130/g37910.1
      [19] Harte, B., Harris, J.W., Hutchison, M.T., et al., 1999.Lower Mantle Mineral Associations in Diamonds from So Luiz, Brazil.Mineralogical Magzine, 26A(1):575-576.
      [20] He, S., 2004.Reconsideration of Corundum, Ruby and Sapphire.Jewelry Science and Technology, 16(5):14-18 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZBKJ200405002.htm
      [21] Hutchison, M.T., Hursthouse, M.B., Light, M.E., 2001.Mineral Inclusions in Diamonds:Associations and Chemical Distinctions around the 670 km Discontinuity.Contributions to Mineralogy and Petrology, 142(1):119-126. https://doi.org/10.1007/s004100100279
      [22] Hutchison, M.T., Nixon, P.H., Harley, S.L., 2004.Corundum Inclusions in Diamonds-Discriminatory Criteria and a Corundum Compositional Dataset.Lithos, 77(1-4):273-286. https://doi.org/10.1016/j.lithos.2004.04.006
      [23] Hutchison, M.T., 1997.Constitution of the Deep Transition Zone and Lower Mantle Shown by Diamonds and Their Inclusions (Dissertation).The University of Edinburgh, Edinburgh, 660.
      [24] Irving, A.J., 1986.Polybaric Magma Mixing in Alkali Basalts and Kimberlites:Evidence from Corundum, Zircon and Ilmenite Megacrysts.Abstracts-Geological Society of Australia, 16:262-264.
      [25] Javoy, M., 1998.The Birth of the Earth's Atmosphere:The Behavior and Fate of Its Major Elements.Chemical Geology, 147(1-2):11-25. https://doi.org/10.1016/s0009-2541(97)00169-1
      [26] Li, G.W., Fang, Q.S., Shi, N.C., et al., 2009.Zangboite, TiFeSi2, a New Mineral Species and Its Crystal Structure from Luobusha, Tibet, China.The Canadian Mineralogist, 47(5):1265-1274. https://doi.org/10.3749/canmin.47.5.1265
      [27] Lu, Q., Shi, N.C., Liu, H.F., et al., 2011.TiC Inclusion First Found in Diamond from Fuxian, Liaoning of China.Geological Science and Technology Information, 30(2):1-5 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dzkjqb201102001
      [28] Madiba, C.C.P., Pollak, H., Cawthorn, R.G., et al., 1998.Ilmenite:Mantle Reservoir for Nitrogen?Hyperfine Interact, 111:319-327. https://doi.org/10.1023/A:1012694809968
      [29] Maruyama, S., 1994.Plume Tectonics.The Journal of the Geological Society of Japan, 100(1):24-49. https://doi.org/10.5575/geosoc.100.24
      [30] Nicolas, A., Girardeau, J., Marcoux, J., et al., 1981.The Xigaze Ophiolite (Tibet):A Peculiar Oceanic Lithosphere.Nature, 294(5840):414-417. https://doi.org/10.1038/294414a0
      [31] Qiu, Z.L., Chen, B.H., Chen, J.D., 1999.Discovery of Zircon Inclusions in Corundum Megacrysts Related to Alkli Basalt in Changle, Shandong.Acta Scientiarum Naturalium Universitatis Sunyatseni, 38(6):131-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZSDZ199906029.htm
      [32] Qiu, Z.L., Chen, J.D., Chen, B.H., et al., 2001a.The Forming of Corundum Megacrysts Related to Alkali Basalt in Changle, Shandong.Acta Scientiarum Naturalium Universitatis Sunyatseni, 40(2):107-111 (in Chinese with English abstract). https://www.researchgate.net/publication/292806374_The_forming_of_corundum_megacrysts_related_to_alkali_basalt_in_Changle_Shandong
      [33] Qiu, Z.L., Qin, S.C., Chen, X.M., 2001b.Tantalic Columbite Inclusions in Corundum Megacrysts in Penglai, Hainan.Acta Mineralogica Sinica, 21(2):205-208 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB200102016.htm
      [34] Qiu, Z.L., Qin, S.C., Pang, X.B., 1995.The Genesis of Corundum Megacrysts Related to Alkali Basalt in Hainan.Acta Scientiarum Naturalium Universitatis Sunyatseni, 34(3):95-101 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZSDZ503.017.htm
      [35] Robinson, P.T., Trumbull, R.B., Schmitt, A., et al., 2015.The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites.Gondwana Research, 27(2):486-506. https://doi.org/10.1016/j.gr.2014.06.003
      [36] Shen, G., Lazor, P., 1995.Measurement of Melting Temperatures of Some Minerals under Lower Mantie Pressures.Journal of Geophysical Research, 100(B9):17699-17713. doi: 10.1029/95JB01864
      [37] Shi, N.C., Bai, W.J., Li, G.W., et al., 2009.Yarlongite:A New Metallic Carbide Mineral.Acta Geologica Sinica, 83(1):25-30 (in Chinese with English abstract). doi: 10.1111/acgs.2009.83.issue-1
      [38] Simonet, C., Fritsch, E., Lasnier, B., 2008.A Classification of Gem Corundum Deposits Aimed towards Gem Exploration.Ore Geology Reviews, 34(1-2):127-133. https://doi.org/10.1016/j.oregeorev.2007.09.002
      [39] Song, Y.C., Hu, W.X., Jin, Z.J., et al., 2006.Fluid and Melt Inclusions and Their Fluid Species in Corundum Megacrysts from the Basalts in Changle, Shandong Province, Eastern China.Geochimica, 35(4):377-387 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqhx200604005.htm
      [40] Stadermann, F.J., Croat, T.K., Bernatowicz, T.J., et al., 2005.Supernova Graphite in the NanoSIMS:Carbon, Oxygen and Titanium Isotopic Compositions of a Spherule and Its TiC Sub-Components.Geochimica et Cosmochimica Acta, 69(1):177-188. https://doi.org/10.1016/j.gca.2004.06.017
      [41] Sutherland, F.L., Hoskin, P.W.O., Fanning, C.M., et al., 1998.Models of Corundum Origin from Alkali Basaltic Terrains:A Reappraisal.Contributions to Mineralogy and Petrology, 133(4):356-372. https://doi.org/10.1007/s004100050458
      [42] Trumbull, R.B., Yang, J.S., Robinson, P.T., et al., 2009.The Carbon Isotope Composition of Natural SiC (Moissanite) from the Earth's Mantle:New Discoveries from Ophiolites.Lithos, 113(3-4):612-620. https://doi.org/10.1016/j.lithos.2009.06.033
      [43] von Hevesy, G.V., 1931.Hugo Müller Lecture.The Chemistry and Geochemistry of the Titanium Group.Journal of the Chemical Society, 109(3):142-143. https://doi.org/10.1039/jr9310000001
      [44] Wang, H.S., Bai, W.J., Wang, B.X., et al., 1983.Chromite Deposits in China and Their Origin.Science Press, Beijing (in Chinese).
      [45] Wang, P., Pan, Z.L., Weng, L.B., 1982.The System of Mineralogy (Volume 1).Geological Publishing House, Beijing (in Chinese).
      [46] Wang, X.B., Bao, P.S., Deng, W.M., et al., 1987.Tibet Ophiolite.Geological Publishing House, Beijing (in Chinese).
      [47] Wang, Z.W., 1999.The Melting of Al-Bearing Perovskite at the Core-Mantle Boundary.Physics of the Earth and Planetary Interiors, 115(3-4):219-228. https://doi.org/10.1016/s0031-9201(99)00078-3
      [48] Wang, Z.W., Mao, H.H., Saxena, S.K., 2000.The Melting of Corundum (Al2O3) under High Pressure Conditions.Journal of Alloys and Compounds, 299:287-291. doi: 10.1016/S0925-8388(99)00794-X
      [49] Watt, G.R., 1994.A High-Chromium Corundum (Ruby) Inclusion in Diamond from the São Luiz Alluvial Mine, Brazil.Mineralogical Magazine, 58(392):490-493. https://doi.org/10.1180/minmag.1994.058.392.16
      [50] Xu, X. Z., 2009. Origin of the Kangjinla Podiform Chromite Deposit and Mantle Peridotite, South Tibet (Dissertation). Chinese Academy of Geological Sciences, Beijing, 145 (in Chinese with English abstract).
      [51] Xu, X.Z., Yang, J.S., Chen, S.Y., et al., 2009.Unusual Mantle Mineral Group from Chromitite Orebody Cr-11 in Luobusa Ophiolite of the Yarlung-Zangbo Suture Zone, Tibet.Journal of Earth Sciences, 20(2):284-302. https://doi.org/10.1007/s12583-009-0026-Z
      [52] Xu, X.Z., Yang, J.S., Guo, G.L., et al., 2013.Mineral Inclusions in Corundum from Chromitites in the Kangjinla Chromite Deposit, Tibet.Acta Petrologica Sinica, 29(6):1867-1877 (in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/254331/1/1000012489102.pdf
      [53] Xu, X.Z., Yang, J.S., Robinson, P.T., et al., 2015.Origin of Ultrahigh Pressure and Highly Reduced Minerals in Podiform Chromitites and Associated Mantle Peridotites of the Luobusa Ophiolite, Tibet.Gondwana Research, 27(2):686-700. https://doi.org/10.1016/j.gr.2014.05.010
      [54] Yamamoto, S., Komiya, T., Hirose, K., et al., 2009.Coesite and Clinopyroxene Exsolution Lamellae in Chromites:In-Situ Ultrahigh-Pressure Evidence from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet.Lithos, 109(3-4):314-322. https://doi.org/10.1016/j.lithos.2008.05.003
      [55] Yang, J.S., Dobrzhinetskaya, L., Bai, W.J., et al., 2007.Diamond-and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet.Geology, 35(10):875-878. https://doi.org/10.1130/g23766a.1
      [56] Yang, J.S., Robinson, P.T., Dilek, Y., 2014.Ophiolite-Hosted Diamond:A New Occurrence of Diamond Documented on Earth.Elements, 10:127-130. doi: 10.2113/gselements.10.2.127
      [57] Yang, J.S., Xu, X.Z., Rong, H., et al., 2013.Deep Minerals in Ophiolitic Mantle Peridotites:Discovery and Progress.Bulletin of Mineralogy, Petrology and Geochemistry, 32(2):159-170 (in Chinese with English abstract). https://www.researchgate.net/publication/319631521_Deep_mantle_origin_and_ultra-reducing_conditions_in_podiform_chromitite_Diamond_moissanite_and_other_unusual_minerals_in_podiform_chromitites_from_the_Pozanti-Karsanti_ophiolite_southern_Turkey
      [58] Yui, T.F., Zaw, K., Limtrakun, P., 2003.Oxygen Isotope Composition of the Denchai Sapphire, Thailand:A Clue to Its Enigmatic Origin.Lithos, 67(1-2):153-161. https://doi.org/10.1016/s0024-4937(02)00268-2
      [59] Zhang, H.Y., Ba, D.Z., Guo, T.Y., et al., 1996.Study of Luobusa Typical Chromite Ore Deposit Qusong County Tibet (Xizang).Xizang People Press, Lhasa (in Chinese).
      [60] Zhang, Z. J., 2003. Research on Shandong Sapphire and Its Bands (Dissertation). Northwest University, Xi'an, 1-44 (in Chinese with English abstract).
      [61] Zhao, G.C., Wu, F.Y., 1994.Plume Tectonics:New Theory of Continental Tectonics.World Geology, 13(1):25-34 (in Chinese).
      [62] Zhou, M.F., Robinson, P.T., Malpas, J., et al., 1996.Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet):Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle.Journal of Petrology, 37(1):3-21. https://doi.org/10.1093/petrology/37.1.3
      [63] 白文吉, 杨经绥, 方青松, 等, 2001.寻找超高压地幔矿物的储存库——豆荚状铬铁矿.地学前缘, 8(3):111-121. http://www.cqvip.com/QK/98600X/2001003/5687602.html
      [64] 白文吉, 杨经绥, 方青松, 等, 2003.西藏蛇绿岩中不寻常的地幔矿物群.中国地质, 30(2):144-150. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200302006
      [65] 白文吉, 杨经绥, 方青松, 等, 2004.西藏罗布莎蛇绿岩豆荚状铬铁矿石中的合金成分.地质学报, 78(5):675-682. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200405011
      [66] 陈克樵, 田培学, 施倪承, 等, 1983.新矿物-桐柏矿(tongbaite)Cr3C2的研究.自然杂志, 6(6):478-479. http://earth.scichina.com:8080/sciD/CN/Y2010/V40/I8/970
      [67] 丁振华, 2009.山东刚玉巨晶的成因——来自矿物包裹体的证据.矿物学报, 29(4):442-446. http://dspace.xmu.edu.cn/dspace/bitstream/handle/2288/118925/%e5%b1%b1%e4%b8%9c%e5%88%9a%e7%8e%89%e5%b7%a8%e6%99%b6%e7%9a%84%e6%88%90%e5%9b%a0%e2%80%94%e2%80%94%e6%9d%a5%e8%87%aa%e7%9f%bf%e7%89%a9%e5%8c%85%e8%a3%b9%e4%bd%93%e7%9a%84%e8%af%81%e6%8d%ae.pdf?sequence=1&isAllowed=y
      [68] 何松, 2004.刚玉·红宝石·蓝宝石的再认识.珠宝科技, 16(5):14-18. http://d.old.wanfangdata.com.cn/Periodical/zbkj200405003
      [69] 陆琦, 施倪承, 刘惠芳, 等, 2011.中国辽宁复县金刚石中新发现的碳化钛矿物.地质科技情报, 30(2):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201102001
      [70] 丘志力, 陈炳辉, 陈敬德, 1999.山东昌乐与碱性玄武岩有关刚玉巨晶中锆石包裹体的发现及其意义.中山大学学报(自然科学版), 38(6):132-133.
      [71] 丘志力, 陈敬德, 陈炳辉, 等, 2001a.与碱性玄武岩有关刚玉巨晶的多阶段成因——包裹体的证据.中山大学学报(自然科学版), 40(2):107-111. http://dspace.xmu.edu.cn/dspace/bitstream/handle/2288/118925/%e5%b1%b1%e4%b8%9c%e5%88%9a%e7%8e%89%e5%b7%a8%e6%99%b6%e7%9a%84%e6%88%90%e5%9b%a0%e2%80%94%e2%80%94%e6%9d%a5%e8%87%aa%e7%9f%bf%e7%89%a9%e5%8c%85%e8%a3%b9%e4%bd%93%e7%9a%84%e8%af%81%e6%8d%ae.pdf?sequence=1&isAllowed=y
      [72] 丘志力, 秦社彩, 陈小明, 2001b.海南蓬莱刚玉巨晶中铌(钽)铁矿包裹体及其意义.矿物学报, 21(2):205-208. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kwxb200102016
      [73] 丘志力, 秦社彩, 庞学斌, 1995.海南碱性玄武岩中的刚玉巨晶成因探讨.中山大学学报(自然科学版), 34(3):95-101. http://www.cqvip.com/QK/94631X/199503/1627461.html
      [74] 施倪承, 白文吉, 李国武, 等, 2009.雅鲁矿:一种金属碳化物新矿物.地质学报, 83(1):25-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200901003
      [75] 宋玉财, 胡文瑄, 金之钧, 等, 2006.山东昌乐刚玉巨晶中的流体和熔融包裹体及其流体组分特征.地球化学, 35(4):377-387. http://d.old.wanfangdata.com.cn/Periodical/dqhx200604005
      [76] 王恒升, 白文吉, 王炳熙, 等, 1983.中国铬铁矿床及成因.北京:科学出版社.
      [77] 王濮, 潘兆橹, 翁玲宝, 1982.系统矿物学(上册).北京:地质出版社.
      [78] 王希斌, 鲍佩声, 邓万明, 等, 1987.西藏蛇绿岩.北京:地质出版社.
      [79] 徐向珍, 2009. 藏南康金拉豆荚状铬铁矿和地幔橄榄岩成因研究(博士学位论文). 北京: 中国地质科学院, 145.
      [80] 徐向珍, 杨经绥, 郭国林, 等, 2013.西藏康金拉铬铁矿床刚玉中的包裹体研究.岩石学报, 29(6):1867-1877. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306003
      [81] 杨经绥, 徐向珍, 戎合, 等, 2013.蛇绿岩地幔橄榄岩中的深部矿物:发现与研究进展.矿物岩石地球化学通报, 32(2):159-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201302002
      [82] 张浩勇, 巴登珠, 郭铁鹰, 等, 1996.西藏自治区曲松县罗布莎铬铁矿床研究.拉萨:西藏人民出版社.
      [83] 张站军, 2003. 山东蓝宝石及其环带的研究(硕士学位论文). 西安: 西北大学, 1-44.
      [84] 赵国春, 吴福元, 1994.热幔柱构造——一种新的大陆构造理论.世界地质, 13(1):25-34. http://www.cqvip.com/qk/94166x/1994001/1480707.html
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  3853
    • HTML全文浏览量:  1350
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-18
    • 刊出日期:  2018-04-15

    目录

      /

      返回文章
      返回